• This record comes from PubMed

Effective targeting of PDGFRA-altered high-grade glioma with avapritinib

. 2025 Apr 14 ; 43 (4) : 740-756.e8. [epub] 20250313

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
U54 CA274516 NCI NIH HHS - United States
R01 NS124607 NINDS NIH HHS - United States
R01 NS119231 NINDS NIH HHS - United States
P50 CA165962 NCI NIH HHS - United States
DP2 NS127705 NINDS NIH HHS - United States

Links

PubMed 40086436
PubMed Central PMC12121847
DOI 10.1016/j.ccell.2025.02.018
PII: S1535-6108(25)00070-4
Knihovny.cz E-resources

PDGFRA is crucial to tumorigenesis and frequently genomically altered in high-grade glioma (HGG). In a comprehensive dataset of pediatric HGG (n = 261), we detect PDGFRA mutations and/or amplifications in 15% of cases, suggesting PDGFRA as a therapeutic target. We reveal that the PDGFRA/KIT inhibitor avapritinib shows (1) selectivity for PDGFRA inhibition, (2) distinct patterns of subcellular effects, (3) in vitro and in vivo activity in patient-derived HGG models, and (4) effective blood-brain barrier penetration in mice and humans. Furthermore, we report preliminary clinical real-world experience using avapritinib in pediatric and young adult patients with predominantly recurrent/refractory PDGFRA-altered HGG (n = 8). Our early data demonstrate that avapritinib is well tolerated and results in radiographic response in 3/7 cases, suggesting a potential role for avapritinib in the treatment of HGG with specific PDGFRA alterations. Overall, these translational results underscore the therapeutic potential of PDGFRA inhibition with avapritinib in HGG.

Broad Institute of MIT and Harvard Cambridge MA 02142 USA; Department of Cancer Biology and Medical Oncology Dana Farber Cancer Institute and Harvard Medical School Boston MA 02115 USA

Broad Institute of MIT and Harvard Cambridge MA 02142 USA; Department of Cancer Biology Dana Farber Boston Children's Cancer and Blood Disorder Center and Harvard Medical School Boston MA 02115 USA

Center for Cancer Research and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria; Research Cluster Translational Cancer Therapy Research University of Vienna and Medical University of Vienna 1090 Vienna Austria

Center for Neuropathology and Prion Research Ludwig Maximilians University Munich Faculty of Medicine Muenchen 80539 Bayern Germany

Central European Institute of Technology Masaryk University 60177 Brno Czech Republic

Central European Institute of Technology Masaryk University 60177 Brno Czech Republic; Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic

Clinic of Pediatric Hematology and Oncology University Medical Center Hamburg Eppendorf 20251 Hamburg Germany

Department of Experimental Biology Faculty of Science Masaryk University 61137 Brno Czech Republic; International Clinical Research Center St Anne's University Hospital Brno Czech Republic

Department of Medicine Massachusetts General Hospital Boston MA 02114 USA

Department of Neurology and Neurological Surgery Jefferson University Philadelphia PA 19107 USA

Department of Neurosurgery Comprehensive Center for Pediatrics and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria

Department of Neurosurgery Massachusetts General Hospital Harvard Medical School Boston MA 02114 USA

Department of Oncology and Children's Research Center University Children's Hospital Zurich 8008 Zurich Switzerland

Department of Pathology Medical University of Vienna 1090 Vienna Austria

Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA

Department of Pediatric Hematology Oncology Children's Minnesota Minneapolis MN 55404 USA

Department of Pediatric Oncology Dana Farber Boston Children's Cancer and Blood Disorder Center and Harvard Medical School Boston MA 02215 USA

Department of Pediatric Oncology Dana Farber Boston Children's Cancer and Blood Disorder Center and Harvard Medical School Boston MA 02215 USA; Broad Institute of MIT and Harvard Cambridge MA 02142 USA

Department of Pediatric Oncology Dana Farber Boston Children's Cancer and Blood Disorder Center and Harvard Medical School Boston MA 02215 USA; Department of Pediatrics and Adolescent Medicine Comprehensive Center for Pediatrics and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria

Department of Pediatric Oncology Dana Farber Boston Children's Cancer and Blood Disorder Center and Harvard Medical School Boston MA 02215 USA; St Anna Children's Hospital Department of Pediatrics and Adolescent Medicine Medical University of Vienna and St Anna Children's Cancer Research Institute 1090 Vienna Austria

Department of Pediatric Oncology University Hospital Brno and Faculty of Medicine Masaryk University 662630 Brno Czech Republic

Department of Pediatrics and Adolescent Medicine Comprehensive Center for Pediatrics and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria

Department of Pediatrics and Adolescent Medicine Comprehensive Center for Pediatrics and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria; Center for Cancer Research and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria; Research Cluster Translational Cancer Therapy Research University of Vienna and Medical University of Vienna 1090 Vienna Austria

Department of Pediatrics and Adolescent Medicine Comprehensive Center for Pediatrics and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria; Department of Neurosurgery Comprehensive Center for Pediatrics and Comprehensive Cancer Center Medical University of Vienna 1090 Vienna Austria

Department of Pediatrics University of Michigan Medical School Ann Arbor MI 48109 USA

Department of Pediatrics University of Texas Southwestern Medical Center Dallas TX 75390 USA

Department of Radiotherapy Medical University of Vienna 1090 Vienna Austria

Departments of Pediatrics Neurology and Neurological Surgery University of California San Francisco San Francisco CA 94143 USA

Division of Molecular Pathology Institute of Cancer Research SM2 5NG London UK

Division of Neuropathology and Neurochemistry Department of Neurology Medical University of Vienna 1090 Vienna Austria

Division of Neuroradiology and Musculoskeletal Radiology Department of Biomedical Imaging and Image Guided Therapy Medical University of Vienna 1090 Vienna Austria; Research Center of Medical Image Analysis and Artificial Intelligence Danube Private University 3500 Krems an der Donau Austria

Division of Pediatric Hematology and Oncology University Medical Center Göttingen 37099 Göttingen Germany

Great North Childrens Hospital and Newcastle University Newcastle upon Tyne UK; Newcastle Hospitals NHS Foundation Trust NE1 4LP Newcastle UK

Hopp Children's Cancer Center Heidelberg 69120 Heidelberg Germany

Institute for Analytical and General Chemistry Johannes Kepler University 4040 Linz Austria

Lurie Family Imaging Center Center for Biomedical Imaging in Oncology Dana Farber Cancer Institute Boston MA 02210 USA

Sanford Burnham Prebys Medical Discovery Institute San Diego CA 92037 USA

See more in PubMed

Kaatsch P. (2010). Epidemiology of childhood cancer. Cancer Treat Rev 36, 277–285. 10.1016/j.ctrv.2010.02.003. PubMed DOI

Pollack IF, Agnihotri S, and Broniscer A (2019). Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 23, 261–273. 10.3171/2018.10.PEDS18377. PubMed DOI PMC

Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G, Waite KA, Kruchko C, and Barnholtz-Sloan JS (2022). CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol 24, iii1–iii38. 10.1093/neuonc/noac161. PubMed DOI PMC

Organisation mondiale de la santé and Centre international de recherche sur le cancer eds. (2021). Central nervous system tumours 5th ed. (International agency for research on cancer; ).

Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, et al. (2017). Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 32, 520–537.e5. 10.1016/j.ccell.2017.08.017. PubMed DOI PMC

Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, et al. (2012). Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44, 251–253. 10.1038/ng.1102. PubMed DOI PMC

Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, Bouffet E, and Hawkins C (2010). Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 28, 1337–1344. 10.1200/JCO.2009.25.5463. PubMed DOI

Paugh BS, Zhu X, Qu C, Endersby R, Diaz AK, Zhang J, Bax DA, Carvalho D, Reis RM, Onar-Thomas A, et al. (2013). Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73, 6219–6229. 10.1158/0008-5472.CAN-13-1491. PubMed DOI PMC

Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, Henderson S, Mikael LG, Richard-Londt A, Zhang Y, et al. (2017). H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell 32, 684–700.e9. 10.1016/j.ccell.2017.09.014. PubMed DOI PMC

Larson JD, Kasper LH, Paugh BS, Jin H, Wu G, Kwon C-H, Fan Y, Shaw TI, Silveira AB, Qu C, et al. (2019). Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell 35, 140–155.e7. 10.1016/j.ccell.2018.11.015. PubMed DOI PMC

Tomita Y, Shimazu Y, Somasundaram A, Tanaka Y, Takata N, Ishi Y, Gadd S, Hashizume R, Angione A, Pinero G, et al. (2022). A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cell-of-origin dependent effects of H3K27M. Glia 70, 1681–1698. 10.1002/glia.24189. PubMed DOI PMC

Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM, et al. (2018). Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335. 10.1126/science.aao4750. PubMed DOI PMC

Funato K, Major T, Lewis PW, Allis CD, and Tabar V (2014). Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346, 1529–1533. 10.1126/science.1253799. PubMed DOI PMC

Barton KL, Misuraca K, Cordero F, Dobrikova E, Min HD, Gromeier M, Kirsch DG, and Becher OJ (2013). PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS One 8, e77639. 10.1371/journal.pone.0077639. PubMed DOI PMC

Patel SK, Hartley RM, Wei X, Furnish R, Escobar-Riquelme F, Bear H, Choi K, Fuller C, and Phoenix TN (2020). Generation of diffuse intrinsic pontine glioma mouse models by brainstem-targeted in utero electroporation. Neuro Oncol 22, 381–392. 10.1093/neuonc/noz197. PubMed DOI PMC

Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, Kun LE, Friedman H, Packer R, Banerjee A, et al. (2007). Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol 9, 145–160. 10.1215/15228517-2006-031. PubMed DOI PMC

Broniscer A, Baker SD, Wetmore C, Pai Panandiker AS, Huang J, Davidoff AM, Onar-Thomas A, Panetta JC, Chin TK, Merchant TE, et al. (2013). Phase I trial, pharmacokinetics, and pharmacodynamics of vandetanib and dasatinib in children with newly diagnosed diffuse intrinsic pontine glioma. Clin Cancer Res 19, 3050–3058. 10.1158/1078-0432.CCR-13-0306. PubMed DOI PMC

Broniscer A, Jia S, Mandrell B, Hamideh D, Huang J, Onar-Thomas A, Gajjar A, Raimondi SC, Tatevossian RG, and Stewart CF (2018). Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma. Pediatr Blood Cancer 65, e27035. 10.1002/pbc.27035. PubMed DOI PMC

Miklja Z, Yadav VN, Cartaxo RT, Siada R, Thomas CC, Cummings JR, Mullan B, Stallard S, Paul A, Bruzek AK, et al. (2020). Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. J Clin Invest 130, 5313–5325. 10.1172/JCI133310. PubMed DOI PMC

Koschmann C, Zamler D, MacKay A, Robinson D, Wu Y-M, Doherty R, Marini B, Tran D, Garton H, Muraszko K, et al. (2016). Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma. Oncotarget 7, 65696–65706. 10.18632/oncotarget.11602. PubMed DOI PMC

Heinrich MC, Jones RL, von Mehren M, Schöffski P, Serrano C, Kang Y-K, Cassier PA, Mir O, Eskens F, Tap WD, et al. (2020). Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol 21, 935–946. 10.1016/S1470-2045(20)30269-2. PubMed DOI

Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, et al. (2010). PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev 24, 2205–2218. 10.1101/gad.1972310. PubMed DOI PMC

Deshpande V, Luebeck J, Nguyen N-PD, Bakhtiari M, Turner KM, Schwab R, Carter H, Mischel PS, and Bafna V (2019). Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun 10, 392. 10.1038/s41467-018-08200-y. PubMed DOI PMC

Chapman OS, Luebeck J, Sridhar S, Wong IT-L, Dixit D, Wang S, Prasad G, Rajkumar U, Pagadala MS, Larson JD, et al. (2023). Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat Genet 55, 2189–2199. 10.1038/s41588-023-01551-3. PubMed DOI PMC

Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, and Zarrinkar PP (2011). Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29, 1046–1051. 10.1038/nbt.1990. PubMed DOI

Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, Zhu XJ, Schmidt-Kittler O, Wilson D, Wilson K, et al. (2017). A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med 9. 10.1126/scitranslmed.aao1690. PubMed DOI

Giles FJ, O’Dwyer M, and Swords R (2009). Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia 23, 1698–1707. 10.1038/leu.2009.111. PubMed DOI

Ip CKM, Ng PKS, Jeong KJ, Shao SH, Ju Z, Leonard PG, Hua X, Vellano CP, Woessner R, Sahni N, et al. (2018). Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies. Nat Commun 9, 4583. 10.1038/s41467-018-06949-w. PubMed DOI PMC

Bahlawane C, Eulenfeld R, Wiesinger MY, Wang J, Muller A, Girod A, Nazarov PV, Felsch K, Vallar L, Sauter T, et al. (2015). Constitutive activation of oncogenic PDGFRα-mutant proteins occurring in GIST patients induces receptor mislocalisation and alters PDGFRα signalling characteristics. Cell Commun Signal 13, 21. 10.1186/s12964-015-0096-8. PubMed DOI PMC

Obata Y, Horikawa K, Takahashi T, Akieda Y, Tsujimoto M, Fletcher JA, Esumi H, Nishida T, and Abe R (2017). Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors. Oncogene 36, 3661–3672. 10.1038/onc.2016.519. PubMed DOI PMC

Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F, Zhang L, Li M, Meng W, Ponnuswami A, Sun W, et al. (2017). Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell 31, 635–652.e6. 10.1016/j.ccell.2017.03.011. PubMed DOI PMC

Erker C, Tamrazi B, Poussaint TY, Mueller S, Mata-Mbemba D, Franceschi E, Brandes AA, Rao A, Haworth KB, Wen PY, et al. (2020). Response assessment in paediatric high-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 21, e317–e329. 10.1016/S1470-2045(20)30173-X. PubMed DOI

Cooney TM, Cohen KJ, Guimaraes CV, Dhall G, Leach J, Massimino M, Erbetta A, Chiapparini L, Malbari F, Kramer K, et al. (2020). Response assessment in diffuse intrinsic pontine glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 21, e330–e336. 10.1016/S1470-2045(20)30166-2. PubMed DOI

Grunewald S, Klug LR, Mühlenberg T, Lategahn J, Falkenhorst J, Town A, Ehrt C, Wardelmann E, Hartmann W, Schildhaus H-U, et al. (2021). Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discov 11, 108–125. 10.1158/2159-8290.CD-20-0487. PubMed DOI

Amagai Y, Matsuda A, Jung K, Oida K, Jang H, Ishizaka S, Matsuda H, and Tanaka A (2015). A point mutation in the extracellular domain of KIT promotes tumorigenesis of mast cells via ligand-independent auto-dimerization. Sci Rep 5, 9775. 10.1038/srep09775. PubMed DOI PMC

Chi AS, Tarapore RS, Hall MD, Shonka N, Gardner S, Umemura Y, Sumrall A, Khatib Z, Mueller S, Kline C, et al. (2019). Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol 145, 97–105. 10.1007/s11060-019-03271-3. PubMed DOI PMC

Hall MD, Odia Y, Allen JE, Tarapore R, Khatib Z, Niazi TN, Daghistani D, Schalop L, Chi AS, Oster W, et al. (2019). First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report. J Neurosurg Pediatr 23, 719–725. 10.3171/2019.2.PEDS18480. PubMed DOI

Venneti S, Kawakibi AR, Ji S, Waszak SM, Sweha SR, Mota M, Pun M, Deogharkar A, Chung C, Tarapore RS, et al. (2023). Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways. Cancer Discov 13, 2370–2393. 10.1158/2159-8290.CD-23-0131. PubMed DOI PMC

Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, Richards RM, Jiang L, Barsan V, Mancusi R, et al. (2022). GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941. 10.1038/s41586-022-04489-4. PubMed DOI PMC

Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110. 10.1016/j.ccr.2009.12.020. PubMed DOI PMC

Jones RL, Serrano C, von Mehren M, George S, Heinrich MC, Kang Y-K, Schöffski P, Cassier PA, Mir O, Chawla SP, et al. (2021). Avapritinib in unresectable or metastatic PDGFRA D842V-mutant gastrointestinal stromal tumours: Long-term efficacy and safety data from the NAVIGATOR phase I trial. Eur J Cancer 145, 132–142. 10.1016/j.ejca.2020.12.008. PubMed DOI PMC

Kang Y-K, George S, Jones RL, Rutkowski P, Shen L, Mir O, Patel S, Zhou Y, von Mehren M, Hohenberger P, et al. (2021). Avapritinib Versus Regorafenib in Locally Advanced Unresectable or Metastatic GI Stromal Tumor: A Randomized, Open-Label Phase III Study. J Clin Oncol 39, 3128–3139. 10.1200/JCO.21.00217. PubMed DOI PMC

Broniscer A, Laningham FH, Kocak M, Krasin MJ, Fouladi M, Merchant TE, Kun LE, Boyett JM, and Gajjar A (2006). Intratumoral hemorrhage among children with newly diagnosed, diffuse brainstem glioma. Cancer 106, 1364–1371. 10.1002/cncr.21749. PubMed DOI

Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068. 10.1038/nature07385. PubMed DOI PMC

Phillips JJ, Aranda D, Ellison DW, Judkins AR, Croul SE, Brat DJ, Ligon KL, Horbinski C, Venneti S, Zadeh G, et al. (2013). PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol 23, 565–573. 10.1111/bpa.12043. PubMed DOI PMC

Higa N, Akahane T, Yokoyama S, Yonezawa H, Uchida H, Takajo T, Otsuji R, Hamada T, Matsuo K, Kirishima M, et al. (2022). Prognostic impact of PDGFRA gain/amplification and MGMT promoter methylation status in patients with IDH wild-type glioblastoma. Neuro-Oncology Advances 4, vdac097. 10.1093/noajnl/vdac097. PubMed DOI PMC

Joensuu H, Puputti M, Sihto H, Tynninen O, and Nupponen NN (2005). Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol 207, 224–231. 10.1002/path.1823. PubMed DOI

Nobusawa S, Stawski R, Kim Y-H, Nakazato Y, and Ohgaki H (2011). Amplification of the PDGFRA, KIT and KDR genes in glioblastoma: a population-based study. Neuropathology 31, 583–588. 10.1111/j.1440-1789.2011.01204.x. PubMed DOI

Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, et al. (2012). Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109, 3041–3046. 10.1073/pnas.1114033109. PubMed DOI PMC

Sierra JR, Cepero V, and Giordano S (2010). Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 9, 75. 10.1186/1476-4598-9-75. PubMed DOI PMC

Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective - PubMed https://pubmed.ncbi.nlm.nih.gov/36115852/. PubMed PMC

Yang Y, Li S, Wang Y, Zhao Y, and Li Q (2022). Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 7, 329. 10.1038/s41392-022-01168-8. PubMed DOI PMC

Marques S, van Bruggen D, Vanichkina DP, Floriddia EM, Munguba H, Väremo L, Giacomello S, Falcão AM, Meijer M, Björklund ÅK, et al. (2018). Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Dev Cell 46, 504–517.e7. 10.1016/j.devcel.2018.07.005. PubMed DOI PMC

Richardson WD, Pringle N, Mosley MJ, Westermark B, and Dubois-Dalcg M (1988). A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53, 309–319. 10.1016/0092-8674(88)90392-3. PubMed DOI

van Heyningen P, Calver AR, and Richardson WD (2001). Control of progenitor cell number by mitogen supply and demand. Curr Biol 11, 232–241. 10.1016/s0960-9822(01)00075-6. PubMed DOI

Zhu Q, Zhao X, Zheng K, Li H, Huang H, Zhang Z, Mastracci T, Wegner M, Chen Y, Sussel L, et al. (2014). Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS. Development 141, 548–555. 10.1242/dev.095323. PubMed DOI PMC

Zhou L, Shao C-Y, Xie Y-J, Wang N, Xu S-M, Luo B-Y, Wu Z-Y, Ke YH, Qiu M, and Shen Y (2020). Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. Elife 9, e52056. 10.7554/eLife.52056. PubMed DOI PMC

Dubois FPB, Shapira O, Greenwald NF, Zack T, Wala J, Tsai JW, Crane A, Baguette A, Hadjadj D, Harutyunyan AS, et al. (2022). Structural variants shape driver combinations and outcomes in pediatric high-grade glioma. Nat Cancer 3, 994–1011. 10.1038/s43018-022-00403-z. PubMed DOI PMC

van Tilburg CM, Pfaff E, Pajtler KW, Langenberg KPS, Fiesel P, Jones BC, Balasubramanian GP, Stark S, Johann PD, Blattner-Johnson M, et al. (2021). The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discov 11, 2764–2779. 10.1158/2159-8290.CD-21-0094. PubMed DOI PMC

Patel SK, Hartley RM, Wei X, Furnish R, Escobar-Riquelme F, Bear H, Choi K, Fuller C, and Phoenix TN (2019). Generation of diffuse intrinsic pontine glioma mouse models by brainstem targeted in utero electroporation. Neuro-Oncology, noz197. 10.1093/neuonc/noz197. PubMed DOI PMC

Miklja Z, Yadav VN, Cartaxo RT, Siada R, Thomas CC, Cummings JR, Mullan B, Stallard S, Paul A, Bruzek AK, et al. (2020). Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. Journal of Clinical Investigation 130, 5313–5325. 10.1172/JCI133310. PubMed DOI PMC

Panditharatna E, Marques JG, Wang T, Trissal MC, Liu I, Jiang L, Beck A, Groves A, Dharia NV, Li D, et al. (2022). BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma. Cancer Discovery, OF1–OF26. 10.1158/2159-8290.CD-21-1491. PubMed DOI PMC

Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD, Rodig SJ, et al. (2017). Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell 20, 233–246.e7. 10.1016/j.stem.2016.11.003. PubMed DOI PMC

Vaubel RA, Tian S, Remonde D, Schroeder MA, Mladek AC, Kitange GJ, Caron A, Kollmeyer TM, Grove R, Peng S, et al. (2020). Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the Diversity of Glioblastoma. Clinical Cancer Research 26, 1094–1104. 10.1158/1078-0432.CCR-19-0909. PubMed DOI PMC

Garancher A, Lin CY, Morabito M, Richer W, Rocques N, Larcher M, Bihannic L, Smith K, Miquel C, Leboucher S, et al. (2018). NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma. Cancer Cell 33, 435–449.e6. 10.1016/j.ccell.2018.02.006. PubMed DOI PMC

Talevich E, Shain AH, Botton T, and Bastian BC (2016). CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol 12, e1004873. 10.1371/journal.pcbi.1004873. PubMed DOI PMC

Luebeck J, Huang E, Kim F, Liefeld T, Dameracharla B, Ahuja R, Schreyer D, Prasad G, Adamaszek M, Kenkre R, et al. (2024). AmpliconSuite: an end-to-end workflow for analyzing focal amplifications in cancer genomes. Preprint at bioRxiv, 10.1101/2024.05.06.592768 https://doi.org/10.1101/2024.05.06.592768. DOI

Neradil J, Kyr M, Polaskova K, Kren L, Macigova P, Skoda J, Sterba J, and Veselska R (2019). Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Front Oncol 9, 930. 10.3389/fonc.2019.00930. PubMed DOI PMC

McDannold N, Zhang Y, Supko JG, Power C, Sun T, Peng C, Vykhodtseva N, Golby AJ, and Reardon DA (2019). Acoustic feedback enables safe and reliable carboplatin delivery across the blood-brain barrier with a clinical focused ultrasound system and improves survival in a rat glioma model. Theranostics 9, 6284–6299. 10.7150/thno.35892. PubMed DOI PMC

Petermann F (2016). WISC-V, Wechsler intelligence scale for children.

Lepach AC (2008). Battery for Assessment in Children – Merk- und Lernfähigkeitstest.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...