Efficacy of Sodium Channel-Selective Analgesics in Postoperative, Neuralgia, and Neuropathy-Related Pain Management: A Systematic Review and Literature Review
Language English Country Switzerland Media electronic
Document type Systematic Review, Journal Article, Review
PubMed
40141103
PubMed Central
PMC11941989
DOI
10.3390/ijms26062460
PII: ijms26062460
Knihovny.cz E-resources
- Keywords
- innovation, pain management, sodium channel-selective analgesics,
- MeSH
- Analgesics therapeutic use MeSH
- Sodium Channel Blockers * therapeutic use MeSH
- Humans MeSH
- Pain Management * methods MeSH
- Neuralgia * drug therapy etiology MeSH
- Analgesics, Opioid therapeutic use administration & dosage MeSH
- Pain, Postoperative * drug therapy MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Systematic Review MeSH
- Names of Substances
- Analgesics MeSH
- Sodium Channel Blockers * MeSH
- Analgesics, Opioid MeSH
Postoperative pain is a prevalent problem, often lasting from days to years. To minimize opioid use and associated risks of dependency, Enhanced Recovery After Surgery (ERAS) protocols increasingly incorporate multimodal analgesics. Sodium channel-selective blockers are a promising non-opioid alternative, yet their application in postoperative pain remains underexplored. This systematic review evaluates their efficacy in managing postoperative, neuropathic, and neuralgia-related pain. A systematic review was conducted using controlled keywords across multiple databases to identify studies on sodium channel-selective blockers published up to 2024. Eligible studies included clinical trials, observational studies, case series, and reports involving patients aged 18 or older. Data were extracted on therapeutic outcomes, dosages, complications, and comparisons with other analgesics. Five studies met the inclusion criteria, involving 804 patients, 81.58% of whom were women. One study addressed postoperative pain, while the remaining five focused on neuropathy- and neuralgia-related pain. All studies reported significant pain reduction in at least one treatment group compared with placebo. In the study on postoperative pain, the sodium channel-selective blocker significantly reduced pain scores without requiring opioid analgesia. Across all studies, only two patients needed concomitant opioid therapy, and one discontinued treatment due to adverse effects. Dosages varied, with no reports of severe complications. Comparative analyses showed that sodium channel-selective blockers were as effective, if not superior, to traditional pain medications in reducing pain intensity. Sodium channel-selective blockers demonstrate significant potential in pain management with minimal opioid reliance. While effective for neuropathic pain, further studies are essential to validate their role in acute postoperative settings and refine their use in multimodal analgesia regimens.
Georgetown University District of Columbia Washington DC 78626 USA
Institute of Clinical and Experimental Medicine 140 21 Prague Czech Republic
See more in PubMed
Gabriel R.A., Swisher M.W., Sztain J.F., Furnish T.J., Ilfeld B.M., Said E.T. State of the art opioid-sparing strategies for post-operative pain in adult surgical patients. Expert Opin. Pharmacother. 2019;20:949–961. doi: 10.1080/14656566.2019.1583743. PubMed DOI
Brummett C.M., Waljee J.F., Goesling J., Moser S., Lin P., Englesbe M.J., Bohnert A.S.B., Kheterpal S., Nallamothu B.K. New Persistent Opioid Use After Minor and Major Surgical Procedures in US Adults. JAMA Surg. 2017;152:e170504. doi: 10.1001/jamasurg.2017.0504. PubMed DOI PMC
Opioids. [(accessed on 10 October 2024)];2024 Available online: https://nida.nih.gov/research-topics/opioids.
Naftalovich R., Singal A., Iskander A.J. Enhanced Recovery After Surgery (ERAS) protocols for spine surgery—Review of literature. Anaesthesiol. Intensiv. Ther. 2022;54:71–79. doi: 10.5114/ait.2022.113961. PubMed DOI PMC
Barr L.F., Boss M.J., Mazzeffi M.A., Taylor B.S., Salenger R. Postoperative Multimodal Analgesia in Cardiac Surgery. Crit. Care Clin. 2020;36:631–651. doi: 10.1016/j.ccc.2020.06.003. PubMed DOI
Stumpo V., Staartjes V.E., Quddusi A., Corniola M.V., Tessitore E., Schröder M.L., Anderer E.G., Stienen M.N., Serra C., Regli L. Enhanced Recovery After Surgery strategies for elective craniotomy: A systematic review. J. Neurosurg. 2021;135:1857–1881. doi: 10.3171/2020.10.JNS203160. PubMed DOI
King J.D., Cautivar K., Tran D.A., Schmidt N., McSkane M., Pak E., Tran D.A., Ali M.M. The Impact of Non-opioid Analgesic Usage on Total Opioid Load During Traumatic Brain Injury Rehabilitation: A Retrospective Study. Cureus. 2023;15:e46872. doi: 10.7759/cureus.46872. PubMed DOI PMC
Wick E.C., Grant M.C., Wu C.L. Postoperative Multimodal Analgesia Pain Management With Nonopioid Analgesics and Techniques: A Review. JAMA Surg. 2017;152:691–697. doi: 10.1001/jamasurg.2017.0898. PubMed DOI
Alsaloum M., Higerd G.P., Effraim P.R., Waxman S.G. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat. Rev. Neurol. 2020;16:689–705. doi: 10.1038/s41582-020-00415-2. PubMed DOI
Black J.A., Frézel N., Dib-Hajj S.D., Waxman S.G. Expression of NaV1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol. Pain. 2012;8:82. doi: 10.1186/1744-8069-8-82. PubMed DOI PMC
Mueller A., Starobova H., Morgan M., Dekan Z., Cheneval O., Schroeder C.I., Alewood P.F., Deuis J.R., Vetter I. Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: Evidence for analgesic synergy with opioids and baclofen. Pain. 2019;160:1766–1780. doi: 10.1097/j.pain.0000000000001567. PubMed DOI
MacDonald D.I., Sikandar S., Weiss J., Pyrski M., Luiz A.P., Millet Q., Emery E.C., Mancini F., Iannetti G.D., Alles S.R., et al. A central mechanism of analgesia in mice and humans lacking the sodium channel Na(V)1.7. Neuron. 2021;109:1497–1512.e6. doi: 10.1016/j.neuron.2021.03.012. PubMed DOI PMC
Mulcahy J.V., Pajouhesh H., Beckley J.T., Delwig A., Du Bois J., Hunter J.C. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na(V)1.7. J. Med. Chem. 2019;62:8695–8710. doi: 10.1021/acs.jmedchem.8b01906. PubMed DOI PMC
Joshi G.P., Kehlet H. Postoperative pain management in the era of ERAS: An overview. Best Pract. Res. Clin. Anaesthesiol. 2019;33:259–267. doi: 10.1016/j.bpa.2019.07.016. PubMed DOI
Simpson J.C., Bao X., Agarwala A. Pain Management in Enhanced Recovery after Surgery (ERAS) Protocols. Clin. Colon Rectal Surg. 2019;32:121–128. doi: 10.1055/s-0038-1676477. PubMed DOI PMC
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021;10:89. doi: 10.1186/s13643-021-01626-4. PubMed DOI PMC
Babineau J. Product review: Covidence (systematic review software) J. Can. Health Libr. Assoc./J. L’association Bibliothèques Santé Can. 2014;35:68–71. doi: 10.5596/c14-016. DOI
Study Quality Assessment Tools. [(accessed on 10 October 2024)];2021 Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.
Estela-Zape J.L., Pizarro-Loaiza M.L., Arteaga G., Castaño S., Fierro L. Metabolites derived from medicinal plants modulating voltage-gated sodium channel activity: A systematic review. Phytomed. Plus. 2024;5:100724. doi: 10.1016/j.phyplu.2024.100724. DOI
Aman Y. Targeting cartilage sodium channels for osteoarthritis treatment. Nat. Aging. 2024;4:168. doi: 10.1038/s43587-024-00580-9. PubMed DOI
Da Silva J.L.V., Leite Á.I., Ferreira E.N., Da Silva F.M., Pavin J.P., Oliveira L.C., Leite M.E., De Araújo M.V., Ferreira R.N., Lamares R.J.T.C., et al. Gamma-Linolenic Acid Interactions with the Human Voltage-Gated Sodium Channel 1.7 by Molecular Docking: Its Role in the Action Mechanism on Mastalgia. IOSR J. Pharm. Biol. Sci. 2023;18:33–37.
Deng L., Dourado M., Reese R.M., Huang K., Shields S.D., Stark K.L., Maksymetz J., Lin H., Kaminker J.S., Jung M., et al. NaV1.7 is essential for nociceptor action potentials in the mouse in a manner independent of endogenous opioids. Neuron. 2023;111:2642–2659.e13. doi: 10.1016/j.neuron.2023.05.024. PubMed DOI
Kaye A.D., Everett E.S., Lehuquet A.M., Mason J.W., Maitski R., Plessala M.J., Barrie S., Baptiste C.J., Mychaskiw G., Ahmadzadeh S., et al. Frontiers in Acute Pain Management: Emerging Concepts in Pain Pathways and the Role of VX-548 as a Novel NaV1.8 Inhibitor: A Narrative Review. Curr. Pain Headache Rep. 2024;28:1135–1143. doi: 10.1007/s11916-024-01295-7. PubMed DOI
Lv M.D., Wei Y.X., Chen J.P., Cao M.Y., Wang Q.L., Hu S. Melatonin attenuated chronic visceral pain by reducing NaV1.8 expression and nociceptive neuronal sensitization. Mol. Pain. 2023;19:17448069231170072. doi: 10.1177/17448069231170072. PubMed DOI PMC
Maruta T., Kouroki S., Kurogi M., Hidaka K., Koshida T., Miura A., Nakagawa H., Yanagita T., Takeya R., Tsuneyoshi I. Comparison of Nocifensive Behavior in Na1.7–, Na1.8–, and Na1.9–Channelrhodopsin-2 Mice by Selective Optogenetic Activation of Targeted Sodium Channel Subtype-Expressing Afferents. J. Neurosci. Res. 2024;102:e25386. doi: 10.1002/jnr.25386. PubMed DOI
Yamaguchi T., Okada T., Kimura T. Functional expression of the chimera proteins of NaV1.7 and NavAb in Escherichia coli. Protein Expr. Purif. 2024;226:106615. doi: 10.1016/j.pep.2024.106615. PubMed DOI
Mai Y., Flechsig J., Warr J., Hummel T. Responses to the activation of different intranasal trigeminal receptors: Evidence from behavioral, peripheral and central levels. Behav. Brain Res. 2024;480:115371. doi: 10.1016/j.bbr.2024.115371. PubMed DOI
Engel P., Zhou F., Tran B.T.T., Schmidtko A., Lu R. Slick potassium channels limit TRPM3-mediated activation of sensory neurons. Front. Pharmacol. 2024;15:1459735. doi: 10.3389/fphar.2024.1459735. PubMed DOI PMC
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na(+) and TRP Channels. Biomolecules. 2024;14:1619. doi: 10.3390/biom14121619. PubMed DOI PMC
Liu X., Jiang X., Liu Z., Chen F., Chen J., Chu X., Bu W., Liu Y. Neuron Modulation by Synergetic Management of Redox Status and Oxidative Stress. Small. 2025;21:e2408494. doi: 10.1002/smll.202408494. PubMed DOI
Chantadul V., Rotpenpian N., Arayapisit T., Wanasuntronwong A. Transient receptor potential channels in dental inflammation and pain perception: A comprehensive review. Heliyon. 2025;11:e41730. doi: 10.1016/j.heliyon.2025.e41730. PubMed DOI PMC
Sankaranarayanan I., Kume M., Mohammed A., Mwirigi J.M., Inturi N.N., Munro G., Petersen K.A., Tavares-Ferreira D., Price T.J. Persistent changes in the dorsal root ganglion nociceptor translatome governs hyperalgesic priming in mice: Roles of GPR88 and Meteorin. Pain. 2025 doi: 10.1097/j.pain.0000000000003523. PubMed DOI
An Y., Zhang J., Ren Q., Liu J., Liu Z., Cao K. The Mechanism of Acupuncture Therapy for Migraine: A Systematic Review of Animal Studies on Rats. J. Pain Res. 2025;18:473–487. doi: 10.2147/JPR.S504892. PubMed DOI PMC
Sousa F.S.S., Baldinotti R., Fronza M.G., Balaguez R., Alves D., Brüning C.A., Savegnago L. Exploring the therapeutic potential of α-(Phenylselanyl) acetophenone in tumor necrosis Factor-α-Induced depressive-like and hyperalgesic behavior in mice. Brain Res. 2025;1851:149473. doi: 10.1016/j.brainres.2025.149473. PubMed DOI
Qian J.-L., Wang J., Shen Z.-Y., Xu B.-Q., Shen D.-P., Yang C. Effect of nalbuphine on analgesia and pain factors after gastric cancer resection. World J. Gastrointest. Surg. 2025;17:99327. doi: 10.4240/wjgs.v17.i1.99327. PubMed DOI PMC
Choi S.-H., Kim Y.-M., Son J.-Y., Ahn D.-K. Microiontophoretic Application of Dynorphin in Dental Pain: Excitatory or Inhibitory Effects. J. Pain Res. 2025;18:455–464. doi: 10.2147/JPR.S499040. PubMed DOI PMC
Wang J., Zhang N., Liu H.Z., Wang J.L., Zhang Y.B., Su D.D., Miao J. Hydrogen Sulfide (H(2)S) Generated in the Colon Induces Neuropathic Pain by Activating Spinal NMDA Receptors in a Rodent Model of Chronic Constriction Injury. Neurochem. Res. 2025;50:90. doi: 10.1007/s11064-025-04342-w. PubMed DOI
Hung K.-C., Liu W.-C., Hsu C.-W., Wu J.-Y., Liao S.-W., Chen I.-W. Efficacy of Erector Spinae Plane Block on Analgesic Outcomes in Patients Undergoing Metabolic Surgery: A Meta-Analysis of Randomized Controlled Trials. Obes. Surg. 2025:1–11. doi: 10.1007/s11695-025-07724-9. PubMed DOI
García-Domínguez M. A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines. 2025;13:165. doi: 10.3390/biomedicines13010165. PubMed DOI PMC
de Greef B.T., Hoeijmakers J.G., Geerts M., Oakes M., Church T.J., Waxman S.G., Merkies I.S. Lacosamide in patients with NaV1.7 mutations-related small fibre neuropathy: A randomized controlled trial. Brain. 2019;142:263–275. doi: 10.1093/brain/awy329. PubMed DOI
Faber C.G., Attal N., Lauria G., Dworkin R.H., Freeman R., Dawson K.T., Finnigan H., Hajihosseini A., Naik H., Serenko M., et al. Efficacy and safety of vixotrigine in idiopathic or diabetes-associated painful small fibre neuropathy (CONVEY): A phase 2 placebo-controlled enriched-enrolment randomised withdrawal study. eClinicalMedicine. 2023;59:101971. doi: 10.1016/j.eclinm.2023.101971. PubMed DOI PMC
Jones J., Correll D.J., Lechner S.M., Jazic I., Miao X., Shaw D., White P.F. Selective Inhibition of Na(V)1.8 with VX-548 for Acute Pain. N. Engl. J. Med. 2023;389:393–405. doi: 10.1056/NEJMoa2209870. PubMed DOI
Maihöfner C., Schneider S., Bialas P., Gockel H., Beer K.-G., Bartels M., Kern K.-U. Successful treatment of complex regional pain syndrome with topical ambroxol: A case series. Pain Manag. 2018;8:427–436. doi: 10.2217/pmt-2018-0048. PubMed DOI
Zakrzewska J.M., Palmer J., Morisset V., Giblin G.M., Obermann M., Ettlin D.A., Cruccu G., Bendtsen L., Estacion M., Derjean D., et al. Safety and efficacy of a NaV1.7 selective sodium channel blocker in patients with trigeminal neuralgia: A double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurol. 2017;16:291–300. doi: 10.1016/S1474-4422(17)30005-4. PubMed DOI
Adewumi A.D., Hollingworth S.A., Maravilla J.C., Connor J.P., Alati R. Prescribed Dose of Opioids and Overdose: A Systematic Review and Meta-Analysis of Unintentional Prescription Opioid Overdose. CNS Drugs. 2018;32:101–116. doi: 10.1007/s40263-018-0499-3. PubMed DOI
Crystal D.T.B., Blankensteijn L.L., Ibrahim A.M.S.M., Brownstein G.M., Reed L.S., Watts D.C., Lin S.J.M. Quantifying the Crisis: Opioid-Related Adverse Events in Outpatient Ambulatory Plastic Surgery. Plast. Reconstr. Surg. 2020;145:687–695. doi: 10.1097/PRS.0000000000006570. PubMed DOI
Hart A.M., Broecker J.S., Kao L., Losken A. Opioid Use following Outpatient Breast Surgery: Are Physicians Part of the Problem? Plast. Reconstr. Surg. 2018;142:611–620. doi: 10.1097/PRS.0000000000004636. PubMed DOI
Fairley M., Humphreys K., Joyce V.R., Bounthavong M., Trafton J., Combs A., Oliva E.M., Goldhaber-Fiebert J.D., Asch S.M., Brandeau M.L., et al. Cost-effectiveness of Treatments for Opioid Use Disorder. JAMA Psychiatry. 2021;78:767–777. doi: 10.1001/jamapsychiatry.2021.0247. PubMed DOI PMC
Cooney M., Quinlan-Colwell A. Assessment and Multimodal Management of Pain: An Integrative Approach. Elsevier Health Sciences; Amsterdam, The Netherlands: 2020.
Memtsoudis S.G., Poeran J., Zubizarreta N., Cozowicz C., Mörwald E.E., Mariano E.R., Mazumdar M. Association of Multimodal Pain Management Strategies with Perioperative Outcomes and Resource Utilization: A Population-based Study. Anesthesiology. 2018;128:891–902. doi: 10.1097/ALN.0000000000002132. PubMed DOI
Cozowicz C., Olson A., Poeran J., Mörwald E.E., Zubizarreta N., Girardi F.P., Hughes A.P., Mazumdar M., Memtsoudis S.G. Opioid prescription levels and postoperative outcomes in orthopedic surgery. Pain. 2017;158:2422–2430. doi: 10.1097/j.pain.0000000000001047. PubMed DOI