Surface plasmon resonance biosensor for environmental detection of tramadol
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-23787X
Grantová Agentura České Republiky
PubMed
40131435
DOI
10.1007/s00216-025-05832-0
PII: 10.1007/s00216-025-05832-0
Knihovny.cz E-zdroje
- Klíčová slova
- Biosensor, Surface plasmon resonance, Tramadol, Water quality monitoring,
- MeSH
- biosenzitivní techniky * metody MeSH
- chemické látky znečišťující vodu * analýza MeSH
- limita detekce MeSH
- monitorování životního prostředí * metody MeSH
- opioidní analgetika * analýza MeSH
- povrchová plasmonová rezonance * metody MeSH
- řeky chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- tramadol * analýza MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- opioidní analgetika * MeSH
- tramadol * MeSH
Contamination of surface water and drinking water with pharmaceuticals presents an environmental concern. It has been shown to affect aquatic organisms and have adverse health effects on humans. One of the most common pharmaceutical contaminants is the opioid analgesic tramadol. In this communication, we report on the first surface plasmon resonance biosensor-based detection of tramadol in water. The biosensor utilizes a binding inhibition format and enables detection of tramadol at a wide range of concentrations (5 orders of magnitude) with a limit of detection of 0.52 µg/L. The results of a small-scale environmental study are reported in which the biosensor was used to analyze river water samples. The results were found to agree well with those obtained using the liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).
Zobrazit více v PubMed
Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, et al. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ Res. 2021;194: 110664. https://doi.org/10.1016/j.envres.2020.110664 . PubMed DOI
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci Total Environ. 2020;711: 134612. https://doi.org/10.1016/j.scitotenv.2019.134612 . DOI
Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille M-P. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut R. 2016;23(6):4992–5001. https://doi.org/10.1007/s11356-014-3662-5 . DOI
Rohani MF. Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects – a review. Emerg Contam. 2023;9(3): 100234. https://doi.org/10.1016/j.emcon.2023.100234 . DOI
WHO. Pharmaceuticals in drinking-water. WHO Press; 2012.
Ben Mordechay E, Mordehay V, Tarchitzky J, Chefetz B. Pharmaceuticals in edible crops irrigated with reclaimed wastewater: evidence from a large survey in Israel. J Hazard Mater. 2021;416: 126184. https://doi.org/10.1016/j.jhazmat.2021.126184 . PubMed DOI
Directive 2020/2184. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast). http://data.europa.eu/eli/dir/2020/2184/oj
Reis-Santos P, Pais M, Duarte B, Caçador I, Freitas A, Vila Pouca AS, et al. Screening of human and veterinary pharmaceuticals in estuarine waters: a baseline assessment for the Tejo estuary. Mar Pollut Bull. 2018;135:1079–84. https://doi.org/10.1016/j.marpolbul.2018.08.036 . PubMed DOI
Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B. Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci Total Environ. 2019;654:324–37. https://doi.org/10.1016/j.scitotenv.2018.11.072 . PubMed DOI
Letsinger S, Kay P, Rodríguez-Mozaz S, Villagrassa M, Barceló D, Rotchell JM. Spatial and temporal occurrence of pharmaceuticals in UK estuaries. Sci Total Environ. 2019;678:74–84. https://doi.org/10.1016/j.scitotenv.2019.04.182 . PubMed DOI
Bexfield LM, Toccalino PL, Belitz K, Foreman WT, Furlong ET. Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ Sci Technol. 2019;53(6):2950–60. https://doi.org/10.1021/acs.est.8b05592 . PubMed DOI
Du P, Zhou Z, Wang Z, Xu Z, Zheng Q, Li X, et al. Analysing wastewater to estimate fentanyl and tramadol use in major Chinese cities. Sci Total Environ. 2021;795. https://doi.org/10.1016/j.scitotenv.2021.148838 .
Petrie B, Youdan J, Barden R, Kasprzyk-Hordern B. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2016;1431:64–78. https://doi.org/10.1016/j.chroma.2015.12.036 . PubMed DOI
Fontanals N, Boleda MR, Borrull F, Marcé RM, Lacorte S. Ceramic passive samplers for determining pharmaceuticals and drugs of abuse in river and drinking water. Sci Total Environ. 2023;889: 164267. https://doi.org/10.1016/j.scitotenv.2023.164267 . PubMed DOI
Garduño-Jiménez A-L, Durán-Álvarez JC, Cortés-Lagunes RS, Barrett DA, Gomes RL. Translating wastewater reuse for irrigation from OECD Guidelines: Tramadol sorption and desorption in soil-water matrices. Chemosphere. 2022;305. https://doi.org/10.1016/j.chemosphere.2022.135031 .
Buřič M, Grabicová K, Kubec J, Kouba A, Kuklina I, Kozák P, et al. Environmentally relevant concentrations of tramadol and citalopram alter behaviour of an aquatic invertebrate. Aquat Toxicol. 2018;200:226–32. https://doi.org/10.1016/j.aquatox.2018.05.008 . PubMed DOI
Rúa-Gómez PC, Püttmann W. Degradation of lidocaine, tramadol, venlafaxine and the metabolites O-desmethyltramadol and O-desmethylvenlafaxine in surface waters. Chemosphere. 2013;90(6):1952–9. https://doi.org/10.1016/j.chemosphere.2012.10.039 . PubMed DOI
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462–93. https://doi.org/10.1021/cr068107d . PubMed DOI
Das S, Devireddy R, Gartia MR. Surface Plasmon Resonance (SPR) sensor for cancer biomarker detection. Biosensors. 2023;13(3):396. https://doi.org/10.3390/bios13030396 . PubMed DOI PMC
Park J-H, Cho Y-W, Kim T-H. Recent advances in surface plasmon resonance sensors for sensitive optical detection of pathogens. Biosensors. 2022;12(3):180. https://doi.org/10.3390/bios12030180 . PubMed DOI PMC
Ravindran N, Kumar S, Yashini M, Rajeshwari S, Mamathi CA, Thirunavookarasu SN, et al. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr. 2023;63(8):1055–77. https://doi.org/10.1080/10408398.2021.1958745 .
Herrera-Domínguez M, Morales-Luna G, Mahlknecht J, Cheng Q, Aguilar-Hernández I, Ornelas-Soto N. Optical biosensors and their applications for the detection of water pollutants. Biosensors. 2023;13(3):370. PubMed DOI PMC
Špačková B, Lynn NS, Slabý J, Šípová H, Homola J. A route to superior performance of a nanoplasmonic biosensor: consideration of both photonic and mass transport aspects. ACS Photonics. 2018;5(3):1019–25. https://doi.org/10.1021/acsphotonics.7b01319 . DOI
Špringer T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensor Actuat B Chem. 2010;145(1):588–91. https://doi.org/10.1016/j.snb.2009.11.018 . DOI
Hemmerová E, Špringer T, Krištofiková Z, Homola J. Ionic Environment affects biomolecular interactions of amyloid-β: SPR biosensor study. Int J Mol Sci. 2020;21(24). https://doi.org/10.3390/ijms21249727 .
Pimková K, Bocková M, Hegnerová K, Suttnar J, Čermák J, Homola J, et al. Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes. Anal Bioanal Chem. 2012;402:381–7. https://doi.org/10.1007/s00216-011-5395-3 . PubMed DOI
Chadtová-Song X, Gedeonová E, Homola J. Surface plasmon resonance biosensor for the ultrasensitive detection of bisphenol A. Anal Bioanal Chem. 2019;411(22):5655–8. https://doi.org/10.1007/s00216-019-01996-8 . DOI
Bocková M, Chadtová-Song X, Gedeonová E, Levová K, Kalousová M, Zima T, et al. Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples. Anal Bioanal Chem. 2016;408:7265–9. https://doi.org/10.1007/s00216-016-9664-z . PubMed DOI
Huber W. Basic calculations about the limit of detection and its optimal determination. Accred Qual Assur. 2003;8(5):213–7. https://doi.org/10.1007/s00769-003-0626-8 . DOI
Zhang M, Lu Y, Zhang L, Xu X, Li B, Zhao X, et al. Flexible and wearable glove-based SERS sensor for rapid sampling and sensitive detection of controlled drugs. Sens Actuators B Chem. 2023;386: 133738. https://doi.org/10.1016/j.snb.2023.133738 . DOI
Afkhami A, Ghaedi H, Madrakian T, Ahmadi M, Mahmood-Kashani H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens Bioelectron. 2013;44:34–40. https://doi.org/10.1016/j.bios.2012.11.030 . PubMed DOI
Soleimani M, Afshar MG, Shafaat A, Crespo GA. High-selective tramadol sensor based on modified molecularly imprinted polymer-carbon paste electrode with multiwalled carbon nanotubes. Electroanal. 2013;25(5):1159–68. https://doi.org/10.1002/elan.201200601 . DOI
Ricardo Teixeira Tarley C, de Cássia Mendonça J, Rianne da Rocha L, Boareto Capelari T, Carolyne Prete M, Cecílio Fonseca M, et al. Development of a molecularly imprinted Poly(Acrylic Acid)-MWCNT nanocomposite electrochemical sensor for tramadol determination in pharmaceutical samples. Electroanalysis. 2020;32(5):1130–7. https://doi.org/10.1002/elan.201900148 .
Deiminiat B, Rounaghi GH, Arbab-Zavar MH. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sens Actuators B Chem. 2017;238:651–9. https://doi.org/10.1016/j.snb.2016.07.110 . DOI
Masson J-F. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst. 2020;145(11):3776–800. https://doi.org/10.1039/D0AN00316F . PubMed DOI
Piliarik M, Vala M, Tichý I, Homola J. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosens Bioelectron. 2009;24(12):3430–5. https://doi.org/10.1016/j.bios.2008.11.003 . PubMed DOI