Effective targeting of PDGFRA-altered high-grade glioma with avapritinib
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
U54 CA274516
NCI NIH HHS - United States
R01 NS124607
NINDS NIH HHS - United States
R01 NS119231
NINDS NIH HHS - United States
P50 CA165962
NCI NIH HHS - United States
DP2 NS127705
NINDS NIH HHS - United States
PubMed
40086436
PubMed Central
PMC12121847
DOI
10.1016/j.ccell.2025.02.018
PII: S1535-6108(25)00070-4
Knihovny.cz E-resources
- Keywords
- PDGFRA alteration, PDGFRA amplification, PDGFRA inhibitor, PDGFRA mutation, avapritinib, brain penetrance, diffuse midline glioma, glioblastoma, high-grade glioma, tyrosine kinase inhibitor,
- MeSH
- Child MeSH
- Adult MeSH
- Glioma * drug therapy genetics pathology MeSH
- Blood-Brain Barrier metabolism MeSH
- Protein Kinase Inhibitors * pharmacology therapeutic use MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mutation MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Brain Neoplasms * drug therapy genetics pathology MeSH
- Child, Preschool MeSH
- Antineoplastic Agents * pharmacology therapeutic use MeSH
- Pyrazoles * pharmacology therapeutic use MeSH
- Receptor, Platelet-Derived Growth Factor alpha * genetics antagonists & inhibitors metabolism MeSH
- Neoplasm Grading MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Mice MeSH
- Child, Preschool MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- avapritinib MeSH Browser
- Protein Kinase Inhibitors * MeSH
- Antineoplastic Agents * MeSH
- Pyrazoles * MeSH
- Pyrroles MeSH
- Receptor, Platelet-Derived Growth Factor alpha * MeSH
- Triazines MeSH
PDGFRA is crucial to tumorigenesis and frequently genomically altered in high-grade glioma (HGG). In a comprehensive dataset of pediatric HGG (n = 261), we detect PDGFRA mutations and/or amplifications in 15% of cases, suggesting PDGFRA as a therapeutic target. We reveal that the PDGFRA/KIT inhibitor avapritinib shows (1) selectivity for PDGFRA inhibition, (2) distinct patterns of subcellular effects, (3) in vitro and in vivo activity in patient-derived HGG models, and (4) effective blood-brain barrier penetration in mice and humans. Furthermore, we report preliminary clinical real-world experience using avapritinib in pediatric and young adult patients with predominantly recurrent/refractory PDGFRA-altered HGG (n = 8). Our early data demonstrate that avapritinib is well tolerated and results in radiographic response in 3/7 cases, suggesting a potential role for avapritinib in the treatment of HGG with specific PDGFRA alterations. Overall, these translational results underscore the therapeutic potential of PDGFRA inhibition with avapritinib in HGG.
Central European Institute of Technology Masaryk University 60177 Brno Czech Republic
Department of Medicine Massachusetts General Hospital Boston MA 02114 USA
Department of Neurology and Neurological Surgery Jefferson University Philadelphia PA 19107 USA
Department of Neurosurgery Massachusetts General Hospital Harvard Medical School Boston MA 02114 USA
Department of Pathology Medical University of Vienna 1090 Vienna Austria
Department of Pathology University of Michigan Medical School Ann Arbor MI 48109 USA
Department of Pediatric Hematology Oncology Children's Minnesota Minneapolis MN 55404 USA
Department of Pediatrics University of Michigan Medical School Ann Arbor MI 48109 USA
Department of Pediatrics University of Texas Southwestern Medical Center Dallas TX 75390 USA
Department of Radiotherapy Medical University of Vienna 1090 Vienna Austria
Division of Molecular Pathology Institute of Cancer Research SM2 5NG London UK
Hopp Children's Cancer Center Heidelberg 69120 Heidelberg Germany
Institute for Analytical and General Chemistry Johannes Kepler University 4040 Linz Austria
Sanford Burnham Prebys Medical Discovery Institute San Diego CA 92037 USA
See more in PubMed
Kaatsch P. (2010). Epidemiology of childhood cancer. Cancer Treat Rev 36, 277–285. 10.1016/j.ctrv.2010.02.003. PubMed DOI
Pollack IF, Agnihotri S, and Broniscer A (2019). Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 23, 261–273. 10.3171/2018.10.PEDS18377. PubMed DOI PMC
Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G, Waite KA, Kruchko C, and Barnholtz-Sloan JS (2022). CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol 24, iii1–iii38. 10.1093/neuonc/noac161. PubMed DOI PMC
Organisation mondiale de la santé and Centre international de recherche sur le cancer eds. (2021). Central nervous system tumours 5th ed. (International agency for research on cancer; ).
Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, et al. (2017). Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 32, 520–537.e5. 10.1016/j.ccell.2017.08.017. PubMed DOI PMC
Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, et al. (2012). Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44, 251–253. 10.1038/ng.1102. PubMed DOI PMC
Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, Bouffet E, and Hawkins C (2010). Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 28, 1337–1344. 10.1200/JCO.2009.25.5463. PubMed DOI
Paugh BS, Zhu X, Qu C, Endersby R, Diaz AK, Zhang J, Bax DA, Carvalho D, Reis RM, Onar-Thomas A, et al. (2013). Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73, 6219–6229. 10.1158/0008-5472.CAN-13-1491. PubMed DOI PMC
Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, Henderson S, Mikael LG, Richard-Londt A, Zhang Y, et al. (2017). H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell 32, 684–700.e9. 10.1016/j.ccell.2017.09.014. PubMed DOI PMC
Larson JD, Kasper LH, Paugh BS, Jin H, Wu G, Kwon C-H, Fan Y, Shaw TI, Silveira AB, Qu C, et al. (2019). Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell 35, 140–155.e7. 10.1016/j.ccell.2018.11.015. PubMed DOI PMC
Tomita Y, Shimazu Y, Somasundaram A, Tanaka Y, Takata N, Ishi Y, Gadd S, Hashizume R, Angione A, Pinero G, et al. (2022). A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cell-of-origin dependent effects of H3K27M. Glia 70, 1681–1698. 10.1002/glia.24189. PubMed DOI PMC
Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM, et al. (2018). Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335. 10.1126/science.aao4750. PubMed DOI PMC
Funato K, Major T, Lewis PW, Allis CD, and Tabar V (2014). Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346, 1529–1533. 10.1126/science.1253799. PubMed DOI PMC
Barton KL, Misuraca K, Cordero F, Dobrikova E, Min HD, Gromeier M, Kirsch DG, and Becher OJ (2013). PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS One 8, e77639. 10.1371/journal.pone.0077639. PubMed DOI PMC
Patel SK, Hartley RM, Wei X, Furnish R, Escobar-Riquelme F, Bear H, Choi K, Fuller C, and Phoenix TN (2020). Generation of diffuse intrinsic pontine glioma mouse models by brainstem-targeted in utero electroporation. Neuro Oncol 22, 381–392. 10.1093/neuonc/noz197. PubMed DOI PMC
Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, Kun LE, Friedman H, Packer R, Banerjee A, et al. (2007). Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol 9, 145–160. 10.1215/15228517-2006-031. PubMed DOI PMC
Broniscer A, Baker SD, Wetmore C, Pai Panandiker AS, Huang J, Davidoff AM, Onar-Thomas A, Panetta JC, Chin TK, Merchant TE, et al. (2013). Phase I trial, pharmacokinetics, and pharmacodynamics of vandetanib and dasatinib in children with newly diagnosed diffuse intrinsic pontine glioma. Clin Cancer Res 19, 3050–3058. 10.1158/1078-0432.CCR-13-0306. PubMed DOI PMC
Broniscer A, Jia S, Mandrell B, Hamideh D, Huang J, Onar-Thomas A, Gajjar A, Raimondi SC, Tatevossian RG, and Stewart CF (2018). Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma. Pediatr Blood Cancer 65, e27035. 10.1002/pbc.27035. PubMed DOI PMC
Miklja Z, Yadav VN, Cartaxo RT, Siada R, Thomas CC, Cummings JR, Mullan B, Stallard S, Paul A, Bruzek AK, et al. (2020). Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. J Clin Invest 130, 5313–5325. 10.1172/JCI133310. PubMed DOI PMC
Koschmann C, Zamler D, MacKay A, Robinson D, Wu Y-M, Doherty R, Marini B, Tran D, Garton H, Muraszko K, et al. (2016). Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma. Oncotarget 7, 65696–65706. 10.18632/oncotarget.11602. PubMed DOI PMC
Heinrich MC, Jones RL, von Mehren M, Schöffski P, Serrano C, Kang Y-K, Cassier PA, Mir O, Eskens F, Tap WD, et al. (2020). Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol 21, 935–946. 10.1016/S1470-2045(20)30269-2. PubMed DOI
Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, et al. (2010). PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev 24, 2205–2218. 10.1101/gad.1972310. PubMed DOI PMC
Deshpande V, Luebeck J, Nguyen N-PD, Bakhtiari M, Turner KM, Schwab R, Carter H, Mischel PS, and Bafna V (2019). Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun 10, 392. 10.1038/s41467-018-08200-y. PubMed DOI PMC
Chapman OS, Luebeck J, Sridhar S, Wong IT-L, Dixit D, Wang S, Prasad G, Rajkumar U, Pagadala MS, Larson JD, et al. (2023). Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat Genet 55, 2189–2199. 10.1038/s41588-023-01551-3. PubMed DOI PMC
Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, and Zarrinkar PP (2011). Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29, 1046–1051. 10.1038/nbt.1990. PubMed DOI
Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, Zhu XJ, Schmidt-Kittler O, Wilson D, Wilson K, et al. (2017). A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med 9. 10.1126/scitranslmed.aao1690. PubMed DOI
Giles FJ, O’Dwyer M, and Swords R (2009). Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia 23, 1698–1707. 10.1038/leu.2009.111. PubMed DOI
Ip CKM, Ng PKS, Jeong KJ, Shao SH, Ju Z, Leonard PG, Hua X, Vellano CP, Woessner R, Sahni N, et al. (2018). Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies. Nat Commun 9, 4583. 10.1038/s41467-018-06949-w. PubMed DOI PMC
Bahlawane C, Eulenfeld R, Wiesinger MY, Wang J, Muller A, Girod A, Nazarov PV, Felsch K, Vallar L, Sauter T, et al. (2015). Constitutive activation of oncogenic PDGFRα-mutant proteins occurring in GIST patients induces receptor mislocalisation and alters PDGFRα signalling characteristics. Cell Commun Signal 13, 21. 10.1186/s12964-015-0096-8. PubMed DOI PMC
Obata Y, Horikawa K, Takahashi T, Akieda Y, Tsujimoto M, Fletcher JA, Esumi H, Nishida T, and Abe R (2017). Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors. Oncogene 36, 3661–3672. 10.1038/onc.2016.519. PubMed DOI PMC
Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F, Zhang L, Li M, Meng W, Ponnuswami A, Sun W, et al. (2017). Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell 31, 635–652.e6. 10.1016/j.ccell.2017.03.011. PubMed DOI PMC
Erker C, Tamrazi B, Poussaint TY, Mueller S, Mata-Mbemba D, Franceschi E, Brandes AA, Rao A, Haworth KB, Wen PY, et al. (2020). Response assessment in paediatric high-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 21, e317–e329. 10.1016/S1470-2045(20)30173-X. PubMed DOI
Cooney TM, Cohen KJ, Guimaraes CV, Dhall G, Leach J, Massimino M, Erbetta A, Chiapparini L, Malbari F, Kramer K, et al. (2020). Response assessment in diffuse intrinsic pontine glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 21, e330–e336. 10.1016/S1470-2045(20)30166-2. PubMed DOI
Grunewald S, Klug LR, Mühlenberg T, Lategahn J, Falkenhorst J, Town A, Ehrt C, Wardelmann E, Hartmann W, Schildhaus H-U, et al. (2021). Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discov 11, 108–125. 10.1158/2159-8290.CD-20-0487. PubMed DOI
Amagai Y, Matsuda A, Jung K, Oida K, Jang H, Ishizaka S, Matsuda H, and Tanaka A (2015). A point mutation in the extracellular domain of KIT promotes tumorigenesis of mast cells via ligand-independent auto-dimerization. Sci Rep 5, 9775. 10.1038/srep09775. PubMed DOI PMC
Chi AS, Tarapore RS, Hall MD, Shonka N, Gardner S, Umemura Y, Sumrall A, Khatib Z, Mueller S, Kline C, et al. (2019). Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol 145, 97–105. 10.1007/s11060-019-03271-3. PubMed DOI PMC
Hall MD, Odia Y, Allen JE, Tarapore R, Khatib Z, Niazi TN, Daghistani D, Schalop L, Chi AS, Oster W, et al. (2019). First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report. J Neurosurg Pediatr 23, 719–725. 10.3171/2019.2.PEDS18480. PubMed DOI
Venneti S, Kawakibi AR, Ji S, Waszak SM, Sweha SR, Mota M, Pun M, Deogharkar A, Chung C, Tarapore RS, et al. (2023). Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways. Cancer Discov 13, 2370–2393. 10.1158/2159-8290.CD-23-0131. PubMed DOI PMC
Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, Richards RM, Jiang L, Barsan V, Mancusi R, et al. (2022). GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941. 10.1038/s41586-022-04489-4. PubMed DOI PMC
Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110. 10.1016/j.ccr.2009.12.020. PubMed DOI PMC
Jones RL, Serrano C, von Mehren M, George S, Heinrich MC, Kang Y-K, Schöffski P, Cassier PA, Mir O, Chawla SP, et al. (2021). Avapritinib in unresectable or metastatic PDGFRA D842V-mutant gastrointestinal stromal tumours: Long-term efficacy and safety data from the NAVIGATOR phase I trial. Eur J Cancer 145, 132–142. 10.1016/j.ejca.2020.12.008. PubMed DOI PMC
Kang Y-K, George S, Jones RL, Rutkowski P, Shen L, Mir O, Patel S, Zhou Y, von Mehren M, Hohenberger P, et al. (2021). Avapritinib Versus Regorafenib in Locally Advanced Unresectable or Metastatic GI Stromal Tumor: A Randomized, Open-Label Phase III Study. J Clin Oncol 39, 3128–3139. 10.1200/JCO.21.00217. PubMed DOI PMC
Broniscer A, Laningham FH, Kocak M, Krasin MJ, Fouladi M, Merchant TE, Kun LE, Boyett JM, and Gajjar A (2006). Intratumoral hemorrhage among children with newly diagnosed, diffuse brainstem glioma. Cancer 106, 1364–1371. 10.1002/cncr.21749. PubMed DOI
Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068. 10.1038/nature07385. PubMed DOI PMC
Phillips JJ, Aranda D, Ellison DW, Judkins AR, Croul SE, Brat DJ, Ligon KL, Horbinski C, Venneti S, Zadeh G, et al. (2013). PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol 23, 565–573. 10.1111/bpa.12043. PubMed DOI PMC
Higa N, Akahane T, Yokoyama S, Yonezawa H, Uchida H, Takajo T, Otsuji R, Hamada T, Matsuo K, Kirishima M, et al. (2022). Prognostic impact of PDGFRA gain/amplification and MGMT promoter methylation status in patients with IDH wild-type glioblastoma. Neuro-Oncology Advances 4, vdac097. 10.1093/noajnl/vdac097. PubMed DOI PMC
Joensuu H, Puputti M, Sihto H, Tynninen O, and Nupponen NN (2005). Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol 207, 224–231. 10.1002/path.1823. PubMed DOI
Nobusawa S, Stawski R, Kim Y-H, Nakazato Y, and Ohgaki H (2011). Amplification of the PDGFRA, KIT and KDR genes in glioblastoma: a population-based study. Neuropathology 31, 583–588. 10.1111/j.1440-1789.2011.01204.x. PubMed DOI
Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, et al. (2012). Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109, 3041–3046. 10.1073/pnas.1114033109. PubMed DOI PMC
Sierra JR, Cepero V, and Giordano S (2010). Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 9, 75. 10.1186/1476-4598-9-75. PubMed DOI PMC
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective - PubMed https://pubmed.ncbi.nlm.nih.gov/36115852/. PubMed PMC
Yang Y, Li S, Wang Y, Zhao Y, and Li Q (2022). Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 7, 329. 10.1038/s41392-022-01168-8. PubMed DOI PMC
Marques S, van Bruggen D, Vanichkina DP, Floriddia EM, Munguba H, Väremo L, Giacomello S, Falcão AM, Meijer M, Björklund ÅK, et al. (2018). Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Dev Cell 46, 504–517.e7. 10.1016/j.devcel.2018.07.005. PubMed DOI PMC
Richardson WD, Pringle N, Mosley MJ, Westermark B, and Dubois-Dalcg M (1988). A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53, 309–319. 10.1016/0092-8674(88)90392-3. PubMed DOI
van Heyningen P, Calver AR, and Richardson WD (2001). Control of progenitor cell number by mitogen supply and demand. Curr Biol 11, 232–241. 10.1016/s0960-9822(01)00075-6. PubMed DOI
Zhu Q, Zhao X, Zheng K, Li H, Huang H, Zhang Z, Mastracci T, Wegner M, Chen Y, Sussel L, et al. (2014). Genetic evidence that Nkx2.2 and Pdgfra are major determinants of the timing of oligodendrocyte differentiation in the developing CNS. Development 141, 548–555. 10.1242/dev.095323. PubMed DOI PMC
Zhou L, Shao C-Y, Xie Y-J, Wang N, Xu S-M, Luo B-Y, Wu Z-Y, Ke YH, Qiu M, and Shen Y (2020). Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. Elife 9, e52056. 10.7554/eLife.52056. PubMed DOI PMC
Dubois FPB, Shapira O, Greenwald NF, Zack T, Wala J, Tsai JW, Crane A, Baguette A, Hadjadj D, Harutyunyan AS, et al. (2022). Structural variants shape driver combinations and outcomes in pediatric high-grade glioma. Nat Cancer 3, 994–1011. 10.1038/s43018-022-00403-z. PubMed DOI PMC
van Tilburg CM, Pfaff E, Pajtler KW, Langenberg KPS, Fiesel P, Jones BC, Balasubramanian GP, Stark S, Johann PD, Blattner-Johnson M, et al. (2021). The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discov 11, 2764–2779. 10.1158/2159-8290.CD-21-0094. PubMed DOI PMC
Patel SK, Hartley RM, Wei X, Furnish R, Escobar-Riquelme F, Bear H, Choi K, Fuller C, and Phoenix TN (2019). Generation of diffuse intrinsic pontine glioma mouse models by brainstem targeted in utero electroporation. Neuro-Oncology, noz197. 10.1093/neuonc/noz197. PubMed DOI PMC
Miklja Z, Yadav VN, Cartaxo RT, Siada R, Thomas CC, Cummings JR, Mullan B, Stallard S, Paul A, Bruzek AK, et al. (2020). Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. Journal of Clinical Investigation 130, 5313–5325. 10.1172/JCI133310. PubMed DOI PMC
Panditharatna E, Marques JG, Wang T, Trissal MC, Liu I, Jiang L, Beck A, Groves A, Dharia NV, Li D, et al. (2022). BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma. Cancer Discovery, OF1–OF26. 10.1158/2159-8290.CD-21-1491. PubMed DOI PMC
Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD, Rodig SJ, et al. (2017). Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell 20, 233–246.e7. 10.1016/j.stem.2016.11.003. PubMed DOI PMC
Vaubel RA, Tian S, Remonde D, Schroeder MA, Mladek AC, Kitange GJ, Caron A, Kollmeyer TM, Grove R, Peng S, et al. (2020). Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the Diversity of Glioblastoma. Clinical Cancer Research 26, 1094–1104. 10.1158/1078-0432.CCR-19-0909. PubMed DOI PMC
Garancher A, Lin CY, Morabito M, Richer W, Rocques N, Larcher M, Bihannic L, Smith K, Miquel C, Leboucher S, et al. (2018). NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma. Cancer Cell 33, 435–449.e6. 10.1016/j.ccell.2018.02.006. PubMed DOI PMC
Talevich E, Shain AH, Botton T, and Bastian BC (2016). CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol 12, e1004873. 10.1371/journal.pcbi.1004873. PubMed DOI PMC
Luebeck J, Huang E, Kim F, Liefeld T, Dameracharla B, Ahuja R, Schreyer D, Prasad G, Adamaszek M, Kenkre R, et al. (2024). AmpliconSuite: an end-to-end workflow for analyzing focal amplifications in cancer genomes. Preprint at bioRxiv, 10.1101/2024.05.06.592768 https://doi.org/10.1101/2024.05.06.592768. DOI
Neradil J, Kyr M, Polaskova K, Kren L, Macigova P, Skoda J, Sterba J, and Veselska R (2019). Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Front Oncol 9, 930. 10.3389/fonc.2019.00930. PubMed DOI PMC
McDannold N, Zhang Y, Supko JG, Power C, Sun T, Peng C, Vykhodtseva N, Golby AJ, and Reardon DA (2019). Acoustic feedback enables safe and reliable carboplatin delivery across the blood-brain barrier with a clinical focused ultrasound system and improves survival in a rat glioma model. Theranostics 9, 6284–6299. 10.7150/thno.35892. PubMed DOI PMC
Petermann F (2016). WISC-V, Wechsler intelligence scale for children.
Lepach AC (2008). Battery for Assessment in Children – Merk- und Lernfähigkeitstest.