Quality assessment of growing media based on bottom sediment in agriculture: the content of elements and radionuclides

. 2025 Mar 28 ; 47 (5) : 144. [epub] 20250328

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40155567
Odkazy

PubMed 40155567
DOI 10.1007/s10653-025-02471-3
PII: 10.1007/s10653-025-02471-3
Knihovny.cz E-zdroje

The aim of the studies was to evaluate the content of macroelements, trace elements, and radionuclides in mixtures of bottom sediments (BS) with dolomite (D), sewage sludge (SS), and biochar (BC). The bottom sediment was mixed with side products in the ratio of 80% bottom sediment and 20% dolomite, sewage sludge and biochar respectively. After the experiment, chemical analyses were conducted on the growing medium and plant material. The properties of the mixtures showed a high content of TOC and an alkaline and slightly acidic reaction. The highest content of macronutrients was found in the mixtures of bottom sediments and dolomite (Ca, Mg) and in the mixtures of bottom sediments and sewage sludge (S, P). The use of mixtures reduced the content of toxic elements, such as Cd and Pb in the biomass. In the mixed samples, it was also found that the content of natural radionuclides decreased in most of the samples analysed. An exception was the BS+BC mixture, since in this system an increase in 137Cs and 210Pb was observed. The heavy metal content in the mixtures was below toxic limits and the addition of sewage sludge, dolomite, and biochar to the sediment did not increase its radioactivity to dangerous levels. The bottom sediment-based mixture suitable for use in agriculture and would not pose an environmental risk. However, the analysed mixtures based on bottom sediments and waste cannot replace fertilisers due to low total content of nutrients.

Zobrazit více v PubMed

Antonangelo, J. A., Souza, J. L. B., Whitaker, A., Arnall, B., & Zhang, H. (2022). Evaluation of Mehlich-3 as a multi-element extractant of micronutrients and sulfur in a soil–ryegrass system amended with varying biochar rates from two feedstocks. Land, 11, 1979.

Antonkiewicz, J., Baran, A., Pełka, R., Wisła-Świder, A., Nowak, E., & Konieczka, P. (2019). A mixture of cellulose production waste with municipal sewage as new material for an ecological management of wastes. Ecotoxicology and Environmental Safety, 169, 607–614.

Baeza, A., Salas, A., Guillen, J., & Munoz-Serrano, A. (2014). Association of naturally occurring radionuclides in sludges from drinking water treatment plants previously optimized for their removal. Chemosphere, 97, 108–114.

Baran, A., Jasiewicz, Cz., & Tarnawski, M. (2012). Effect of bottom sediment supplement to light soil on the content and uptake of macroelements by maize. Ecological Chemistry and Engineering A, 19(8), 863–872.

Baran, A., & Tarnawski, M. (2013). Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments. Ecotoxicology and Environmental Safety, 98, 19–27.

Baran, A., Tarnawski, M., & Koniarz, T. (2016). Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir. Silesian-Poland. Environmental Science and Pollution Research, 23(17), 17255–17268.

Baran, A., Tarnawski, M., & Urbaniak, M. (2019). An assessment of bottom sediment as a source of plant nutrients and an agent for improving soil properties. Environmental Engineering and Management Journal, 18(8), 1647–1656.

Bezuidenhout, J. (2020). The investigation of natural radionuclides as tracers for monitoring sediment processes. Journal of Applied Geophysics, 81(4), 104135.

Čermák, P., Mühlbachová, G., & Lošák, T. (2019). Improved soil testing system in the Czech Republic (new valuation of micronutrients content in soil and phosphorus content in carbonate soils). Zemljiste & Biljka, 68(2), 44–5.

Dróżdż, D., Malińska, K., Kacprzak, M., et al. (2020). Potential of fish pond sediments composts as organic fertilizers. Waste & Biomass Valorization, 11, 5151–5163.

Eid, E. M., & Shaltout, K. H. (2016). Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. International Journal of Phytoremediation, 18, 1075–1085.

Giordani, E., Bini, L., Bonetti, D., Petrucci, W. A., Masciandaro, G., Chini, G., & Nin, S. (2023). Effect of innovative sediment-based growing media on fruit quality of wild strawberry (Fragaria vesca L.). Sustainability, 15, 7338.

Gmitrowicz-Iwan, J., Ligęza, S., Pranagal, J., Kołodziej, B., & Smal, H. (2020). Can climate change transform non-toxic sediments into toxic soils? Science of the Total Environment, 747, 141201.

Golmakani, S., Moghaddam, M. V., & Hosseini, T. (2008). Factors affecting the transfer of radionuclides from the environment to plants. Radiation Protection Dosimetry, 130(3), 368–375.

Kazberuk, W., Szulc, W., & Rutkowska, B. (2021). Use bottom sediment to agriculture - effect on plant and heavy metal content in soil. Agronomy, 11, 1077.

Kim, Y., Yoon, K., Kim, S., Yang, E., Owens, G., & Kim, R. (2015). Bioavailability of heavy metals in soils: Definitions and practical implementation – a critical review. Environmental Geochemistry and Health, 37(6), 1041–1106.

Koniarz, T., Baran, A., Tarnawski, M., & Jewiarz, M. (2022). Immobilisation of metals from bottom sediments using two additives and thermal treatment. Science of the Total Environment, 851(2), 158157.

Kopeć, M., Gondek, K., & Baran, A. (2013). Assessment of respiration activity and ecotoxicity of composts containing biopolymers. Ecotoxicology and Environmental Safety, 89, 137–142.

Lehto, J., & Hou, X. (2010). Chemistry and analysis of radionuclides: Laboratory techniques and methodology. Wiley-VCH.

Liu, J., Anguo, P., Shuang, D., Min, L., Guangshan, L., & Li, Ch. (2021). Distribution of heavy metals and radionuclides in the sediments and their environmental impacts in Nansha Sea area. South China Sea. Marine Pollution Bulletin, 166, 112192.

Martínez-Nicolás, J. J., Legua, P., Núñez-Gómez, D., et al. (2020). Potential of dredged bioremediated marine sediment for strawberry cultivation. Scientific Reports, 10, 19878.

Matej-Łukowicz, K., Wojciechowska, E., Strycharz, J., Szubska, M., Kuliński, K., Bełdowski, J., & Winogradow, A. (2021). Can bottom sediments be a prospective fertilizing material? A chemical composition analysis for potential reuse in agriculture. Materials, 14, 7685.

Mattei, P., Pastorelli, R., Rami, G., Mocali, S., Giagnonia, L., Gonnelli, C., & Renella, G. (2017). Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests. plant growth and microbial community structure. Journal of Hazardous Materials, 333, 144–153.

Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15(12), 1409–1416.

Misiak, R., Hajduk, R., Stobinski, M., Bartyzel, M., Szarlowicz, K., & Kubica, B. (2011). Self-absorption correction and efficiency calibration for radioactivity measurement of environmental samples by gamma-ray spectrometry. Nukleonika, 56(1), 23–28.

PAA (2023) Reports. https://www.gov.pl/web/paa/panstwowa-agencja-atomistyki . Accessed March 13, 2025

Reczyński, W., Szarłowicz, K., Jakubowska, M., Bitusik, P., & Kubica, B. (2020). Comparison of the sediment composition in relation to basic chemical physical and geological factors. International Journal of Sediment Research, 35(3), 307–314.

Regulation (EU) (2019). 2019/1009 of the of the European Parliament and of the Council on the making available on the market of EU fertilising products.

Renella, G. (2021). Recycling and reuse of sediments in agriculture: Where Is the problem? Sustainability, 13, 648.

SedNet, (2004). Contaminated sediments in European river basins. European sediment research network. The Netherlands. http://sednet.org/wp-content/uploads/2016/03/Sednet_booklet_final_2.pdf

Śliwa-Cebula, M., Koniarz, T., Szara-Bąk, M., et al. (2023). Phytoremediation of metal-contaminated bottom sediments by the common ice plant (Mesembryanthemum crystallinum L.) in Poland. Journal of Soils and Sediments, 23, 1065–1082.

Slobodníková, V., Hamerlík, L., Wojewódka-Przybył, M., et al. (2023). Tracking fish introduction in a mountain lake over the last 200 years using chironomids, diatoms, and cladoceran remains. Water, 15(7), 1372.

Szara, M., Baran, A., Klimkowicz-Pawlas, A., & Tarnawski, M. (2020). Ecotoxicological and chemical properties of the Rożnów reservoir bottom sediment amended with various waste materials. Journal of Environmental Management, 273, 111176.

Szara-Bąk, M., Baran, A., & Klimkowicz-Pawlas, A. (2023). Recycling of bottom sediment to agriculture: Effects on plant growth and soil properties. Journal of Soils and Sediments., 23, 539–551.

Szarlowicz, K., & Kubica, B. (2014).

Szarłowicz, K., Reczyński, W., Gołaś, J., Kościelniak, P., Skiba, M., & Kubica, B. (2011). Sorption of

Szarłowicz, K., Stobiński, M., Jedrzejek, F., & Kubica, B. (2022). Sedimentary conditions based on the vertical distribution of radionuclides in small dystrophic lakes: A case study of Toporowe Stawy Lakes (Tatra Mountains, Poland). Environmental Science and Pollution Research, 29(59), 89530–89541.

Talgre, L., Roostalu, H., Mäeorg, E., & Lauringson, E. (2017). Nitrogen and carbon release during decomposition of roots and shoots of leguminous green manure crops. Agronomy Research, 15(2), 594–601.

Tlustoš, P., Hejcman, M., Hůlka, M., et al. (2016). Mobility and plant availability of risk elements in soil after long-term application of farmyard manure. Environmental Science and Pollution Research, 23, 23561–23572.

Tozzi, F., Renella, G., Macci, C., Masciandaro, G., Gonnelli, C., Colzi, I., Giagnoni, L., Pecchioli, S., Nin, S., & Giordani, E. (2021). Agronomic performance and food safety of strawberry cultivated on a remediated sediment. Science of the Total Environment, 796, 148803.

Ugolini, F., Mariotti, B., Maltoni, A., Tani, A., Salbitano, F., Izquierdo, C. G., Macci, C., Masciandaro, G., & Tognetti, R. (2018). A tree from waste: Decontaminated dredged sediments for growing forest tree seedlings. Journal of Environmental Management, 211, 269–277.

UNSCEAR, (2000). Sources effects and risks of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation report to the general assembly with annexes. United Nation. New York

Urbaniak, M., Baran, A., Szara, M., Mierzejewska, E., Lee, S., Takazawa, M., & Kannan, K. (2020). Evaluation of ecotoxicological and chemical properties of soil amended with Hudson River (New York. USA) sediment. Environmental Science and Pollution Research, 27, 7388–7397.

Wieczorek, J., Czech, T., Gambuś, F., & Antonkiewicz, J. (2017). Yielding and content of selected microelements in maize fertilized with various organic materials. Journal of Ecological Engineering, 18(4), 219–223.

Zannoni, D., Cantaluppi, C., Ceccotto, F., Giacetti, W., & Lovisetto, B. (2019). Human and environmental factors affecting the activity of I-131 and Cs-137 in urban wastewater: A case study. Journal of Environmental Radioactivity, 198, 35–146.

Zhang, J., Liu, J., & Liu, R. (2015). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology, 176, 288–291.

Zhu, Y., & Smolders, E. (2000). Plant uptake of radiocaesium: A review of mechanisms regulation and application. Journal of Experimental Botany, 5, 1635–1645.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...