A Phase Ia/b study of MEK1/2 inhibitor binimetinib with MET inhibitor crizotinib in patients with RAS mutant advanced colorectal cancer (MErCuRIC)

. 2025 Apr 10 ; 25 (1) : 658. [epub] 20250410

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, klinické zkoušky, fáze I

Perzistentní odkaz   https://www.medvik.cz/link/pmid40211189

Grantová podpora
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
602901 FP7 Health
C13749/A7261 Cancer Research UK - United Kingdom

Odkazy

PubMed 40211189
PubMed Central PMC11984268
DOI 10.1186/s12885-025-14068-1
PII: 10.1186/s12885-025-14068-1
Knihovny.cz E-zdroje

BACKGROUND: Targeting RAS mutant (MT) colorectal cancer (CRC) remains a difficult challenge, mainly due to the pervasiveness of RAS/MEK-mediated feedback loops. Preclinical studies identified MET/STAT3 as an important mediator of resistance to KRAS-MEK1/2 blockade in RASMT CRC. This dose escalation/expansion study assessed safety and initial efficacy of the MEK1/2 inhibitor binimetinib with MET inhibitor crizotinib in RASMT advanced CRC patients. METHODS: In the dose escalation phase, patients with advanced solid tumours received binimetinib with crizotinib, using a rolling- 6 design to determine the maximum tolerable dose (MTD) and safety/tolerability. A subsequent dose expansion in RASMT CRC patients assessed treatment response. Blood samples for pharmacokinetics, MET biomarker and ctDNA analyses, and skin/tumour biopsies for pharmacodynamics, c-MET immunohistochemistry (IHC), MET in situ hybridisation (ISH) and MET DNA-ISH analyses were collected. RESULTS: Twenty patients were recruited in 3 cohorts in the dose escalation. The MTD was binimetinib 30 mg B.D, days 1-21 every 28 days, with crizotinib 250 mg O.D continuously. Dose-limiting toxicities included grade ≥ 3 transaminitis, creatinine phosphokinase increases and fatigue. Thirty-six RASMT metastatic CRC patients were enrolled in the dose expansion. Pharmacokinetic and pharmacodynamic parameters showed evidence of target engagement. Across the entire study, the most frequent treatment-related adverse events (TR-AE) were rash (80.4%), fatigue (53.4%) and diarrhoea (51.8%) with grade ≥ 3 TR-AE occurring in 44.6%. Best clinical response within the RASMT CRC cohort was stable disease in seven patients (24%). Tumour MET super-expression (IHC H-score > 180 and MET ISH + 3) was observed in 7 patients (24.1%), with MET-amplification only present in 1 of these patients. This patient discontinued treatment early during cycle 1 due to toxicity. Patients with high baseline RASMT allele frequency had a significant shorter median overall survival compared with that seen for patients with low baseline KRASMT allele frequency. CONCLUSIONS: Combination binimetinib/crizotinib showed a poor tolerability with no objective responses observed in RASMT advanced CRC patients. EudraCT-Number: 2014-000463 - 40 (20/06/2014: A Sequential Phase I study of MEK1/2 inhibitors PD- 0325901 or Binimetinib combined with cMET inhibitor Crizotinib in RAS Mutant and RAS Wild Type with aberrant c-MET).

Cardiff University and Velindre University NHS Trust Cardiff CF14 2 TL UK

Centre for Statistics in Medicine Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK

Department of GI Oncology Hôpital Européen Georges Pompidou 75015 Paris France

Department of Medical Oncology Sorbonne Université Hôpital Saint Antoine 75012 Paris France

Department of Medical Oncology University of Antwerp Antwerp University Hospital 2610 Wilrijk Belgium

Department of Molecular and Clinical Cancer Medicine University of Liverpool Ashton St Liverpool L69 3GE UK

Department of Oncology and University of Torino Candiolo Cancer Institute 10060 Candiolo TO Italy

Department of Oncology Molecular Biotechnology Center University of Torino Turin Italy

Department of Oncology University of Oxford Old Road Campus Research Building Roosevelt Drive Oxford OX3 7DQ UK

Faculty of Science RECETOX Masaryk University 625 00 Brno Czech Republic

Genomics Diagnostics and Genomics Group Agilent Technologies 1831 Diegem Belgium

IFOM ETS the AIRC Institute of Molecular Oncology Milan Italy

Institut National de La Sante Et de La Recherche Medicale Universite Paris Descartes 75006 Paris France

Northern Ireland Cancer Centre Belfast Health and Social Care Trust Belfast BT9 7 AB UK

Oncology Clinical Trials Office Department of Oncology University of Oxford Oxford OX3 7LJ UK

Patrick G Johnston Centre for Cancer Research School of Medicine Dentistry and Biomedical Science Queen's University Belfast Belfast BT9 7AE UK

Royal College of Surgeons in Ireland University of Medicine and Health Sciences 123 St Stephen's Green Dublin Ireland

Vall d'Hebron University Hospital and Institute of Oncology 08035 Barcelona Spain

Zobrazit více v PubMed

Stintzing S, Miller-Phillips L, Modest DP, Fischer von Weikersthal L, Decker T, Kiani A, et al. Impact of BRAF and RAS mutations on first-line efficacy of FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab: analysis of the FIRE-3 (AIO KRK-0306) study. Eur J Cancer. 2017;79:50–60. PubMed

Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34. PubMed

Kubicka S, Greil R, Andre T, Bennouna J, Sastre J, Van Cutsem E, et al. Bevacizumab plus chemotherapy continued beyond first progression in patients with metastatic colorectal cancer previously treated with bevacizumab plus chemotherapy: ML18147 study KRAS subgroup findings. Ann Oncol. 2013;24:2342–9. PubMed

Van Cutsem E, Lenz HJ, Kohne CH, Heinemann V, Tejpar S, Melezinek I, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015;33:692–700. PubMed

Cremolini C, Loupakis F, Antoniotti C, Lupi C, Sensi E, Lonardi S, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015;16:1306–15. PubMed

Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C, et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:773–81. PubMed

Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26:2139–46. PubMed PMC

Little AS, Balmanno K, Sale MJ, Newman S, Dry JR, Hampson M, et al. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Science signaling. 2011;4:ra17. PubMed

Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8. PubMed PMC

Tolcher AW, Khan K, Ong M, Banerji U, Papadimitrakopoulou V, Gandara DR, et al. Antitumor activity in RAS-driven tumors by blocking AKT and MEK. Clin Cancer Res. 2015;21:739–48. PubMed PMC

Do K, Speranza G, Bishop R, Khin S, Rubinstein L, Kinders RJ, et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs. 2015;33:720–8. PubMed PMC

Prasath V, Boutrid H, Wesolowski R, Abdel-Rasoul M, Timmers C, Lustberg M, et al. Phase II study of MEK inhibitor trametinib alone and in combination with AKT inhibitor GSK2141795/uprosertib in patients with metastatic triple negative breast cancer. Breast Cancer Res Treat. 2025;210:179–89. PubMed

Westin SN, Sill MW, Coleman RL, Waggoner S, Moore KN, Mathews CA, et al. Safety lead-in of the MEK inhibitor trametinib in combination with GSK2141795, an AKT inhibitor, in patients with recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecol Oncol. 2019;155:420–8. PubMed PMC

Liu JF, Gray KP, Wright AA, Campos S, Konstantinopoulos PA, Peralta A, et al. Results from a single arm, single stage phase II trial of trametinib and GSK2141795 in persistent or recurrent cervical cancer. Gynecol Oncol. 2019;154:95–101. PubMed

Vultur A, Villanueva J, Krepler C, Rajan G, Chen Q, Xiao M, et al. MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene. 2014;33:1850–61. PubMed PMC

Dai B, Meng J, Peyton M, Girard L, Bornmann WG, Ji L, et al. STAT3 mediates resistance to MEK inhibitor through microRNA miR-17. Cancer Res. 2011;71:3658–68. PubMed PMC

Zhao C, Xiao H, Wu X, Li C, Liang G, Yang S, et al. Rational combination of MEK inhibitor and the STAT3 pathway modulator for the therapy in K-Ras mutated pancreatic and colon cancer cells. Oncotarget. 2015;6:14472–87. PubMed PMC

Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ, Settleman J. Drug Resistance via Feedback Activation of Stat3 in Oncogene-Addicted Cancer Cells. Cancer Cell. 2014;26:207–21. PubMed

Carson R, Celtikci B, Fenning C, Javadi A, Crawford N, Perez-Carbonell L, et al. HDAC Inhibition Overcomes Acute Resistance to MEK Inhibition in BRAF-Mutant Colorectal Cancer by Downregulation of c-FLIPL. Clin Cancer Res. 2015;21:3230–40. PubMed PMC

Van Schaeybroeck S, Kalimutho M, Dunne PD, Carson R, Allen W, Jithesh PV, et al. ADAM17-dependent c-MET-STAT3 signaling mediates resistance to MEK inhibitors in KRAS mutant colorectal cancer. Cell Rep. 2014;7:1940–55. PubMed

Wood GE, Hockings H, Hilton DM, Kermorgant S. The role of MET in chemotherapy resistance. Oncogene. 2021;40:1927–41. PubMed PMC

Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, et al. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol. 2017;14:562–76. PubMed

Shirley M. Encorafenib and Binimetinib: First Global Approvals. Drugs. 2018;78:1277–84. PubMed

Lee PAWE, Marlow A, Yeh T, Marsh V, Anderson D, Woessner R, Hurley B, Lyssikatos J, Poch G, Gross S, Rana S, Winski S, Koch K. Preclinical development of ARRY-162, a potent and selective MEK 1/2 inhibitor [abstract]. Cancer Res. 2010;70:2515.

Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19:1315–27. PubMed

Stinchcombe TE. Encorafenib and Binimetinib: A New Treatment Option for BRAF(V600E)-Mutant Non-Small-Cell Lung Cancer. J Clin Oncol. 2023;41:3679–81. PubMed

Rodig SJ, Shapiro GI. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Investig Drugs. 2010;11:1477–90. PubMed

Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–70. PubMed PMC

Gallagher P, Rolfo C, Elez E, Taieb J, Houlden J, Collins L, et al. A phase Ia study of the MEK1/2 inhibitor PD-0325901 with the c-MET inhibitor crizotinib in patients with advanced solid cancers. BJC Rep. 2025;3:17. PubMed PMC

Watanabe K, Otsu S, Hirashima Y, Morinaga R, Nishikawa K, Hisamatsu Y, et al. A phase I study of binimetinib (MEK162) in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016;77:1157–64. PubMed

Bendell JC, Javle M, Bekaii-Saab TS, Finn RS, Wainberg ZA, Laheru DA, et al. A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor. Br J Cancer. 2017;116:575–83. PubMed PMC

Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703. PubMed PMC

Skolnik JM, Barrett JS, Jayaraman B, Patel D, Adamson PC. Shortening the timeline of pediatric phase I trials: the rolling six design. J Clin Oncol. 2008;26:190–5. PubMed

Matter AV, Micaletto S, Urner-Bloch U, Dummer R, Goldinger SM. Long-Term Response to Intermittent Binimetinib in Patients with NRAS-Mutant Melanoma. Oncologist. 2020;25:e1593–7. PubMed PMC

Van Schaeybroeck S, Kyula JN, Fenton A, Fenning CS, Sasazuki T, Shirasawa S, et al. Oncogenic Kras promotes chemotherapy-induced growth factor shedding via ADAM17. Cancer Res. 2011;71:1071–80. PubMed PMC

Craig SG, Mende S, Humphries MP, Bingham V, Viratham Pulsawatdi A, Loughrey MB, et al. Orthogonal MET analysis in a population-representative stage II-III colon cancer cohort: prognostic and potential therapeutic implications. Mol Oncol. 2021;15:3317–28. PubMed PMC

Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21:795–801. PubMed PMC

Isella C, Brundu F, Bellomo SE, Galimi F, Zanella E, Porporato R, et al. Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat Commun. 2017;8:15107. PubMed PMC

Tan W, et al. Pharmacokinetics (PK) of PF-02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients. J Clin Oncol. 2010;28:2596.

Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN, et al. BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res. 2008;68:6145–53. PubMed

Copin MC, Lesaffre M, Berbon M, Doublet L, Leroy C, Tresch E, et al. High-MET status in non-small cell lung tumors correlates with receptor phosphorylation but not with the serum level of soluble form. Lung Cancer. 2016;101:59–67. PubMed

Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. PubMed PMC

Peeters M, Oliner KS, Price TJ, Cervantes A, Sobrero AF, Ducreux M, et al. Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as Second-line Treatment for Metastatic Colorectal Cancer. Clin Cancer Res. 2015;21:5469–79. PubMed

Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N Engl J Med. 2019;381:1632–43. PubMed

Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med. 2020;383:2207–18. PubMed

Nassar AH, Adib E, Kwiatkowski DJ. Distribution of KRAS (G12C) Somatic Mutations across Race, Sex, and Cancer Type. N Engl J Med. 2021;384:185–7. PubMed

Fakih MG, Salvatore L, Esaki T, Modest DP, Lopez-Bravo DP, Taieb J, et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N Engl J Med. 2023;389:2125–39. PubMed

Yaeger R, Weiss J, Pelster MS, Spira AI, Barve M, Ou SI, et al. Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated KRAS G12C. N Engl J Med. 2023;388:44–54. PubMed PMC

Tang D, Kang R. Glimmers of hope for targeting oncogenic KRAS-G12D. Cancer Gene Ther. 2023;30:391–3. PubMed

Jiang J, Jiang L, Maldonato BJ, Wang Y, Holderfield M, Aronchik I, et al. Translational and Therapeutic Evaluation of RAS-GTP Inhibition by RMC-6236 in RAS-Driven Cancers. Cancer Discov. 2024;14:994–1017. PubMed PMC

Kim D, Herdeis L, Rudolph D, Zhao Y, Bottcher J, Vides A, et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature. 2023;619:160–6. PubMed PMC

Sudhakar N, Yan L, Qiryaqos F, Engstrom LD, Laguer J, Calinisan A, et al. The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading. Mol Cancer Ther. 2024;23:1418–30. PubMed PMC

Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013;31:1592–605. PubMed

Salgia R, Patel P, Bothos J, Yu W, Eppler S, Hegde P, et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin Cancer Res. 2014;20:1666–75. PubMed

Scaranti M, Nava Rodrigues D, Banerji U. Deep and sustained radiological response after MEK-RAF inhibition in HRAS mutant apocrine carcinoma of the scalp. Eur J Cancer. 2019;122:9–11. PubMed

Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371:1963–71. PubMed PMC

Camidge DR, Barlesi F, Goldman JW, Morgensztern D, Heist R, Vokes E, et al. Phase Ib Study of Telisotuzumab Vedotin in Combination With Erlotinib in Patients With c-Met Protein-Expressing Non-Small-Cell Lung Cancer. J Clin Oncol. 2023;41:1105–15. PubMed PMC

Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene. 2013;32:1252–65. PubMed PMC

Sharma M, Strickler JH, Sommerhalder D, Kuboki Y, Perets R, Cohen J, et al. First-in-human study of ABBV-400, a novel c-Met–targeting antibody-drug conjugate, in advanced solid tumors: Results in colorectal cancer. J Clin Oncol. 42, 2024 (suppl 16; abstr 3515).

Gymnopoulos M, Betancourt O, Blot V, Fujita R, Galvan D, Lieuw V, et al. TR1801-ADC: a highly potent cMet antibody-drug conjugate with high activity in patient-derived xenograft models of solid tumors. Mol Oncol. 2020;14:54–68. PubMed PMC

Tolcher AW, Kurzrock R, Valero V, Gonzalez R, Heist RS, Tan AR, et al. Phase I dose-escalation trial of the oral AKT inhibitor uprosertib in combination with the oral MEK1/MEK2 inhibitor trametinib in patients with solid tumors. Cancer Chemother Pharmacol. 2020;85:673–83. PubMed

Tabernero J, Lenz HJ, Siena S, Sobrero A, Falcone A, Ychou M, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015;16:937–48. PubMed PMC

Blaquier JB, Cardona AF, Recondo G. Resistance to KRAS(G12C) Inhibitors in Non-Small Cell Lung Cancer. Front Oncol. 2021;11:787585. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...