Overt and covert genetic causes of pediatric acute lymphoblastic leukemia
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Review
Grant support
2023-001063
Børnecancerfonden (Danish Childhood Cancer Foundation)
2020-5769
Børnecancerfonden (Danish Childhood Cancer Foundation)
R-257-A14720
Kræftens Bekæmpelse (Danish Cancer Society)
2023-29175
Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
PubMed
40128563
DOI
10.1038/s41375-025-02535-4
PII: 10.1038/s41375-025-02535-4
Knihovny.cz E-resources
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma * genetics etiology MeSH
- Child MeSH
- Genetic Predisposition to Disease * MeSH
- Humans MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Pediatric acute lymphoblastic leukemia (pALL) is the most common childhood malignancy, yet its etiology remains incompletely understood. However, over the course of three waves of germline genetic research, several non-environmental causes have been identified. Beginning with trisomy 21, seven overt cancer predisposition syndromes (CPSs)-characterized by broad clinical phenotypes that include an elevated risk of pALL-were first described. More recently, newly described CPSs conferring high risk of pALL are increasingly covert, with six exhibiting only minimal or no non-cancer features. These 13 CPSs now represent the principal known hereditary causes of pALL, and human pangenomic data indicates a strong negative selection against mutations in the genes associated with these conditions. Collectively they affect approximately 1 in 450 newborns, of which just a minority will develop the disease. As evidenced by tailored leukemia care protocols for children with trisomy 21, there is growing recognition that CPSs warrant specialized diagnostic, therapeutic, and long-term management strategies. In this review, we investigate the evidence that the 12 other CPSs associated with high risk of pALL may also see benefits from specialized care - even if these needs are often incompletely mapped or addressed in the clinic. Given the rarity of each syndrome, collaborative international research and shared data initiatives will be crucial for advancing knowledge and improving outcomes for these patients.
Department of Childhood and Adolescent Medicine Rigshospitalet Copenhagen Denmark
Department of Clinical Genetics Rigshospitalet Copenhagen Denmark
Department of Clinical Medicine Faculty of Medicine Copenhagen University Copenhagen Denmark
Department of Genetic Predisposition to Cancer Medical University of Lodz Lodz Poland
Department of Genetics Robert Debré University Hospital APHP Paris France
Department of Genetics University Medical Center Utrecht Utrecht University Utrecht the Netherlands
Department of Pediatrics Oncology and Hematology Medical University of Lodz Lodz Poland
INSERM UMR_S1131 Institut de Recherche Saint Louis Paris France Paris France
Princess Máxima Center for Pediatric Oncology Utrecht Netherlands
School of Medicine and Surgery University of Milano Bicocca Milan Italy
Tettamanti Center Fondazione IRCCS San Gerardo dei Tintori Monza Italy
See more in PubMed
Hjalgrim LL, Rostgaard K, Schmiegelow K, Söderhäll S, Kolmannskog S, Vettenranta K, et al. Age- and sex-specific incidence of childhood leukemia by immunophenotype in the Nordic countries. J Natl Cancer Inst. 2003;95:1539–1544. PubMed
Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet Lond Engl. 2020;395:1146–62.
Tulstrup M, Stoltze UK, Schmiegelow K, Yang JJ. Epidemiology and Etiology of Childhood ALL. In: Vora A (ed). Childhood Acute Lymphoblastic Leukemia. Springer International Publishing: Cham, 2017, pp 1–27.
Kamper-Jørgensen M, Woodward A, Wohlfahrt J, Benn CS, Simonsen J, Hjalgrim H, et al. Childcare in the first 2 years of life reduces the risk of childhood acute lymphoblastic leukemia. Leukemia. 2008;22:189–93. PubMed
Søegaard SH, Rostgaard K, Kamper-Jørgensen M, Schmiegelow K, Hjalgrim H. Childcare attendance and risk of childhood acute lymphoblastic leukaemia: A register study based on the Danish childcare database. Int J Cancer. 2023;152:1817–26. PubMed
Jeha S, Pei D, Choi J, Cheng C, Sandlund JT, Coustan-Smith E, et al. Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16. J Clin Oncol J Am Soc Clin Oncol. 2019;37:3377–91.
Pui C-H, Yang JJ, Bhakta N, Rodriguez-Galindo C. Global efforts toward the cure of childhood acute lymphoblastic leukaemia. Lancet Child Adolesc Health. 2018;2:440–54. PubMed PMC
Oskarsson T, Söderhäll S, Arvidson J, Forestier E, Frandsen TL, Hellebostad M et al. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018; 65. https://doi.org/10.1002/pbc.26909 .
Ehrlich BS, McNeil MJ, Pham LTD, Chen Y, Rivera J, Acuna C, et al. Treatment-related mortality in children with cancer in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Oncol. 2023;24:967–77. PubMed PMC
Schmiegelow K, Müller K, Mogensen SS, Mogensen PR, Wolthers BO, Stoltze UK, et al. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy. F1000Research. 2017;6:444. https://doi.org/10.12688/f1000research.10768.1 PubMed DOI PMC
Björk-Eriksson T, Boström M, Bryngelsson I-L, Lähteenmäki PM, Jarfelt M, Kalm M, et al. Mortality Among Pediatric Patients With Acute Lymphoblastic Leukemia in Sweden From 1988 to 2017. JAMA Netw Open. 2022;5:e2243857. PubMed PMC
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukemias and myeloid neoplasms. Nat Rev Cancer. 2021;21:122–37. PubMed
Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345–53. PubMed
Down JL. Observations on an ethnic classification of idiots. 1866. Ment Retard. 1995;33:54–56. PubMed
Krivit W, Good RA. Simultaneous occurrence of mongolism and leukemia; report of a nationwide survey. AMA J Dis Child. 1957;94:289–93. PubMed
Lampert F. [Acute lymphoblastic leukemia in sibblings with progressive cerebellar ataxia (Louis-Bar syndrome)]. Dtsch Med Wochenschr. 1969;94:217–20. PubMed
McEvoy MW, Mann JR. Neurofibromatosis with leukaemia. Br Med J. 1971;3:641. PubMed PMC
Fraumeni JF, Manning MD, Mitus WJ. Acute childhood leukemia: epidemiologic study by cell type of 1263 cases at the Children’s Cancer Research Foundation in Boston, 1947-65. J Natl Cancer Inst. 1971;46:461–70. PubMed
Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64. PubMed
Moriyama T, Relling MV, Yang JJ. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood. 2015;125:3988–96. PubMed PMC
Jeon S, de Smith AJ, Li S, Chen M, Chan TF, Muskens IS, et al. Genome-wide trans-ethnic meta-analysis identifies novel susceptibility loci for childhood acute lymphoblastic leukemia. Leukemia. 2022;36:865–8. PubMed
Kullo IJ, Lewis CM, Inouye M, Martin AR, Ripatti S, Chatterjee N. Polygenic scores in biomedical research. Nat Rev Genet. 2022;23:524–32. PubMed PMC
Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet. 2000;355:165–9. PubMed
Buitenkamp TD, Izraeli S, Zimmermann M, Forestier E, Heerema NA, Heuvel-eibrink MMVD, et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood. 2015;123:70–78.
Izraeli S. The acute lymphoblastic leukemia of Down Syndrome – Genetics and Pathogenesis. Eur J Med Genet. 2015;59:10–13.
Brown AL, de Smith AJ, Gant VU, Yang W, Scheurer ME, Walsh KM, et al. Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood. 2019;134:1227–37. PubMed PMC
Forestier E, Izraeli S, Beverloo B, Haas O, Pession A, Michalová K, et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood. 2008;111:1575–83. PubMed
Hertzberg L, Vendramini E, Ganmore I, Cazzaniga G, Schmitz M, Chalker J, et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood. 2010;115:1006–17. PubMed
Tal N, Shochat C, Geron I, Bercovich D, Izraeli S. Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci CMLS. 2014;71:365–78. PubMed
Shochat C, Tal N, Gryshkova V, Birger Y, Bandapalli OR, Cazzaniga G, et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood. 2014;124:106–10. PubMed
Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G, et al. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med. 2011;208:901–8. PubMed PMC
Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, Elimelech A, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet Lond Engl. 2008;372:1484–92.
Schwartzman O, Savino AM, Gombert M, Palmi C, Cario G, Schrappe M, et al. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci USA. 2017;114:E4030–E4039. PubMed PMC
Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15. PubMed PMC
Ensor HM, Schwab C, Russell LJ, Richards SM, Morrison H, Masic D, et al. Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood. 2011;117:2129–36. PubMed
Rand V, Parker H, Russell LJ, Schwab C, Ensor H, Irving J, et al. Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2011;117:6848–55. PubMed
Li Z, Chang T-C, Junco JJ, Devidas M, Li Y, Yang W, et al. Genomic landscape of Down syndrome-associated acute lymphoblastic leukemia. Blood. 2023;142:172–84. PubMed PMC
Geron I, Savino AM, Fishman H, Tal N, Brown J, Turati VA, et al. An instructive role for Interleukin-7 receptor α in the development of human B-cell precursor leukemia. Nat Commun. 2022;13:659. PubMed PMC
Jardine L, Webb S, Goh I, Quiroga Londoño M, Reynolds G, Mather M, et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature. 2021;598:327–31. PubMed PMC
Rabin KR, Devidas M, Chen Z, Ji L, Kairalla J, Hitzler JK, et al. Outcomes in Children, Adolescents, and Young Adults With Down Syndrome and ALL: A Report From the Children’s Oncology Group. J Clin Oncol J Am Soc Clin Oncol. 2024;42:218–27.
Bohnstedt C, Taskinen M, Zeller B, Björgvinsdóttir H, Hafsteinsdottir S, Schmiegelow K. Poor treatment compliance in children with down syndrome and acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2009;31:79–80. PubMed
Rav ES, Wahba A, Patnaik A, Toruner G, Hittle A, Toepfer L, et al. A balancing act: Blinatumomab use in a rare occurrence of Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia in an adolescent patient with Down syndrome. Pediatr Blood Cancer. 2023;70:e30191. PubMed
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11:159. PubMed PMC
Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–53. PubMed
Lee J-H, Paull TT. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol. 2021;22:796–814. PubMed
Gilad S, Chessa L, Khosravi R, Russell P, Galanty Y, Piane M, et al. Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am J Hum Genet. 1998;62:551–61. PubMed PMC
Verhagen MMM, Abdo WF, Willemsen M, Hogervorst FBL, Smeets DFCM, Hiel JAP, et al. Clinical spectrum of ataxia-telangiectasia in adulthood. Neurology. 2009;73:430–7. PubMed
Micol R, Slama LB, Suarez F, Mignot LL, Beauté J, Mahlaoui N, et al. Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol. 2011;128:382. PubMed
Verhagen MMM, Last JI, Hogervorst FBL, Smeets DFCM, Roeleveld N, Verheijen F, et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum Mutat. 2012;33:561–71. PubMed
Fiévet A, Bellanger D, Rieunier G, Dubois d’Enghien C, Sophie J, Calvas P, et al. Functional classification of ATM variants in ataxia-telangiectasia patients. Hum Mutat. 2019;40:1713–30. PubMed
Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol J Am Soc Clin Oncol. 2015;33:202–8.
Pastorczak A, Attarbaschi A, Bomken S, Borkhardt A, van der Werff Ten Bosch J, Elitzur S, et al. Consensus Recommendations for the Clinical Management of Hematological Malignancies in Patients with DNA Double Stranded Break Disorders. Cancers. 2022;14:2000. PubMed PMC
Elitzur S, Shiloh R, Loeffen JLC, Pastorczak A, Takagi M, Bomken S et al. ATM germline pathogenic variants affect outcomes in children with ataxia-telangiectasia and hematological malignancies. Blood. 2024; blood.2024024283.
Varon R, Demuth I, Chrzanowska KH. Nijmegen Breakage Syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ et al. (eds). GeneReviews®. University of Washington, Seattle: Seattle (WA), 1993 http://www.ncbi.nlm.nih.gov/books/NBK1176/ (accessed 8 Sep 2024).
Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93:467–76. PubMed
You Z, Chahwan C, Bailis J, Hunter T, Russell P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol. 2005;25:5363–79. PubMed PMC
Stracker TH, Morales M, Couto SS, Hussein H, Petrini JHJ. The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature. 2007;447:218–21. PubMed PMC
Sharapova SO, Pashchenko OE, Bondarenko AV, Vakhlyarskaya SS, Prokofjeva T, Fedorova AS, et al. Geographical distribution, incidence, malignancies, and outcome of 136 eastern slavic patients with Nijmegen breakage syndrome and NBN Founder Variant c.657_661del5. Front Immunol. 2020;11:602482. PubMed
Wolska-Kusnierz B, Pastorczak A, Fendler W, Wakulinska A, Dembowska-Baginska B, Heropolitanska-Pliszka E, et al. Hematopoietic stem cell transplantation positively affects the natural history of cancer in Nijmegen breakage syndrome. Clin Cancer Res J Am Assoc Cancer Res. 2021;27:575–84.
Taalman RD, Hustinx TW, Weemaes CM, Seemanová E, Schmidt A, Passarge E, et al. Further delineation of the Nijmegen breakage syndrome. Am J Med Genet. 1989;32:425–31. PubMed
Jaspers NG, Taalman RD, Baan C. Patients with an inherited syndrome characterized by immunodeficiency, microcephaly, and chromosomal instability: genetic relationship to ataxia telangiectasia. Am J Hum Genet. 1988;42:66–73. PubMed PMC
Chrzanowska KH, Kleijer WJ, Krajewska-Walasek M, Białecka M, Gutkowska A, Goryluk-Kozakiewicz B, et al. Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome. Am J Med Genet. 1995;57:462–71. PubMed
Slack J, Albert MH, Balashov D, Belohradsky BH, Bertaina A, Bleesing J, et al. Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. J Allergy Clin Immunol. 2018;141:322–.e10. PubMed
Ababou M. Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab. 2021;133:35–48. PubMed
Chaganti RS, Schonberg S, German J. A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA. 1974;71:4508–12. PubMed PMC
Hoover A, Turcotte LM, Phelan R, Barbus C, Rayannavar A, Miller BS et al. Longitudinal clinical manifestations of Fanconi anemia: a systematized review. Blood Rev. 2024;68:101225.
Giardino S, Eikema D-J, Piepenbroek B, Algeri M, Ayas M, Faraci M et al. HLA-haploidentical stem cell transplantation in children with inherited bone marrow failure syndromes: a retrospective analysis on behalf of EBMT severe aplastic Anemia and pediatric diseases working parties. Am J Hematol. 2024;99:1066-76.
Lum SH, Eikema D-J, Piepenbroek B, Wynn R, Samarasinghe S, Dalissier A et al. Outcome of hematopoietic stem cell transplantation in 813 pediatric patients with fanconi anemia. Blood. 2024;144:1329–42.
Grant AR, Cushman BJ, Cavé H, Dillon MW, Gelb BD, Gripp KW, et al. Assessing the gene-disease association of 19 genes with the RASopathies using the ClinGen gene curation framework. Hum Mutat. 2018;39:1485–93. PubMed
Landry JP, Schertz KL, Chiang Y-J, Bhalla AD, Yi M, Keung EZ, et al. Comparison of cancer prevalence in patients with neurofibromatosis type 1 at an academic cancer center vs in the general population from 1985 to 2020. JAMA Netw Open. 2021;4:e210945. PubMed PMC
Kratz CP, Jongmans MC, Cavé H, Wimmer K, Behjati S, Guerrini-Rousseau L, et al. Predisposition to cancer in children and adolescents. Lancet Child Adolesc Health. 2021;5:142–54. PubMed
Cavé H, Caye A, Strullu M, Aladjidi N, Vignal C, Ferster A, et al. Acute lymphoblastic leukemia in the context of RASopathies. Eur J Med Genet. 2016;59:173–8. PubMed
Shearer P, Parham D, Kovnar E, Kun L, Rao B, Lobe T, et al. Neurofibromatosis type I and malignancy: review of 32 pediatric cases treated at a single institution. Med Pediatr Oncol. 1994;22:78–83. PubMed
Galbiati M, Lettieri A, Micalizzi C, Songia S, Morerio C, Biondi A, et al. Natural history of acute lymphoblastic leukemia in neurofibromatosis type 1 monozygotic twins. Leukemia. 2013;27:1778–81. PubMed
Bader JL, Miller RW. Neurofibromatosis and childhood leukemia. J Pediatr. 1978;92:925–9. PubMed
Horigome H, Sumazaki R, Iwasaki N, Imoto N, Kinugasa H, Saito M, et al. Fatal eosinophilic heart disease in a child with neurofibromatosis-1 complicated by acute lymphoblastic leukemia. Heart Vessels. 2005;20:120–2. PubMed
Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994;70:969–72. PubMed PMC
Klopfenstein KJ, Sommer A, Ruymann FB. Neurofibromatosis-Noonan syndrome and acute lymphoblastic leukemia: a report of two cases. J Pediatr Hematol Oncol. 1999;21:158–60. PubMed
Perilongo G, Felix CA, Meadows AT, Nowell P, Biegel J, Lange BJ. Sequential development of Wilms tumor, T-cell acute lymphoblastic leukemia, medulloblastoma and myeloid leukemia in a child with type 1 neurofibromatosis: a clinical and cytogenetic case report. Leukemia. 1993;7:912–5. PubMed
Molteni CG, Te Kronnie G, Bicciato S, Villa T, Tartaglia M, Basso G, et al. PTPN11 mutations in childhood acute lymphoblastic leukemia occur as a secondary event associated with high hyperdiploidy. Leukemia. 2010;24:232–5. PubMed
Zipper L, Wagener R, Fischer U, Hoffmann A, Yasin L, Brandes D, et al. Hyperdiploid acute lymphoblastic leukemia in children with LZTR1 germline variants. HemaSphere. 2024;8:e26. PubMed PMC
Perrino MR, Das A, Scollon SR, Mitchell SG, Greer M-LC, Yohe ME et al. Update on Pediatric Cancer Surveillance Recommendations for Patients with Neurofibromatosis Type 1, Noonan Syndrome, CBL Syndrome, Costello Syndrome, and Related RASopathies. Clin Cancer Res Off J Am Assoc Cancer Res. 2024. https://doi.org/10.1158/1078-0432.CCR-24-1611 .
Wimmer K, Kratz CP, Vasen HFA, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet. 2014;51:355–65. PubMed
Suerink M, Ripperger T, Messiaen L, Menko FH, Bourdeaut F, Colas C, et al. Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus guidelines for testing a child without malignancy. J Med Genet. 2019;56:53–62. PubMed
Das A, MacFarland SP, Meade J, Hansford JR, Schneider KW, Kuiper RP, et al. Clinical updates and surveillance recommendations for DNA replication repair deficiency syndromes in children and young adults. Clin Cancer Res J Am Assoc Cancer Res. 2024;30:3378–87.
Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet. 2017;91:507–19. PubMed
Ercan AB, Aronson M, Fernandez NR, Chang Y, Levine A, Liu ZA, et al. Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an International Replication Repair Deficiency Consortium cohort study. Lancet Oncol. 2024;25:668–82. PubMed
Kroeze E, Weijers DD, Hagleitner MM, de Groot-Kruseman HA, Jongmans MCJ, Kuiper RP, et al. High prevalence of constitutional mismatch repair deficiency in a pediatric T-cell lymphoblastic lymphoma cohort. HemaSphere. 2022;6:e668. PubMed
González-Acosta M, Marín F, Puliafito B, Bonifaci N, Fernández A, Navarro M, et al. High-sensitivity microsatellite instability assessment for the detection of mismatch repair defects in normal tissue of biallelic germline mismatch repair mutation carriers. J Med Genet. 2020;57:269–73. PubMed
Gallon R, Phelps R, Hayes C, Brugieres L, Guerrini-Rousseau L, Colas C, et al. Constitutional microsatellite instability, genotype, and phenotype correlations in constitutional mismatch repair deficiency. Gastroenterology. 2023;164:579–.e8. PubMed
Chung J, Negm L, Bianchi V, Stengs L, Das A, Liu ZA, et al. Genomic microsatellite signatures identify germline mismatch repair deficiency and risk of cancer onset. J Clin Oncol J Am Soc Clin Oncol. 2023;41:766–77.
Guerrini-Rousseau L, Gallon R, Pineda M, Brugières L, Baert-Desurmont S, Corsini C et al. Report of the sixth meeting of the European Consortium ‘Care for CMMRD’ (C4CMMRD), Paris, France, November 16th 2022. Fam Cancer. 2024. https://doi.org/10.1007/s10689-024-00403-1 .
Muir AW, Houston J, Marshall RJ, Bowman WC, Marshall IG. A comparison of the neuromuscular blocking and autonomic effects of two new short-acting muscle relaxants with those of succinylcholine in the anesthetized cat and pig. Anesthesiology. 1989;70:533–40. PubMed
Westdorp H, Kolders S, Hoogerbrugge N, de Vries IJM, Jongmans MCJ, Schreibelt G. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome. Cancer Lett. 2017;403:159–64. PubMed
Das A, Sudhaman S, Morgenstern D, Coblentz A, Chung J, Stone SC, et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med. 2022;28:125–35. PubMed PMC
Das A, Fernandez NR, Levine A, Bianchi V, Stengs LK, Chung J, et al. ComBined Immunotherapy Improves Outcome For Replication-repair-deficient (RRD) high-grade glioma failing anti-PD-1 monotherapy: a report from the international RRD Consortium. Cancer Discov. 2024;14:258–73. PubMed
Yang F, Brady SW, Tang C, Sun H, Du L, Barz MJ, et al. Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse. Nat Cancer. 2021;2:819–34. PubMed
van Engelen N, Roest M, van Dijk F, Sonneveld E, Bladergroen R, van Reijmersdal SV, et al. A novel germline PAX5 single exon deletion in a pediatric patient with precursor B-cell leukemia. Leukemia. 2023;37:1908–11. PubMed PMC
Touat M, Li YY, Boynton AN, Spurr LF, Iorgulescu JB, Bohrson CL, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature. 2020;580:517–23. PubMed PMC
Bougeard G, Renaux-Petel M, Flaman J-M, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-Fraumeni Syndrome from TP53 mutation carriers. J Clin Oncol J Am Soc Clin Oncol. 2015;33:2345–52.
Amadou A, Achatz MIW, Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol. 2018;30:23–29. PubMed
Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52. PubMed PMC
Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51:296–307. PubMed PMC
Jongmans MC, Loeffen JL, Waanders E, Hoogerbrugge PM, Ligtenberg MJ, Kuiper RP, Hoogerbrugge N, et al. Recognition of genetic predisposition in pediatric cancer patients: An easy-to-use selection tool. Eur J Med Genet. 2016;59:116–25. PubMed
Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173:1017–37. PubMed
Goudie C, Witkowski L, Cullinan N, Reichman L, Schiller I, Tachdjian M, et al. Performance of the mcgill interactive pediatric oncogenetic guidelines for identifying cancer predisposition syndromes. JAMA Oncol. 2021;7:1806–14. PubMed
Hebert R, Cullinan N, Armstrong L, Blood KA, Brossard J, Brunga L, et al. Performance of the eHealth decision support tool, MIPOGG, for recognising children with Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin syndromes. J Med Genet. 2023;60:1218–23. PubMed
Valdez JM, Nichols KE, Kesserwan C. Li-Fraumeni syndrome: a paradigm for the understanding of hereditary cancer predisposition. Br J Haematol. 2017;176:539–52. PubMed
Qian M, Cao X, Devidas M, Yang W, Cheng C, Dai Y, et al. TP53 Germline Variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukemia in children. J Clin Oncol J Am Soc Clin Oncol. 2018;36:591–9.
Pinto EM, Ribeiro RC, Figueiredo BC, Zambetti GP. TP53-associated pediatric malignancies. Genes Cancer. 2011;2:485–90. PubMed PMC
Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ, et al. Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol J Am Soc Clin Oncol. 2009;27:1250–6.
Renaux-Petel M, Charbonnier F, Théry J-C, Fermey P, Lienard G, Bou J, et al. Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. J Med Genet. 2018;55:173–80. PubMed
Novel germline TP53 variant (p.(Phe109Ile)) confers high risk of cancer - PubMed. https://pubmed.ncbi.nlm.nih.gov/39317423/ (accessed 22 Oct 2024).
Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, Savoia A, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47:535–8. PubMed PMC
Topka S, Vijai J, Walsh MF, Jacobs L, Maria A, Villano D, et al. Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia. PLoS Genet. 2015;11:e1005262. PubMed PMC
Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015;47:180–5. PubMed PMC
Di Paola J, Porter CC. ETV6-related thrombocytopenia and leukemia predisposition. Blood. 2019;134:663–7. PubMed PMC
Moriyama T, Metzger ML, Wu G, Nishii R, Qian M, Devidas M, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: A systematic genetic study. Lancet Oncol. 2015;16:1659–66. PubMed PMC
Bloom M, Oak N, Baskin-Doerfler R, Feng R, Iacobucci I, Baviskar P, et al. ETV6 represses inflammatory response genes and regulates HSPC function during stress hematopoiesis in mice. Blood Adv. 2023;7:5608–23. PubMed PMC
Nishii R, Baskin-Doerfler R, Yang W, Oak N, Zhao X, Yang W, et al. Molecular basis of ETV6-mediated predisposition to childhood acute lymphoblastic leukemia. Blood. 2021;137:364–73. PubMed PMC
Escudero A, Takagi M, Auer F, Friedrich UA, Miyamoto S, Ogawa A, et al. Clinical and immunophenotypic characteristics of familial leukemia predisposition caused by PAX5 germline variants. Leukemia. 2022;36:2338–42. PubMed
Bettini LR, Fazio G, Saitta C, Piazza R, Palamini S, Buracchi C et al. Diverse mechanisms of leukemogenesis associated with PAX5 germline mutation. Leukemia. 2024;38:2479–82.
Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell. 1994;79:143–56. PubMed
Georgopoulos K, Moore DD. Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science. 1992;258:808–12. PubMed
Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell. 1995;83:289–99. PubMed
Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JGCAM, Peters STCJM, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–34.
Boer JM, van der Veer A, Rizopoulos D, Fiocco M, Sonneveld E, de Groot-Kruseman HA, et al. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study. Leukemia. 2016;30:32–38. PubMed
Zhang J, McCastlain K, Yoshihara H, Xu B, Chang Y, Churchman ML, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48:1481–9. PubMed PMC
Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol. 2023;212:129–36. PubMed
Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, et al. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. N Engl J Med. 2016;374:1032–43. PubMed PMC
Boutboul D, Kuehn HS, Van de Wyngaert Z, Niemela JE, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128:3071–87. PubMed PMC
Kuehn HS, Niemela JE, Stoddard J, Mannurita SC, Shahin T, Goel S, et al. Germline IKAROS dimerization haploinsufficiency causes hematologic cytopenias and malignancies. Blood. 2021;137:349–63. PubMed PMC
Hoshino A, Boutboul D, Zhang Y, Kuehn HS, Hadjadj J, Özdemir N, et al. Gain-of-function IKZF1 variants in humans cause immune dysregulation associated with abnormal T/B cell late differentiation. Sci Immunol. 2022;7:eabi7160. PubMed
Churchman ML, Qian M, Kronnie TeG, Zhang R, Yang W, Zhang H, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell. 2018;33:937–.e8. PubMed PMC
Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166–75. PubMed
Latger-Cannard V, Philippe C, Bouquet A, Baccini V, Alessi M-C, Ankri A, et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis. 2016;11:49. PubMed PMC
Antony-Debré I, Duployez N, Bucci M, Geffroy S, Micol J-B, Renneville A, et al. Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia. Leukemia. 2016;30:999–1002. PubMed
Li Y, Yang W, Devidas M, Winter SS, Kesserwan C, Yang W, et al. Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. J Clin Invest. 2021;131:e147898. PubMed PMC
Schmiegelow K, Levinsen MF, Attarbaschi A, Baruchel A, Devidas M, Escherich G, et al. Second malignant neoplasms after treatment of childhood acute lymphoblastic leukemia. J Clin Oncol J Am Soc Clin Oncol. 2013;31:2469–76.
Turcotte LM, Neglia JP, Reulen RC, Ronckers CM, van Leeuwen FE, Morton LM, et al. Risk, risk factors, and surveillance of subsequent malignant neoplasms in survivors of childhood cancer: a review. J Clin Oncol J Am Soc Clin Oncol. 2018;36:2145–52.
Levinsen M, Rotevatn EØ, Rosthøj S, Nersting J, Abrahamsson J, Appell ML, et al. Pharmacogenetically based dosing of thiopurines in childhood acute lymphoblastic leukemia: influence on cure rates and risk of second cancer. Pediatr Blood Cancer. 2014;61:797–802. PubMed
Inskip PD, Sigurdson AJ, Veiga L, Bhatti P, Ronckers C, Rajaraman P, et al. Radiation-related new primary solid cancers in the childhood cancer survivor study: comparative radiation dose response and modification of treatment effects. Int J Radiat Oncol Biol Phys. 2016;94:800–7. PubMed
Yoshida M, Nakabayashi K, Yang W, Sato-Otsubo A, Tsujimoto S, Ogata-Kawata H, et al. NUDT15 variants confer high incidence of second malignancies in children with acute lymphoblastic leukemia. Blood Adv. 2021;5:5420–8. PubMed PMC
Junk SV, Förster A, Schmidt G, Zimmermann M, Fedders B, Haermeyer B, et al. Germline variants in patients developing second malignant neoplasms after therapy for pediatric acute lymphoblastic leukemia—a case-control study. Leukemia. 2024;38:887–92. PubMed PMC
Zwaan CM, Kaspers GJL, Pieters R, Hählen K, Janka-Schaub GE, van Zantwijk CH, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood. 2002;99:245–51. PubMed
Maloney KW, Carroll WL, Carroll AJ, Devidas M, Borowitz MJ, Martin PL, et al. Down syndrome childhood acute lymphoblastic leukemia has a unique spectrum of sentinel cytogenetic lesions that influences treatment outcome: a report from the Children’s Oncology Group. Blood. 2010;116:1045–50. PubMed PMC
Szmyd B, Mlynarski W, Pastorczak A. Genetic predisposition to lymphomas: Overview of rare syndromes and inherited familial variants. Mutat Res Rev Mutat Res. 2021;788:108386. PubMed
Junk SV, Klein N, Schreek S, Zimmermann M, Möricke A, Bleckmann K, et al. TP53, ETV6 and RUNX1 germline variants in a case series of patients developing secondary neoplasms after treatment for childhood acute lymphoblastic leukemia. Haematologica. 2019;104:e402–e405. PubMed PMC
Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet. 2016;59:133–42. PubMed
Guha T, Malkin D. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017;7:a026187. PubMed PMC
Hendrickson PG, Luo Y, Kohlmann W, Schiffman J, Maese L, Bishop AJ, et al. Radiation therapy and secondary malignancy in Li-Fraumeni syndrome: A hereditary cancer registry study. Cancer Med. 2020;9:7954–63. PubMed PMC
Ng AK, Kenney LB, Gilbert ES, Travis LB. Secondary malignancies across the age spectrum. Semin Radiat Oncol. 2010;20:67–78. PubMed
Lee JS, DuBois SG, Coccia PF, Bleyer A, Olin RL, Goldsby RE. Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer. 2016;122:116–23. PubMed
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43. PubMed PMC
Stoltze UK, Foss-Skiftesvik J, Hansen T, van O, Rasmussen S, Karczewski KJ, et al. The evolutionary impact of childhood cancer on the human gene pool. Nat Commun. 2024;15:1881. PubMed PMC
Amund Henriksen K, Van Overeem Hansen T, Wadt K, Schmiegelow K, Foss-Skiftesvik J, Stoltze UK. Evolutionary evidence precludes ELP1 as a high-penetrance pediatric cancer predisposition syndrome gene. Neuro-Oncol Adv. 2024;6:vdae165.
Zerella JR, Homan CC, Arts P, Lin X, Spinelli SJ, Venugopal P et al. Germline ERG haploinsufficiency defines a new syndrome with cytopenia and hematological malignancy predisposition. Blood. 2024; blood.2024024607.
Stanley KE, Giordano J, Thorsten V, Buchovecky C, Thomas A, Ganapathi M, et al. Causal Genetic Variants in Stillbirth. N Engl J Med. 2020;383:1107–16. PubMed PMC
Stoltze UK, Hansen T, Foss-Skiftesvik J, Byrjalsen A, Henriksen K, Laspiur A et al. Causal germline variants in children with cancer. 2024. https://doi.org/10.2139/ssrn.4889581 .