YME1L1 Dysfunction Associated With 3-Methylglutaconic Aciduria
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, kazuistiky
Grantová podpora
2024-21
The Cyprus Institute of Neurology and Genetics
DRO-VFN64165
Ministry of Health Czech Republic
General University Hospital Prague
UNCE/24/MED/022
Charles University
PubMed
40255048
PubMed Central
PMC12010149
DOI
10.1002/jimd.70029
Knihovny.cz E-zdroje
- Klíčová slova
- 3‐methylglutaconic aciduria, YME1L1, inherited metabolic disorders, mitochondrial disorders, mitochondrial dysfunction, mitochondrial fragmentation,
- MeSH
- dítě MeSH
- fibroblasty metabolismus MeSH
- glutaráty MeSH
- lidé MeSH
- metaloendopeptidasy * genetika metabolismus MeSH
- missense mutace MeSH
- mitochondriální dynamika MeSH
- mitochondriální proteiny * genetika MeSH
- mitochondrie metabolismus MeSH
- percepční nedoslýchavost genetika MeSH
- sourozenci MeSH
- vrozené poruchy metabolismu * genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- 3-methylglutaconic acid MeSH Prohlížeč
- glutaráty MeSH
- metaloendopeptidasy * MeSH
- mitochondriální proteiny * MeSH
3-methylglutaconic aciduria (3-MGCA) is a biochemical finding in a diverse group of inherited metabolic disorders. Conditions manifesting 3-MGCA are classified into two major categories, primary and secondary. Primary 3-MGCAs involve two inherited enzymatic deficiencies affecting leucine catabolism, whereas secondary 3-MGCAs comprise a larger heterogeneous group of conditions that have in common compromised mitochondrial energy metabolism. Here, we report 3-MGCA in two siblings presenting with sensorineural hearing loss and neurological abnormalities associated with a novel, homozygous missense variant (c.1999C>G, p.Leu667Val) in the YME1L1 gene which encodes a mitochondrial ATP-dependent metalloprotease. We show that the identified variant results in compromised YME1L1 function, as evidenced by abnormal proteolytic processing of substrate proteins, such as OPA1 and PRELID1. Consistent with the aberrant processing of the mitochondrial fusion protein OPA1, we demonstrate enhanced mitochondrial fission and fragmentation of the mitochondrial network in patient-derived fibroblasts. Furthermore, our results indicate that YME1L1L667V is associated with attenuated activity of rate-limiting Krebs cycle enzymes and reduced mitochondrial respiration, which may explain the build-up of 3-methylglutaconic and 3-methylglutaric acid due to the diversion of acetyl-CoA, not efficiently processed in the Krebs cycle, towards the formation of 3-methylglutaconyl-CoA, the precursor of these metabolites. In summary, our findings classify YME1L1 deficiency as a new type of secondary 3-MGCA, thus expanding the genetic landscape and facilitating the diagnosis of inherited metabolic disorders featuring this biochemical phenotype.
Biochemical Genetics Department The Cyprus Institute of Neurology and Genetics Nicosia Cyprus
Cytogenetics and Genomics Department The Cyprus Institute of Neurology and Genetics Nicosia Cyprus
Zobrazit více v PubMed
Jones D. E., Klacking E., and Ryan R. O., “Inborn Errors of Metabolism Associated With 3‐Methylglutaconic Aciduria,” Clinica Chimica Acta 522 (2021): 96–104. PubMed PMC
Jones D. E., Romenskaia I., Kosma D. K., and Ryan R. O., “Role of Non‐Enzymatic Chemical Reactions in 3‐Methylglutaconic Aciduria,” FEBS Journal 289, no. 10 (2022): 2948–2958. PubMed PMC
Wortmann S. B., Duran M., Anikster Y., et al., “Inborn Errors of Metabolism With 3‐Methylglutaconic Aciduria as Discriminative Feature: Proper Classification and Nomenclature,” Journal of Inherited Metabolic Disease 36, no. 6 (2013): 923–928. PubMed
Su B. and Ryan R. O., “Metabolic Biology of 3‐Methylglutaconic Acid‐Uria: A New Perspective,” Journal of Inherited Metabolic Disease 37, no. 3 (2014): 359–368. PubMed PMC
Jones D. E., Perez L., and Ryan R. O., “3‐Methylglutaric Acid in Energy Metabolism,” Clinica Chimica Acta 502 (2020): 233–239. PubMed PMC
Wortmann S. B., Kluijtmans L. A., Engelke U. F., Wevers R. A., and Morava E., “The 3‐Methylglutaconic Acidurias: What's New?,” Journal of Inherited Metabolic Disease 35, no. 1 (2012): 13–22. PubMed PMC
Messina M., Vaz F. M., and Rahman S., “Mitochondrial Membrane Synthesis, Remodelling and Cellular Trafficking,” Journal of Inherited Metabolic Disease 48, no. 1 (2025): e12766. PubMed PMC
Wortmann S. B., Kluijtmans L. A., Rodenburg R. J., et al., “3‐Methylglutaconic Aciduria‐‐Lessons from 50 Genes and 977 Patients,” Journal of Inherited Metabolic Disease 36, no. 6 (2013): 913–921. PubMed
Hartmann B., Wai T., Hu H., et al., “Homozygous YME1L1 Mutation Causes Mitochondriopathy With Optic Atrophy and Mitochondrial Network Fragmentation,” eLife (2016): 5. PubMed PMC
Rinaldo P., “Organic Acids,” in Laboratory Guide to the Methods in Biochemical Genetics, ed. Blau N., Duran M., and Gibson K. M. (Springer Berlin Heidelberg, 2008), 137–169.
Chaudhry A., Shi R., and Luciani D. S., “A Pipeline for Multidimensional Confocal Analysis of Mitochondrial Morphology, Function, and Dynamics in Pancreatic Beta‐Cells,” American Journal of Physiology. Endocrinology and Metabolism 318, no. 2 (2020): E87–E101. PubMed PMC
Dougherty R., ed., Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming. 11th AIAA/CEAS Aeroacoustics Conference 2005.
Smith P. K., Krohn R. I., Hermanson G. T., et al., “Measurement of Protein Using Bicinchoninic Acid,” Analytical Biochemistry 150, no. 1 (1985): 76–85. PubMed
Ruijter J. M., Ramakers C., Hoogaars W. M., et al., “Amplification Efficiency: Linking Baseline and Bias in the Analysis of Quantitative PCR Data,” Nucleic Acids Research 37, no. 6 (2009): e45. PubMed PMC
Srere P. A., “Citrate Synthase. [EC 4.1.3.7. Citrate Oxaloacetate‐Lyase (CoA‐Acetylating)],” Methods in Enzymology 13 (1969): 3–11.
Rustin P., Chretien D., Bourgeron T., et al., “Biochemical and Molecular Investigations in Respiratory Chain Deficiencies,” Clinica Chimica Acta 228, no. 1 (1994): 35–51. PubMed
Robinson J., Brent L., Sumegi B., and Srere P., “An Enzymatic Approach to the Study of the Krebs Tricarboxylic Acid Cycle,” Mitochondria: A Practical Approach (1987): 153–170.
Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J., “Protein Measurement With the Folin Phenol Reagent,” Journal of Biological Chemistry 193, no. 1 (1951): 265–275. PubMed
Sievers F., Wilm A., Dineen D., et al., “Fast, Scalable Generation of High‐Quality Protein Multiple Sequence Alignments Using Clustal Omega,” Molecular Systems Biology 7 (2011): 539. PubMed PMC
Wai T., Saita S., Nolte H., et al., “The Membrane Scaffold SLP2 Anchors a Proteolytic Hub in Mitochondria Containing PARL and the i‐AAA Protease YME1L,” EMBO Reports 17, no. 12 (2016): 1844–1856. PubMed PMC
Leonhard K., Herrmann J. M., Stuart R. A., Mannhaupt G., Neupert W., and Langer T., “AAA Proteases With Catalytic Sites on Opposite Membrane Surfaces Comprise a Proteolytic System for the ATP‐Dependent Degradation of Inner Membrane Proteins in Mitochondria,” EMBO Journal 15, no. 16 (1996): 4218–4229. PubMed PMC
Shah Z. H., Hakkaart G. A., Arku B., et al., “The Human Homologue of the Yeast Mitochondrial AAA Metalloprotease Yme1p Complements a Yeast yme1 Disruptant,” FEBS Letters 478, no. 3 (2000): 267–270. PubMed
MacVicar T. and Langer T., “OPA1 Processing in Cell Death and Disease ‐ The Long and Short of It,” Journal of Cell Science 129, no. 12 (2016): 2297–2306. PubMed
Rainey R. N., Glavin J. D., Chen H. W., French S. W., Teitell M. A., and Koehler C. M., “A New Function in Translocation for the Mitochondrial i‐AAA Protease Yme1: Import of Polynucleotide Phosphorylase Into the Intermembrane Space,” Molecular and Cellular Biology 26, no. 22 (2006): 8488–8497. PubMed PMC
Graef M., Seewald G., and Langer T., “Substrate Recognition by AAA+ ATPases: Distinct Substrate Binding Modes in ATP‐Dependent Protease Yme1 of the Mitochondrial Intermembrane Space,” Molecular and Cellular Biology 27, no. 7 (2007): 2476–2485. PubMed PMC
Stiburek L., Cesnekova J., Kostkova O., et al., “YME1L Controls the Accumulation of Respiratory Chain Subunits and Is Required for Apoptotic Resistance, Cristae Morphogenesis, and Cell Proliferation,” Molecular Biology of the Cell 23, no. 6 (2012): 1010–1023. PubMed PMC
Van Dyck L. and Langer T., “ATP‐Dependent Proteases Controlling Mitochondrial Function in the Yeast Saccharomyces cerevisiae,” Cellular and Molecular Life Sciences 56, no. 9‐10 (1999): 825–842. PubMed PMC
Anand R., Wai T., Baker M. J., et al., “The i‐AAA Protease YME1L and OMA1 Cleave OPA1 to Balance Mitochondrial Fusion and Fission,” Journal of Cell Biology 204, no. 6 (2014): 919–929. PubMed PMC
Wai T., Garcia‐Prieto J., Baker M. J., et al., “Imbalanced OPA1 Processing and Mitochondrial Fragmentation Cause Heart Failure in Mice,” Science 350, no. 6265 (2015): aad0116. PubMed
Sprenger H. G., Wani G., Hesseling A., et al., “Loss of the Mitochondrial i‐AAA Protease YME1L Leads to Ocular Dysfunction and Spinal Axonopathy,” EMBO Molecular Medicine 11, no. 1 (2019). PubMed PMC
Del Dotto V., Fogazza M., Carelli V., Rugolo M., and Zanna C., “Eight Human OPA1 Isoforms, Long and Short: What Are They for?,” Biochimica et Biophysica Acta ‐ Bioenergetics 1859, no. 4 (2018): 263–269. PubMed
Potting C., Tatsuta T., Konig T., et al., “TRIAP1/PRELI Complexes Prevent Apoptosis by Mediating Intramitochondrial Transport of Phosphatidic Acid,” Cell Metabolism 18, no. 2 (2013): 287–295. PubMed
Baker M. J., Blau K. U., Anderson A. J., et al., “CLPB Disaggregase Dysfunction Impacts the Functional Integrity of the Proteolytic SPY Complex,” Journal of Cell Biology 223, no. 3 (2025): e202305087. PubMed PMC
Wortmann S. B., Zietkiewicz S., Kousi M., et al., “CLPB Mutations Cause 3‐Methylglutaconic Aciduria, Progressive Brain Atrophy, Intellectual Disability, Congenital Neutropenia, Cataracts, Movement Disorder,” American Journal of Human Genetics 96, no. 2 (2015): 245–257. PubMed PMC
Smith A. N., Wang X., Thomas D. G., Tatum R. E., Booz G. W., and Cunningham M. W., “The Role of Mitochondrial Dysfunction in Preeclampsia: Causative Factor or Collateral Damage?,” American Journal of Hypertension 34, no. 5 (2021): 442–452. PubMed
Ausman J., Abbade J., Ermini L., et al., “Ceramide‐Induced BOK Promotes Mitochondrial Fission in Preeclampsia,” Cell Death & Disease 9, no. 3 (2018): 298. PubMed PMC
Olahova M., Thompson K., Hardy S. A., et al., “Pathogenic Variants in HTRA2 Cause an Early‐Onset Mitochondrial Syndrome Associated With 3‐Methylglutaconic Aciduria,” Journal of Inherited Metabolic Disease 40, no. 1 (2017): 121–130. PubMed PMC
Liu X., Weaver D., Shirihai O., and Hajnoczky G., “Mitochondrial 'Kiss‐And‐Run': Interplay Between Mitochondrial Motility and Fusion‐Fission Dynamics,” EMBO Journal 28, no. 20 (2009): 3074–3089. PubMed PMC
Lam C., Gallo L. K., Dineen R., et al., “Two Novel Compound Heterozygous Mutations in OPA3 in Two Siblings With OPA3‐Related 3‐Methylglutaconic Aciduria,” Molecular Genetics and Metabolism Reports 1 (2014): 114–123. PubMed PMC
Suissa M., Suda K., and Schatz G., “Isolation of the Nuclear Yeast Genes for Citrate Synthase and Fifteen Other Mitochondrial Proteins by a New Screening Method,” EMBO Journal 3, no. 8 (1984): 1773–1781. PubMed PMC
Weitzman P. D. and Danson M. J., “Citrate Synthase,” Current Topics in Cellular Regulation 10 (1976): 161–204. PubMed
Chinopoulos C., “Which Way Does the Citric Acid Cycle Turn During Hypoxia? The Critical Role of Alpha‐Ketoglutarate Dehydrogenase Complex,” Journal of Neuroscience Research 91, no. 8 (2013): 1030–1043. PubMed
Jones D. E., Jennings E. A., and Ryan R. O., “Diversion of Acetyl CoA to 3‐Methylglutaconic Acid Caused by Discrete Inborn Errors of Metabolism,” Metabolites 12, no. 5 (2022). PubMed PMC
Riggs E. R., Andersen E. F., Cherry A. M., et al., “Technical Standards for the Interpretation and Reporting of Constitutional Copy‐Number Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen),” Genetics in Medicine 22, no. 2 (2020): 245–257. PubMed PMC