Photosystem II supercomplexes lacking light-harvesting antenna protein LHCB5 and their organization in the thylakoid membrane
Language English Country Denmark Media print
Document type Journal Article
Grant support
CZ.02.01.01/00/22_008/0004581
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
e-INFRA CZ (ID: 90254)
Ministerstvo Školství, Mládeže a Tělovýchovy
21-05497S
Grantová Agentura České Republiky
IGA_PrF_2024_030
Univerzita Palackého v Olomouci
PubMed
40128143
PubMed Central
PMC11932966
DOI
10.1111/ppl.70167
Knihovny.cz E-resources
- MeSH
- Arabidopsis * genetics metabolism MeSH
- Photosystem II Protein Complex * metabolism genetics MeSH
- Mutation genetics MeSH
- Arabidopsis Proteins * metabolism genetics MeSH
- Chlorophyll Binding Proteins MeSH
- Light-Harvesting Protein Complexes * metabolism genetics MeSH
- Thylakoids * metabolism ultrastructure MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosystem II Protein Complex * MeSH
- LHCB5 protein, Arabidopsis MeSH Browser
- Arabidopsis Proteins * MeSH
- Chlorophyll Binding Proteins MeSH
- Light-Harvesting Protein Complexes * MeSH
Light-harvesting protein LHCB5 is one of the three minor antenna proteins (LHCB4-6) that connect the core (C) of photosystem II (PSII) with strongly (S) and moderately (M) bound peripheral trimeric antennae (LHCIIs), forming a dimeric PSII supercomplex known as C2S2M2. Plants lacking LHCB4 and LHCB6 do not form C2S2M2, indicating that these minor antenna proteins are crucial for C2S2M2 assembly. However, studies on antisense asLhcb5 plants suggest this may not apply to LHCB5. Using mild clear-native PAGE (CN-PAGE) and electron microscopy (EM), we separated and structurally characterized the C2S2M2 supercomplex from the Arabidopsis lhcb5 mutant. When compared with wild type (WT), the C2S2M2 supercomplexes in the lhcb5 mutant have slightly different positions of S and M trimers and are generally smaller and present in the thylakoid membrane at higher density. Using CN-PAGE, we did not observe any PSII megacomplexes in the lhcb5 mutant, although they are routinely detected by this method in WT. However, we identified the megacomplexes directly in thylakoid membranes via EM, indicating that the megacomplexes are formed but are too labile to be separated. While in WT, both parallel- and non-parallel-associated PSII supercomplexes can be detected in the thylakoid membrane (Nosek et al., 2017, Plant Journal 89, pp. 104-111), only the parallel-associated PSII supercomplexes were found in the lhcb5 mutant. This finding suggests that the formation of non-parallel-associated PSII supercomplexes depends on the presence of LHCB5. The presence of large PSII supercomplexes and megacomplexes, even though less stable, could explain the WT-like photosynthetic characteristics of the lhcb5 mutant.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biophysics Faculty of Science Palacký University Olomouc Czech Republic
See more in PubMed
Albanese, P. , Manfredi, M. , Meneghesso, A. , Marengo, E. , Saracco, G. , Barber, J. , Morosinotto, T. & Pagliano, C. (2016) Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochimica et Biophysica Acta ‐ Bioenergetics, 1857, 1651–1660 PubMed
Arshad, R. , Saccon, F. , Bag, P. , Biswas, A. , Calvaruso, C. , Bhatti, A.F. , Grebe, S. , Mascoli, V. , Mahbub, M. , Muzzopappa, F. , Polyzois, A. , Schiphorst, C. , Sorrentino, M. , Streckaité, S. , van Amerongen, H. , Aro, E.M. , Bassi, R. , Boekema, E.J. , Croce, R. , et al. (2022) A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 189, 1204–1219 PubMed PMC
Ballottari, M. , Dall'Osto, L. , Morosinotto, T. & Bassi, R. (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. Journal of Biological Chemistry, 282, 8947–8958 PubMed
Betterle, N. , Ballottari, M. , Zorzan, S. , de Bianchi, S. , Cazzaniga, S. , Dall'Osto, L. , Morosinotto, T. & Bassi, R. (2009) Light‐induced dissociation of an antenna hetero‐oligomer is needed for non‐photochemical quenching induction. Journal of Biological Chemistry, 284, 15255–15266 PubMed PMC
Van Bezouwen, L.S. , Caffarri, S. , Kale, R. , Kouřil, R. , Thunnissen, A.M.W.H. , Oostergetel, G.T. & Boekema, E.J. (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nature Plants, 3, 1–11 PubMed
De Bianchi, S. , Betterle, N. , Kouril, R. , Cazzaniga, S. , Boekema, E. , Bassi, R. & Dall'Osto, L. (2011) Arabidopsis mutants deleted in the light‐harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell, 23, 2659–2679 PubMed PMC
De Bianchi, S. , Dall'Osto, L. , Tognon, G. , Morosinotto, T. & Bassi, R. (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell, 20, 1012–1028 PubMed PMC
Caffarri, S. , Kouřil, R. , Kereïche, S. , Boekema, E.J. & Croce, R. (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO Journal, 28, 3052–3063 PubMed PMC
Chen, Y.E. , Ma, J. , Wu, N. , Su, Y.Q. , Zhang, Z.W. , Yuan, M. , Zhang, H.Y. , Zeng, X.Y. & Yuan, S. (2018) The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. Plant Physiology and Biochemistry, 130, 267–276 PubMed
Croce, R. , Canino, G. , Ros, F. & Bassi, R. (2002) Chromophore organization in the higher‐plant photosystem II antenna protein CP26. Biochemistry, 41, 7334–7343 PubMed
Dau, H. , Andrews, J.C. , Roelofs, T.A. , Latimer, M.J. , Liang, W. , Yachandra, V.K. , Sauer, K. & Klein, M.P. (1995) Structural consequences of ammonia binding to the manganese center of the photosynthetic oxygen‐evolving complex: an X‐ray absorption spectroscopy study of isotropic and oriented photosystem II particles. Biochemistry, 34, 5274–5287 PubMed
Dekker, J.P. & Boekema, E.J. (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta ‐ Bioenergetics, 1706, 12–39 PubMed
Genty, B. , Briantais, J.M. & Baker, N.R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta ‐ General Subjects, 990, 87–92
Goral, T.K. , Johnson, M.P. , Duffy, C.D.P. , Brain, A.P.R. , Ruban, A. V. & Mullineaux, C.W. (2012) Light‐harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant Journal, 69, 289–301 PubMed
Grebe, S. , Trotta, A. , Bajwa, A.A. , Suorsa, M. , Gollan, P.J. , Jansson, S. , Tikkanen, M. & Aro, E.M. (2019) The unique photosynthetic apparatus of pinaceae: Analysis of photosynthetic complexes in Picea abies. Journal of Experimental Botany, 70, 3211–3225 PubMed PMC
Ilíková, I. , Ilík, P. , Opatíková, M. , Arshad, R. , Nosek, L. , Karlický, V. , Kučerová, Z. , Roudnický, P. , Pospíšil, P. , Lazár, D. , Bartoš, J. & Kouřil, R. (2021) Towards spruce‐type photosystem II: consequences of the loss of light‐harvesting proteins LHCB3 and LHCB6 in Arabidopsis. Plant Physiology, 187, 2691–2715 PubMed PMC
Kim, E. , Watanabe, A. , Duffy, C.D.P. , Ruban, A. V. & Minagawa, J. (2020) Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low‐ And high‐light conditions. Journal of Biological Chemistry, 295, 14537–14545 PubMed PMC
Klughammer, C. & Schreiber, U. (2008) Saturation Pulse method for assessment of energy conversion in PS I. PAM Application Notes, 1, 11–14
Kouřil, R. , Nosek, L. , Bartoš, J. , Boekema, E.J. & Ilík, P. (2016) Evolutionary loss of light‐harvesting proteins Lhcb6 and Lhcb3 in major land plant groups ‐ break‐up of current dogma. New Phytologist, 210, 808–814 PubMed
Kouřil, R. , Nosek, L. , Opatíková, M. , Arshad, R. , Semchonok, D.A. , Chamrád, I. , Lenobel, R. , Boekema, E.J. & Ilík, P. (2020) Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. Plant Journal, 104, 215–225 PubMed PMC
Kouřil, R. , Nosek, L. , Semchonok, D. , Boekema, E.J. & Ilík, P. (2018) Organization of plant photosystem II and photosystem I supercomplexes. Subcellular Biochemistry, 87, 259–286 PubMed
Kouřil, R. , Wientjes, E. , Bultema, J.B. , Croce, R. & Boekema, E.J. (2013) High‐light vs. low‐light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochimica et Biophysica Acta ‐ Bioenergetics, 1827, 411–419 PubMed
Kovács, L. , Damkjær, J. , Kereïche, S. , Ilioaia, C. , Ruban, A. V. , Boekema, E.J. , Jansson, S. & Horton, P. (2006) Lack of the light‐harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell, 18, 3106–3120 PubMed PMC
Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigment of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382
Marin, A. , Passarini, F. , Croce, R. & Van Grondelle, R. (2010) Energy transfer pathways in the CP24 and CP26 antenna complexes of higher plant photosystem II: A comparative study. Biophysical Journal, 99, 4056–4065 PubMed PMC
Marin, A. , Passarini, F. , Van Stokkum, I.H.M. , Van Grondelle, R. & Croce, R. (2011) Minor complexes at work: Light‐harvesting by carotenoids in the photosystem II antenna complexes CP24 and CP26. Biophysical Journal, 100, 2829–2838 PubMed PMC
Miloslavina, Y. , De Bianchi, S. , Dall'Osto, L. , Bassi, R. & Holzwarth, A.R. (2011) Quenching in Arabidopsis thaliana mutants lacking monomeric antenna proteins of photosystem II. Journal of Biological Chemistry, 286, 36830–36840 PubMed PMC
Nosek, L. , Semchonok, D. , Boekema, E.J. , Ilík, P. & Kouřil, R. (2017) Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Plant Journal, 89, 104–111 PubMed
Van Oort, B. , Alberts, M. , De Bianchi, S. , Dall'Osto, L. , Bassi, R. , Trinkunas, G. , Croce, R. & Van Amerongen, H. (2010) Effect of antenna‐depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophysical Journal, 98, 922–931 PubMed PMC
Opatíková, M. , Semchonok, D.A. , Kopečný, D. , Ilík, P. , Pospíšil, P. , Ilíková, I. , Roudnický, P. , Zeljković, S.Ć. , Tarkowski, P. , Kyrilis, F.L. , Hamdi, F. , Kastritis, P.L. & Kouřil, R. (2023) Cryo‐EM structure of a plant photosystem II supercomplex with light‐harvesting protein Lhcb8 and α‐tocopherol. Nature Plants, 9, 1359–1369 PubMed
Perez‐Riverol, Y. , Csordas, A. , Bai, J. , Bernal‐Llinares, M. , Hewapathirana, S. , Kundu, D.J. , Inuganti, A. , Griss, J. , Mayer, G. , Eisenacher, M. , Pérez, E. , Uszkoreit, J. , Pfeuffer, J. , Sachsenberg, T. , Yilmaz, Ş. , Tiwary, S. , Cox, J. , Audain, E. , Walzer, M. , et al. (2019) The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Research, 47, D442–D450 PubMed PMC
De la Rosa‐Trevín, J.M. , Quintana, A. , del Cano, L. , Zaldívar, A. , Foche, I. , Gutiérrez, J. , Gómez‐Blanco, J. , Burguet‐Castell, J. , Cuenca‐Alba, J. , Abrishami, V. , Vargas, J. , Otón, J. , Sharov, G. , Vilas, J.L. , Navas, J. , Conesa, P. , Kazemi, M. , Marabini, R. , Sorzano, C.O.S. , et al. (2016) Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. Journal of Structural Biology, 195, 93–99 PubMed
Ruban, A. V. , Wentworth, M. , Yakushevska, A.E. , Andersson, J. , Lee, P.J. , Keegstra, W. , Dekker, J.P. , Boekema, E.J. , Jansson, S. & Horton, P. (2003) Plants lacking the main light‐harvesting complex retain photosystem II macro‐organization. Nature, 421, 648–652 PubMed
Sattari Vayghan, H. , Nawrocki, W.J. , Schiphorst, C. , Tolleter, D. , Hu, C. , Douet, V. , Glauser, G. , Finazzi, G. , Croce, R. , Wientjes, E. & Longoni, F. (2022) Photosynthetic Light Harvesting and Thylakoid Organization in a CRISPR/Cas9 Arabidopsis Thaliana LHCB1 Knockout Mutant. Frontiers in Plant Science, 13, 1–18 PubMed PMC
Schägger, H. (2006) Tricine‐SDS‐PAGE. Nature protocols, 1, 16–22 PubMed
Schindelin, J. , Arganda‐Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. , Preibisch, S. , Rueden, C. , Saalfeld, S. , Schmid, B. , Tinevez, J.‐Y. , White, D.J. , Hartenstein, V. , Eliceiri, K. , Tomancak, P. & Cardona, A. (2012) Fiji: an open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682 PubMed PMC
Su, X. , Wei, X. , Zhu, D. , Chang, W. , Liu, Z. , Zhang, X. & Li, M. (2017) Structure and assembly mechanism of plant C2S2M2‐type PSII‐LHCII supercomplex. Science, 357, 815–820 PubMed
Ware, M.A. , Belgio, E. & Ruban, A. V. (2015) Photoprotective capacity of non‐photochemical quenching in plants acclimated to different light intensities. Photosynthesis Research, 126, 261–274 PubMed
Wiśniewski, J.R. , Zougman, A. , Nagaraj, N. & Mann, M. (2009) Universal sample preparation method for proteome analysis. Nature Methods, 6, 359–362 PubMed
Wittig, I. , Karas, M. & Schägger, H. (2007) High resolution clear native electrophoresis for in‐gel functional assays and fluorescence studies of membrane protein complexes. Molecular & cellular proteomics : MCP, 6, 1215–1225 PubMed
Yakushevska, A.E. , Keegstra, W. , Boekema, E.J. , Dekker, J.P. , Andersson, J. , Jansson, S. , Ruban, A. V. & Horton, P. (2003) The structure of photosystem II in arabidopsis: Localization of the CP26 and CP29 antenna complexes. Biochemistry, 42, 608–613 PubMed