• This record comes from PubMed

The immune response modulated by inoculation of commensal bacteria at birth impacts the gut microbiota and prevents Salmonella colonization

. 2025 Dec ; 17 (1) : 2474151. [epub] 20250313

Language English Country United States Media print-electronic

Document type Journal Article

Super- and low-shedding phenomena have been observed in genetically homogeneous hosts infected by a single bacterial strain. To decipher the mechanisms underlying these phenotypes, we conducted an experiment with chicks infected with Salmonella Enteritidis in a non-sterile isolator, which prevents bacterial transmission between animals while allowing the development of the gut microbiota. We investigated the impact of four commensal bacteria called Mix4, inoculated at hatching, on chicken systemic immune response and intestinal microbiota composition and functions, before and after Salmonella infection. Our results revealed that these phenotypes were not linked to changes in cell invasion capacity of bacteria during infection. Mix4 inoculation had both short- and long-term effects on immune response and microbiota and promoted the low-shedder phenotype. Kinetic analysis revealed that Mix4 activated immune response from day 4, which modified the microbiota on day 6. This change promotes a more fermentative microbiota, using the aromatic compounds degradation pathway, which inhibited Salmonella colonization by day 11 and beyond. In contrast, control animals exhibited a delayed TNF-driven pro-inflammatory response and developed a microbiota using anaerobic respiration, which facilitates Salmonella colonization and growth. This strategy offers promising opportunities to strengthen the barrier effect against Salmonella and possibly other pathogens.

See more in PubMed

European Food Safety, A. European Centre for Disease, P. Control . The European Union One Health 2022 zoonoses report. Efsa J. 2023;21(12):e8442. doi:10.2903/j.efsa.2023.8442. PubMed DOI PMC

World Health Organization . WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance, to guide research, development, and strategies to prevent and control antimicrobial resistance. Geneva, Switzerland: World Health Organization; 2024.

European Food Safety, A. European Centre for Disease, P. Control . The European Union One Health 2021 zoonoses report. Efsa J. 2022;20(12):e07666. doi:10.2903/j.efsa.2022.7666. PubMed DOI PMC

Velge P, Cloeckaert A, Barrow P.. Emergence of Salmonella epidemics: the problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res. 2005;36(3):267–33. doi:10.1051/vetres:2005005. PubMed DOI

Kempf F, La Ragione R, Chirullo B, Schouler C, Velge P. Super shedding in enteric pathogens: a review. Microorganisms. 2022;10(11):2101. doi:10.3390/microorganisms10112101. PubMed DOI PMC

Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JL, Ndhlovu PD, Quinnell RJ, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA. 1997;94(1):338–342. doi:10.1073/pnas.94.1.338. PubMed DOI PMC

Kulow MJ, Gonzales TK, Pertzborn KM, Dahm J, Miller BA, Park D, Gautam R, Kaspar CW, Ivanek R, Dopfer D. Differences in colonization and shedding patterns after oral challenge of cattle with three Escherichia coli O157: H7 strains. Appl Environ Microbiol. 2012;78(22):8045–8055. doi:10.1128/AEM.02363-12. PubMed DOI PMC

Rapp D, Ross CM, Pleydell EJ, Muirhead RW. Differences in the fecal concentrations and genetic diversities of Campylobacter jejuni populations among individual cows in two dairy herds. Appl Environ Microbiol. 2012;78(21):7564–7571. doi:10.1128/AEM.01783-12. PubMed DOI PMC

Huang TH, Uthe JJ, Bearson SM, Demirkale CY, Nettleton D, Knetter S, Christian C, Ramer-Tait AE, Wannemuehler MJ, Tuggle CK, et al. Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways. PLOS ONE. 2011;6(12):e28768. doi:10.1371/journal.pone.0028768. PubMed DOI PMC

Kommadath A, Bao H, Arantes AS, Plastow GS, Tuggle CK, Bearson SM, Guan le L, Stothard P. Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding. BMC Genomics. 2014;15(1):452. doi:10.1186/1471-2164-15-452. PubMed DOI PMC

Cazals A, Rau A, Estelle J, Bruneau N, Coville JL, Menanteau P, Rossignol MN, Jardet D, Bevilacqua C, Bed’hom B, et al. Comparative analysis of the caecal tonsil transcriptome in two chicken lines experimentally infected with Salmonella Enteritidis. PLOS ONE. 2022;17(8):e0270012. doi:10.1371/journal.pone.0270012. PubMed DOI PMC

Chaussé AM, Grépinet O, Bottreau E, Le Vern Y, Menanteau P, Trotereau J, Robert V, Wu Z, Kerboeuf D, Beaumont C, Velge P, Fang FC. Expression of Toll-like receptor 4 and downstream effectors in selected cecal cell subpopulations of chicks resistant or susceptible to Salmonella carrier state. Infect Immun. 2011;79(8):3445–3454. doi:10.1128/IAI.00025-11. PubMed DOI PMC

Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun. 2008;76(1):403–416. doi:10.1128/IAI.01189-07. PubMed DOI PMC

Cazals A, Estelle J, Bruneau N, Coville JL, Menanteau P, Rossignol MN, Jardet D, Bevilacqua C, Rau A, Bed’hom B, et al. Differences in caecal microbiota composition and Salmonella carriage between experimentally infected inbred lines of chickens. Genet Sel Evol. 2022;54(1):7. doi:10.1186/s12711-022-00699-6. PubMed DOI PMC

Menanteau P, Kempf F, Trotereau J, Virlogeux-Payant I, Gitton E, Dalifard J, Gabriel I, Rychlik I, Velge P. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken. Environ Microbiol. 2018;20(9):3246–3260. doi:10.1111/1462-2920.14294. PubMed DOI

Gopinath S, Carden S, Monack D. Shedding light on Salmonella carriers. Trends Microbiol. 2012;20(7):320–327. doi:10.1016/j.tim.2012.04.004. PubMed DOI

Kempf F, Cordoni G, Chaussé AM, Drumo R, Brown H, Horton DL, Paboeuf F, Denis M, Velge P, La Ragione R, et al. Inflammatory responses induced by the monophasic variant of Salmonella Typhimurium in pigs play a role in the high shedder phenotype and fecal microbiota composition. mSystems. 2023;8(1):e0085222. doi:10.1128/msystems.00852-22. PubMed DOI PMC

Kempf F, Menanteau P, Rychlik I, Kubasova T, Trotereau J, Virlogeux-Payant I, Schaeffer S, Schouler C, Drumo R, Guitton E, et al. Gut microbiota composition before infection determines the Salmonella super- and low-shedder phenotypes in chicken. Microb Biotechnol. 2020;13(5):1611–1630. doi:10.1111/1751-7915.13621. PubMed DOI PMC

Edelman SM, Kasper DL. Symbiotic commensal bacteria direct maturation of the host immune system. Curr Opin Gastroenterol. 2008;24(6):720–724. doi:10.1097/MOG.0b013e32830c4355. PubMed DOI

Broom LJ, Kogut MH. The role of the gut microbiome in shaping the immune system of chickens. Vet Immunol Immunopathol. 2018;204:44–51. doi:10.1016/j.vetimm.2018.10.002. PubMed DOI

Zenner C, Hitch TCA, Riedel T, Wortmann E, Tiede S, Buhl EM, Abt B, Neuhaus K, Velge P, Overmann J, et al. Early-life immune system maturation in chickens using a synthetic community of cultured gut bacteria. mSystems. 2021. 6. 6(3). doi:10.1128/mSystems.01300-20. PubMed DOI PMC

Velge P, Menanteau P, Chaumeil T, Barilleau E, Trotereau J, Virlogeux-Payant I. Two In Vivo Models to Study Salmonella Asymptomatic Carrier State in Chicks. In: Gal-Mor O, editors. Bacterial Virulence: Methods Mol Biol. New York, US: Springer; 2022. Vol. 2427; p. 249–264. PubMed

Roche SM, Holbert S, Trotereau J, Schaeffer S, Georgeault S, Virlogeux-Payant I, Velge P. Salmonella Typhimurium invalidated for the three currently known invasion factors keeps its ability to invade several cell models. Front Cell Infect Microbiol. 2018;8:273. doi:10.3389/fcimb.2018.00273. PubMed DOI PMC

Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, Rychlik I. Immune response of chicken gut to natural colonisation by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect. Immun. 2011;79(7):2755–63. doi:10.1128/iai.01375-10. PubMed DOI PMC

Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, Koci MD. Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci. 2016;3:2. doi:10.3389/fvets.2016.00002. PubMed DOI PMC

Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–688. doi:10.1038/s41587-020-0548-6. PubMed DOI PMC

Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res. 2016;14(2):127–138. doi:10.5217/ir.2016.14.2.127. PubMed DOI PMC

Aussel L, Pierrel F, Loiseau L, Lombard M, Fontecave M, Barras F. Biosynthesis and physiology of coenzyme Q in bacteria. Biochim Biophys Acta. 2014;1837(7):1837, 1004–1011. doi:10.1016/j.bbabio.2014.01.015. PubMed DOI

Garrido D, Alber A, Kut E, Chanteloup NK, Lion A, Trotereau A, Dupont J, Tedin K, Kaspers B, Vervelde L, et al. The role of type I interferons (IFNs) in the regulation of chicken macrophage inflammatory response to bacterial challenge. Dev Comp Immunol. 2018;86:156–170. doi:10.1016/j.dci.2018.04.025. PubMed DOI

Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol. 2015;15(12):771–783. doi:10.1038/nri3919. PubMed DOI PMC

Kanegane H, Tosato G. Activation of naive and memory T cells by interleukin-15. Blood. 1996;88(1):230–235. doi:10.1182/blood.V88.1.230.230. PubMed DOI

Gonzalez-Amaro R, Cortes JR, Sanchez-Madrid F, Martin P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med. 2013;19(10):625–632. doi:10.1016/j.molmed.2013.07.006. PubMed DOI PMC

Sebastian VP, Salazar GA, Coronado-Arrazola I, Schultz BM, Vallejos OP, Berkowitz L, Alvarez-Lobos MM, Riedel CA, Kalergis AM, Bueno SM. Heme oxygenase-1 as a modulator of intestinal inflammation development and progression. Front Immunol. 2018;9:1956. doi:10.3389/fimmu.2018.01956. PubMed DOI PMC

Sanmarco LM, Chao CC, Wang YC, Kenison JE, Li Z, Rone JM, Rejano-Gordillo CM, Polonio CM, Gutierrez-Vazquez C, Piester G, et al. Identification of environmental factors that promote intestinal inflammation. Nature. 2022;611(7937):801–809. doi:10.1038/s41586-022-05308-6. PubMed DOI PMC

Souza RF, Caetano MAF, Magalhaes HIR, Castelucci P. Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J Gastroenterol. 2023;29(18):2733–2746. doi:10.3748/wjg.v29.i18.2733. PubMed DOI PMC

Lynn DJ, Higgs R, Lloyd AT, O’Farrelly C, Herve-Grepinet V, Nys Y, Brinkman FS, Yu PL, Soulier A, Kaiser P, et al. Avian beta-defensin nomenclature: a community proposed update. Immunol Lett. 2007;110(1):86–89. doi:10.1016/j.imlet.2007.03.007. PubMed DOI

van Dijk A, Veldhuizen EJ, Kalkhove SI, Tjeerdsma-van Bokhoven JL, Romijn RA, Haagsman HP. The β-Defensin Gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob Agents Chemother. 2007;51(3):912–922. doi:10.1128/AAC.00568-06. PubMed DOI PMC

Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med. 2023;29(1):97. doi:10.1186/s10020-023-00682-x. PubMed DOI PMC

Liu L, Rangan L, Vanalken N, Kong Q, Schlenner S, De Jonghe S, Schols D, Van Loy T. Development of a cellular model to study CCR8 signaling in tumor-infiltrating regulatory T cells. Cancer Immunol Immunother. 2024;73(1):11. doi:10.1007/s00262-023-03607-z. PubMed DOI PMC

Dowling JK, Afzal R, Gearing LJ, Cervantes-Silva MP, Annett S, Davis GM, De Santi C, Assmann N, Dettmer K, Gough DJ, et al. Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nat Commun. 2021;12(1):1460. doi:10.1038/s41467-021-21617-2. PubMed DOI PMC

Marti ILAA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci. 2021;78(13):5303–5324. doi:10.1007/s00018-021-03828-4. PubMed DOI PMC

Ward NC, Yu A, Moro A, Ban Y, Chen X, Hsiung S, Keegan J, Arbanas JM, Loubeau M, Thankappan A, et al. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J Immunol. 2018;201(9):2579–2592. doi:10.4049/jimmunol.1800907. PubMed DOI PMC

Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. doi:10.1038/s41422-020-0332-7. PubMed DOI PMC

Volf J, Faldynova M, Matiasovicova J, Sebkova A, Karasova D, Prikrylova H, Havlickova H, Rychlik I. Probiotic mixtures consisting of representatives of bacteroidetes and selenomonadales increase resistance of newly hatched chicks to salmonella enteritidis infection. Microorganisms. 2024;12(11):2145. doi: 10.3390/microorganisms12112145. PubMed DOI PMC

Ruddle SJ, Massis LM, Cutter AC, Monack DM. Salmonella-liberated dietary L-arabinose promotes expansion in superspreaders. Cell Host Microbe. 2023;31(3):405–417 e405. doi:10.1016/j.chom.2023.01.017. PubMed DOI PMC

Mon KKZ, Zhu Y, Chanthavixay G, Kern C, Zhou H. Integrative analysis of gut microbiome and metabolites revealed novel mechanisms of intestinal Salmonella carriage in chicken. Sci Rep. 2020;10(1):4809. doi:10.1038/s41598-020-60892-9. PubMed DOI PMC

Mon KK, Saelao P, Halstead MM, Chanthavixay G, Chang HC, Garas L, Maga EA, Zhou H. Salmonella enterica Serovars Enteritidis Infection Alters the Indigenous Microbiota Diversity in Young Layer Chicks. Front Vet Sci. 2015;2:61. doi:10.3389/fvets.2015.00061. PubMed DOI PMC

van der Hee B, Wells JM. Microbial regulation of Host physiology by short-chain fatty acids. Trends Microbiol. 2021;29(8):700–712. doi:10.1016/j.tim.2021.02.001. PubMed DOI

Rogers AWL, Tsolis RM, Baumler AJ. Salmonella versus the microbiome. Microbiol Mol Biol Rev. 2021;85(1). doi:10.1128/MMBR.00027-19. PubMed DOI PMC

Shelton CD, Yoo W, Shealy NG, Torres TP, Zieba JK, Calcutt MW, Foegeding NJ, Kim D, Kim J, Ryu S, et al. Salmonella enterica serovar Typhimurium uses anaerobic respiration to overcome propionate-mediated colonization resistance. Cell Rep. 2022;38(1):110180. doi:10.1016/j.celrep.2021.110180. PubMed DOI PMC

Baquero F, Coque TM, Galan JC, Martinez JL. The origin of niches and species in the bacterial world. Front Microbiol. 2021;12:657986. doi:10.3389/fmicb.2021.657986. PubMed DOI PMC

Dai J, Jiang M, Wang X, Lang T, Wan L, Wang J. Human-derived bacterial strains mitigate colitis via modulating gut microbiota and repairing intestinal barrier function in mice. BMC Microbiol. 2024;24(1):96. doi:10.1186/s12866-024-03216-5. PubMed DOI PMC

Guo S, Chen S, Ma J, Ma Y, Zhu J, Ma Y, Liu Y, Wang P, Pan Y. Escherichia coli Nissle 1917 protects intestinal barrier function by inhibiting NF- κ B-Mediated activation of the MLCK-P-MLC signaling pathway. Mediators Inflamm. 2019;2019:1–13. doi:10.1155/2019/5796491. PubMed DOI PMC

McSorley SJ, Asch S, Costalonga M, Reinhardt RL, Jenkins MK. Tracking Salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity. 2002;16(3):365–377. doi:10.1016/S1074-7613(02)00289-3. PubMed DOI

Sadeyen JR, Trotereau J, Velge P, Marly J, Beaumont C, Barrow PA, Bumstead N, Lalmanach AC. Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect. 2004;6(14):1278–1286. doi:10.1016/j.micinf.2004.07.005. PubMed DOI

Kirby AC, Yrlid U, Wick MJ. The innate immune response differs in primary and secondary Salmonella infection. J Immunol. 2002;169(8):4450–4459. doi:10.4049/jimmunol.169.8.4450. PubMed DOI

Drumo R, Pesciaroli M, Ruggeri J, Tarantino M, Chirullo B, Pistoia C, Petrucci P, Martinelli N, Moscati L, Manuali E, et al. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota. Front Cell Infect Microbiol. 2015;5:106. doi:10.3389/fcimb.2015.00106. PubMed DOI PMC

Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426–429. doi:10.1038/nature09415. PubMed DOI PMC

Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe. 2024;32(6):820–836. doi:10.1016/j.chom.2024.05.002. PubMed DOI

Nguyen BD, Sintsova A, Schubert C, Sichert A, Scheidegger C, Naf J, Huttman J, Lentsch V, Keys T, Rutschmann C, et al. Salmonella Typhimurium screen identifies shifts in mixed-acid fermentation during gut colonization. Cell Host Microbe. 2024;32(10):1758–1773 e1754. doi:10.1016/j.chom.2024.08.015. PubMed DOI

Litvak Y, Baumler AJ. Microbiota-nourishing immunity: a Guide to understanding our microbial self. Immunity. 2019;51(2):214–224. doi:10.1016/j.immuni.2019.08.003. PubMed DOI

Chazara O, Chang CS, Bruneau N, Benabdeljelil K, Fotsa JC, Kayang BB, Loukou NE, Osei-Amponsah R, Yapi-Gnaore V, Youssao IA, et al. Diversity and evolution of the highly polymorphic tandem repeat LEI0258 in the chicken MHC-B region. Immunogenetics. 2013;65(6):447–459. doi:10.1007/s00251-013-0697-6. PubMed DOI

Boudeau J, Glasser AL, Julien S, Colombel JF, Darfeuille‐Michaud A. Inhibitory effect of probiotic Escherichia coli strain nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent–invasive E. coli strains isolated from patients with Crohn’s disease. Aliment Pharmacol & Therapeut. 2003;18(1):45–56. doi: 10.1046/j.1365-2036.2003.01638.x. PubMed DOI

Gonzalez-Vallina R, Wang H, Zhan R, Berschneider HM, Lee RM, Davidson NO, Black DD. Lipoprotein and apolipoprotein secretion by a newborn piglet intestinal cell line (IPEC-1). Am J Physiol. 1996;271(2):G249–259. doi:10.1152/ajpgi.1996.271.2.G249. PubMed DOI

Beug H, von Kirchbach A, Doderlein G, Conscience JF, Graf T. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell. 1979;18(2):375–390. doi:10.1016/0092-8674(79)90057-6. PubMed DOI

Weingartl HM, Sabara M, Pasick J, van Moorlehem E, Babiuk L. Continuous porcine cell lines developed from alveolar macrophages: partial characterization and virus susceptibility. J Virol Methods. 2002;104(2):203–216. doi:10.1016/S0166-0934(02)00085-X. PubMed DOI PMC

Roche SM, Gracieux P, Milohanic E, Albert I, Virlogeux-Payant I, Temoin S, Grépinet O, Kerouanton A, Jacquet C, Cossart P, et al. Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Appl Environ Microbiol. 2005;71(10):6039–6048. doi:10.1128/AEM.71.10.6039-6048.2005. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Escudié F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, Maman S, Hernandez-Raquet G, Combes S, Pascal G. FROGS: find, rapidly, OTUs with galaxy solution. Bioinformatics. 2018;34(8):1287–1294. doi: 10.1093/bioinformatics/btx791. PubMed DOI

Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2014;25:2:e593. doi: 10.7717/peerj.593. PubMed DOI PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinf. 2009;10:1–9. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids res. 2012;41(D1). doi: 10.1093/nar/gks1219. PubMed DOI PMC

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, Rb O, Solymos P, Stevens MH, Szoecs E, et al. vegan: Community ecology package (2.6-4) [Internet]. CRAN [cited 2022]; Available from https://CRAN.R-project.org/package=vegan.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for rna-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Pinheiro J, Bates D, Core Team R. Nlme: linear and nonlinear mixed effects models. R package version 3.1-157 [internet] CRAN [cited 2022]; Available from: https://CRAN.R-project.org/package=nlme.

McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One. 2013;8(4). doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome databases. Nucleic Acids Res. 2014;42(1). doi: 10.1093/nar/gkt1103. PubMed DOI PMC

Ghazi AR, Sucipto K, Rahnavard A, Franzosa EA, McIver LJ, Lloyd-Price J, Schwager E, Weingart G, Moon YS, Morgan XC, et al. High-sensitivity pattern discovery in large, paired multi-omic datasets. Bioinformatics. 2022;38(Supplement_1). doi: 10.1093/bioinformatics/btac232. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...