Silver Chloride Precipitation-limiting Factor for Accurate Silver Determination in Ag-accumulating Mushrooms After Nitric Acid Digestion
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO61389005
Akademie Věd České Republiky
PubMed
40227466
PubMed Central
PMC12602603
DOI
10.1007/s12011-025-04605-1
PII: 10.1007/s12011-025-04605-1
Knihovny.cz E-zdroje
- Klíčová slova
- Fungi, HR-ICP-MS, Hyperaccumulation, ICP-OES, INAA, Microwave digestion, Standard reference materials,
- MeSH
- Agaricales * chemie metabolismus MeSH
- chemická precipitace MeSH
- hmotnostní spektrometrie MeSH
- kyselina dusičná * chemie MeSH
- sloučeniny stříbra * chemie MeSH
- stříbro * analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina dusičná * MeSH
- sloučeniny stříbra * MeSH
- stříbro * MeSH
Wild-growing mushrooms (macromycetes, macrofungi) are capable of accumulating high amounts of trace elements, including noble metals. In a series of analytical experiments, this study focused on the problem of correct determination of Ag mass fractions in the biomass of Ag-accumulating mushrooms, Ag-hyperaccumulators in particular. A unique experimental setup enabled to compare Ag determination in selected mushroom samples first by the non-destructive neutron activation analysis (INAA) utilizing 110Ag isotope, second by the high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) after HNO3 hotplate and microwave digestions. Furthermore, Ag-spiking experiments were conducted with three mushroom species containing 860, 6200, and 21,000 mg Cl kg-1 in dry mass and Ag was determined by HR-ICP-MS after HNO3 hotplate digestion of the samples. Finally, ten replicates of Ag-hyperaccumulating Amanita strobiliformis were analyzed by two variants of INAA utilizing 108Ag in the first step and 110 mAg isotope in the second step. In addition, four additional digestion procedures followed by HR-ICP-MS and inductively coupled plasma optical emission spectroscopy (ICP-OES) measurements of Ag were performed on this A. strobiliformis sample. Analytical quality was controlled by using NIST Standard Reference Materials 1566b (Oyster Tissue) and 2781 (Domestic Sludge). The results of all experiments revealed that correct determination of Ag in mushrooms is not always possible using standard digestion procedures because of precipitation of insoluble AgCl which was documented by scanning electron microscopy and confirmed by the X-ray diffraction analysis.
Czech Academy of Sciences Institute of Geology Rozvojová 269 16500 Prague 6 Czech Republic
Czech Academy of Sciences Nuclear Physics Institute Hlavní 130 25068 Husinec Řež Czech Republic
Zobrazit více v PubMed
Gadd GM (2013) Geomycology: fungi as agents of biogeochemical change. Biol Environ: Proc R Ir Acad. 10.1353/bae.2013.0006
Stijve T, Cardinale E (1974) Selenium and mercury content of some edible mushrooms. Trav Chim Aliment Hyg. 10.5169/seals-983703
Drbal K, Kalač P, Šeflová A, Šefl J (1975) Content of the trace elements iron and manganese in some edible mushrooms [In Czech]. Česká Mykol 29:110–114 DOI
Drbal K, Kalač P, Šeflová A, Šefl J (1975) Content of copper in some edible mushrooms [In Czech]. Česká Mykol 29:184–186 DOI
Allen RO, Steinnes E (1978) Concentrations of some potentially toxic metals and other trace elements in wild mushrooms from Norway. Chemosphere. 10.1016/0045-6535(78)90138-8
Byrne AR, Dermelj M, Vakselj T (1979) Silver accumulation by fungi. Chemosphere. 10.1016/0045-6535(79)90043-2
Stijve T, Besson R (1976) Mercury, cadmium, lead, and selenium content of mushroom species belonging to the genus
Seeger R, Meyer E, Schönhut S (1976) Lead in mushrooms [In German]. Z Lebensm Unters–Forsch. 10.1007/BF01104354 PubMed
Schmitt JA, Meisch HU, Reinle W (1978) Heavy metals in higher fungi, IV. Silver [In German]. Z Naturforsch C. 10.1515/znc-1978-9-1001
Kuehnelt D, Goessler W, Irgolic KJ (1997) Arsenic compounds in terrestrial organisms I:
Kuehnelt D, Goessler W, Irgolic KJ (1997) Arsenic compounds in terrestrial organisms II: arsenocholine in the mushroom
Michelot D, Siobud E, Doré JC, Viel C, Poirier F (1998) Update on metal content profiles in mushrooms – toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon. 10.1016/s0041-0101(98)00131-7 PubMed
Falandysz J, Kunito T, Kubota R, Brzostowski A, Mazur A, Falandysz JJ, Tanabe S (2007) Selected elements of poison pax PubMed
Falandysz J, Kunito T, Kubota R, Lipka K, Mazur A, Falandysz JJ, Tanabe S (2007) Selected elements in fly agaric PubMed
Meisch HU, Schmitt JA, Reinle W (1977) Heavy metals in higher fungi. Cadmium, zinc and copper [In German]. Z Naturforsch C. 10.1515/znc-1977-3-405
Alonso J, Salgado MJ, García MA, Melgar MJ (2000) Accumulation of mercury in edible macrofungi: influence of some factors. Arch Environ Contam Toxicol. 10.1007/s002449910020 PubMed
Koch E, Kneifel H, Bayer E (1987) Occurrence of amavadin in mushrooms of the genus
Stijve T, Vellinga EC, Herrmann A (1990) Arsenic accumulation in some higher fungi. Persoonia. 14:161–166. https://repository.naturalis.nl/pub/531714/PERS1990014002003.pdf
Borovička J, Řanda Z, Jelínek E (2005) Gold content of ectomycorrhizal and saprobic macrofungi from non–auriferous and unpolluted areas. Mycol Res. 10.1017/s095375620500328x PubMed
Borovička J, Dunn CE, Gryndler M, Mihaljevič M, Jelínek E, Rohovec J, Rohošková M, Řanda Z (2010) Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic. Soil Biol Biochem. 10.1016/j.soilbio.2009.10.003
Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ. 10.1016/j.scitotenv.2010.02.031 PubMed
Lepp NW, Harrison SCS, Morrell BG (1987) A role of PubMed
Thomet U, Vogel E, Krähenbühl U (1999) The uptake of cadmium and zinc by mycelia and their accumulation in mycelia and fruiting bodies of edible mushrooms. Eur Food Res Technol. 10.1007/s002170050502
Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W (2022) A new mushroom hyperaccumulator: cadmium and arsenic in the ectomycorrhizal basidiomycete PubMed
Sácký J, Černý J, Šantrůček J, Borovička J, Leonhardt T, Kotrba P (2021) Cadmium hyperaccumulating mushroom PubMed
Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in PubMed
Borovička J, Sácký J, Kaňa A, Walenta M, Ackerman L, Braeuer S, Leonhardt T, Hršelová H, Goessler W, Kotrba P (2023) Cadmium in the hyperaccumulating mushroom PubMed
Braeuer S, Borovička J, Kameník J, Prall E, Stijve T, Goessler W (2020) Is arsenic responsible for the toxicity of the hyperaccumulating mushroom PubMed
Braeuer S, Walenta M, Steiner L, Goessler W (2021) Determination of the naturally occurring vanadium–complex amavadin in
Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by PubMed
Borovička J, Konvalinková T, Žigová A, Ďurišová J, Gryndler M, Hršelová H, Kameník J, Leonhardt T, Sácký J (2019) Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus PubMed
Beneš V, Hložková K, Matěnová M, Borovička J, Kotrba P (2016) Accumulation of Ag and Cu in PubMed
Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator PubMed
Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus PubMed
Gryndler M, Hršelová H, Soukupová L, Borovička J (2012) Silver release from decomposed hyperaccumulating PubMed
Řanda Z, Soukal L, Mzera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macromycetes (mushrooms). J Radioanal Nucl Chem. 10.1007/s10967-005-0676-y
Petrini O, Cocchi L, Vescovi L (2009) Chemical elements in mushrooms: their potential taxonomic significance. Mycol Progress. 10.1007/s11557-009-0589-1
Horák Z, Kučera J, Mizera J, Kameník J, Fikrle M (2024) Modernized control of a pneumatic facility for short-time NAA at LVR-15 reactor in Řež, Czech Republic. J Radioanal Nucl Chem. 10.1007/s10967-023-09146-2
Ferreux L, Lépy MC, Bé MM, Isnard H, Lourenço V (2014) Photon emission intensities in the decay of PubMed
Nakamura S, Wada H, Shcherbakov O, Furutaka K, Harada H, Katoh T (2003) Measurement of the thermal neutron capture cross section and the resonance integral of the
Řanda Z, Kučera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem. 10.1023/b:jrnc.0000015813.27926.32
Daskalakis KD, O'Connor TP, Crecelius EA (1997) Evaluation of digestion procedures for determining silver in mussels and oysters. Environ Sci Technol. 10.1021/es9608959
Falandysz J, Bona H, Danisiewicz D (1994) Silver uptake by PubMed
Falandysz J, Bona H, Danisiewicz D (1994) Silver content of wild-grown mushrooms from Northern Poland. Z Lebensm Unters Forch. 10.1007/BF01193449 PubMed
Falandysz J & Danisiewicz D (1995) Bioconcentration factors (BCF) of silver in wild PubMed
Joerger R, Klaus T, Pettersson J, Granqvist CG (2000) Digestion method for silver accumulated in micro-organisms. Fresenius J Anal Chem. 10.1007/s002160050060 PubMed
Niazi SB, Littlejohn D, Halls DJ (1993) Rapid partial digestion of biological tissues with nitric acid for the determination of trace elements by atomic spectrometry. Analyst. 10.1039/AN9931800821 PubMed
Sánchez López FJ, Gil Garcia MD, Sánchez Morito NP, Martínez Vidal JL (2003) Determination of heavy metals in crayfish by ICP-MS with a microwave-assisted digestion treatment. Ecotoxicol Environ Safety. 10.1016/S0147-6513(02)00050-7 PubMed
Huang L, Bell RW, Dell B, Woodward J (2004) Rapid nitric acid digestion of plant material with an open-vessel microwave system. Commun Soil Sci Plant Anal. 10.1081/CSS-120029723
Tarantino TB, Barbosa IS, de Lima C, Pereira MG, Teixeira LSG, Korn MGA (2017) Microwave-assisted digestion using diluted nitric acid for multi-element determination in rice by ICP-OES and ICP-MS. Food Anal Methods. 10.1007/s12161-016-0658-4
Greene CH, Frizzell LD (1936) Studies of the precipitation of silver chloride. II. From silver nitrate and hydrochloric acid. J Am Chem Soc. 10.1021/ja01294a036
D’Elia CF, Sanders JG, Capone DG (1989) Analytical chemistry for environmental sciences. A question of confidence. Environ Sci Technol. 10.1021/es00065a005
Crecelius EA, Daskalakis K (1994) Analysis of silver in mussels and oysters by inductively couple plasma mass spectrometry (ICPMS). In proceedings: Transport, fate and effects of silver in the environment. pp. 157–160.
Mizera J, Řanda Z, Kučera J (2008) Determination of silver in biological reference materials by neutron activation analysis. J Radioanal Nucl Chem. 10.1007/s10967-008-1101-0
Poitras EP, Levine MA, Harrington JM, Amal SE, Fennell TR, Snyder RW, Black SL, Summer SS, Levine KE (2015) Development of an analytical method for assessment of silver nanoparticle content in biological matrices by inductively coupled plasma mass spectrometry. Biol Trace Elem Res. 10.1007/s12011-014-0141-2 PubMed PMC
Yang XJ, Foley R, Low GKC (2002) A modified digestion procedure for analysing silver in environmental water samples. Analyst. 10.1039/b109959k
Rahfeld A, Wiehl N, Dressler S, Möckel R, Gutzmer J (2018) Major and trace element geochemistry of the European Kupferschiefer – an evaluation of analytical techniques
Kimbrough DE, Wakakuwa JR (1989) Acid digestion for sediments, sludges, soils, and solid wastes. A proposed alternative to EPA SW 846 Method 3050. Environ Sci Technol. 10.1021/es00065a021
Chen Y, Mao Y, Song M, Yin Y, Liu G, Cai Y (2020) Occurrence and leaching of silver in municipal sewage sludge in China. Ecotoxicol Environ Saf. 10.1016/j.ecoenv.2019.109929 PubMed
Coutris C, Joner EJ, Oughton DH (2012) Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ. 10.1016/j.scitotenv.2012.01.027 PubMed
Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut. 10.1016/j.envpol.2016.08.009 PubMed
Wang P, Menzies NW, Chen H, Yang X, McGrath SP, Zhao FJ, Kopittke PM (2018) Risk of silver transfer from soil to the food chain is low after long-term (20 years) field applications of sewage sludge. Environ Sci Technol. 10.1021/acs.est.8b00204 PubMed
Fernández-Caliani JC, Giráldez MI, Rivera MB (2019) Source and geochemical partitioning of silver in a naturally-enriched soil. Appl Geochem. 10.1016/j.apgeochem.2019.02.010
Byrne AR, Kučera J (1997) Role of the self-validation principle of NAA in the quality assurance of bioenvironmental studies and in the certification of reference materials. In proceedings: International Atomic Energy Agency. pp. 223–238. https://inis.iaea.org/search/29019696
Stijve T, Andrey D, Lucchini G, Goessler W (2002) Lanthanides and other less common metals in mushrooms. Deut Lebensm-Rundsch 98(3):82–87
Komárek M, Chrastný V, Štíchová J (2007) Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ Int. 10.1016/j.envint.2007.02.001 PubMed
Drewnowska M, Falandysz J, Chudzińska M, Hanć A, Saba M, Barałkiewicz D (2017) Leaching of arsenic and sixteen metallic elements from
Falandysz J, Drewnowska M, Chudzińska M, Barałkiewicz D (2017) Accumulation and distribution of metallic elements and metalloids in edible PubMed
Falandysz J, Hanć A, Barałkiewicz D, Zhang J, Treu R (2020) Metallic and metalloid elements in various developmental stages of PubMed
Zhang J, Barałkiewicz D, Hanć A, Falandysz J, Yuanzhong W (2020) Contents and health risk assessment of elements in three edible ectomycorrhizal fungi ( PubMed
Falandysz J, Szymczyk K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki SI (2001) ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam. 10.1080/02652030119625 PubMed
Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J (2014) On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazard Mater. 10.1016/j.jhazmat.2014.07.050 PubMed
Sácký J, Liščáková V, Šnábl J, Zelenka J, Borovička J, Leonhardt T, Kotrba P (2025) Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus PubMed
Jones KC, Peterson PJ, Davies BE, Minski MJ (1985) Determination of silver in plants by flameless atomic absorption spectrometry and neutron activation analysis. Int J Environ Anal Chem. 10.1080/03067318508078368
Krejsa J, Šíma J, Kobera M, Šeda M, Svoboda L (2021) Detrimental and essential elements in fruiting bodies of mushrooms with ecological relationship to birch ( PubMed
Siobud-dorocant E, Doré JC, Michelot D, Poirier F, Viela C (1999) Multivariate analysis of metal concentration profiles in mushrooms. SAR and QSAR in Environ Res. 10.1080/10629369908039104 PubMed
Brzostowski Y, Falandysz J, Jarzyńska G, Zhang D (2011) Bioconcentration potential of metallic elements by poison pax ( PubMed
Kułdo E, Jarzyńska G, Gucia M, Falandysz J (2014) Mineral constituents of edible parasol mushroom
Kojta AK, Gucia M, Krasińska G, Saba M, Nnorom IC, Falandysz J (2016) Mineral constituents of edible field parasol (
Lipka K, Falandysz J (2017) Accumulation of metallic elements by PubMed
Falandysz J, Treu R (2019)
Falandysz J, Treu R, Meloni D (2021) Distribution and bioconcentration of some elements in the edible mushroom PubMed
Mleczek M, Budka A, Kalač P, Siwulski M, Niedzielski P (2021) Family and species as determinants modulating mineral composition of selected wild-growing mushroom species. Environ Sci Pollut Res. 10.1007/s11356-020-10508-6 PubMed PMC
Borovička J, Braeuer S, Žigová A, Gryndler M, Dima B, Goessler W, Frøslev TG, Kameník J, Kärcher R (2017) Resurrection of PubMed PMC
Alaimo MG, Dongarrà G, La Rosa A, Tamburo E, Vasquez G, Varrica D (2018) Major and trace elements in PubMed
Mleczek M, Siwulski M, Mikołajczak P, Goliński P, Gąsecka M, Sobieralski K, Dawidowicz L, Szymańczyk M (2015) Bioaccumulation of elements in three selected mushroom species from southwest Poland. J Environ Sci Health Pestic Food Contam Agri. 10.1080/03601234.2015.982427 PubMed
Anderson P, Davidson CM, Littlejohn D, Ure AM, Shand CA, Cheshire MV (1996) The determination of caesium and silver in soil and fungal fruiting bodies by electrothermal atomic absorption spectrometry. Anal Chim Acta. 10.1016/0003-2670(96)00069-4
Anderson P, Davidson CM, Littlejohn D, Ure AM, Shand CA, Cheshire MV (1997) The translocation of caesium and silver by fungi in some Scottish soils. Commun Soil Sci Plan. 10.1080/00103629709369816
Stefanović V, Trifković J, Djurdjić S, Tešić Ž, Mutić J (2016) Study of silver, selenium and arsenic concentration in wild edible mushroom PubMed
Vukojević V, Đurđić S, Mutić J (2019) Accumulation of U, Th, Pb, V, Rb, and Ag in wild mushrooms PubMed DOI
Krejsa J, Šíma J, Křížek M, Šeda M, Svoboda L (2024) Selected detrimental and essential elements in fruiting bodies of culinary and toxic medicinal macroscopic fungi growing in the bohemian forest, the Czech republic. J Environ Sci Health B. 10.1080/03601234.2024.2362548 PubMed
Parisis NE, Van Den Heede MA (1992) Antimony uptake and correlation with other metals in mushroom species. Toxicol Environ Chem. 10.1080/02772249209357843
Demirbaş A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the east black sea region. Food Chem. 10.1016/S0308-8146(01)00236-9
Aruguete DM, Aldstadt JH, Mueller GM (1998) Accumulation of several heavy metals and lanthanides in mushrooms (
Horovitz CT, Schock HH, Horovitz-Kisimova LA (1974) The content of scandium, thorium, silver, and other trace elements in different plant species. Plant Soil. 10.1007/BF00011522
Hedrich E (1988) Short-time activation analysis of some Austrian mushrooms. J Trace Microprobe Tech 6(4):583–602
Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in PubMed
Borovička J, Bušek B, Mikšík M, Dvořák D, Jeppesen TS, Dima B, Albert L, Frøslev TG (2015)
Wolfe BE, Tulloss RE, Pringle A (2012) The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS One. 10.1371/journal.pone.0039597 PubMed PMC
Varga D, Hanss JM, Moreau PA, Kovács GM, Dima B (2024) Phylogenetic and morphological studies reveal large diversity and three new species in
Zelyanskii AV, Zhukova LV, Kitaev GA (2001) Solubility of AgCl and AgBr in HCl and HBr. Inorg Mater. 10.1023/A:1017597321655
Luo Y, Celo V, Dabek-Zlotorzynska E, Yang L (2012) Effects of precipitation and UV photolysis on Ag isotope ratio: experimental studies. J Anal At Spectrom. 10.1039/C1JA10291E