Butterflies respond to habitat disturbance in tropical forests through activity shifts
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2024A1515012736
Basic and Applied Basic Research Foundation of Guangdong Province
25-17499S
Biologické Centrum, Akademie Věd České Republiky
32301336
National Natural Science Foundation of China
32301457
National Natural Science Foundation of China
PubMed
40345976
DOI
10.1111/1365-2656.70053
Knihovny.cz E-zdroje
- Klíčová slova
- activity pattern, habitat disturbance, insects, microclimate, tropical forest,
- MeSH
- ekosystém * MeSH
- lesy * MeSH
- let zvířat * MeSH
- mikroklima MeSH
- motýli * fyziologie MeSH
- teplota MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Habitat disturbance can alter the dynamics of the forest microclimate by disrupting the canopy structure, particularly in structurally complex tropical forests. These changes may impact ectotherms, of which performance and fitness are highly sensitive to climatic conditions. Behavioural responses, such as changes in activities, may help buffer forest ectotherms like butterflies from microclimate changes in disturbed tropical forests. Using field surveys from four tropical forest sites in Asia, we compared flight activity peaks, durations and intensity for populations of 21 forest-associated butterfly species between open-canopy and closed-canopy forests. We then compared the temperature and illumination that each species experienced during its activity period between the two forest types. Although butterfly populations began their activity earlier and reached peak levels sooner in open-canopy forests compared to closed-canopy forests, the duration and intensity of activity remained similar across populations. Despite these shifts in activity timing between forest types, butterflies experienced comparable temperature conditions in both forest types, but were exposed to higher illumination levels in open-canopy forests. Overall, we demonstrate that tropical butterflies can compensate for microclimate changes in tropical forests by shifting their activity patterns. This may help butterflies buffer against temperature increases but not against higher illumination levels following forest canopy opening due to habitat disturbance. Our results emphasize the importance of understanding how animal activity responds to habitat disturbance.
Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Faculty of Sustainable Agriculture Universiti Malaysia Sabah Sandakan Sabah Malaysia
Maestria de Entomología Universidad de Panamá Panama City Panama
School of Biological Sciences The University of Hong Kong Hong Kong SAR China
School of Ecology Shenzhen Campus of Sun Yat Sen University Shenzhen China
Zobrazit více v PubMed
Abram, P. K., Boivin, G., Moiroux, J., & Brodeur, J. (2017). Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biological Reviews, 92(4), 1859–1876.
Agosta, S. J., Hulshof, C. M., & Staats, E. G. (2017). Organismal responses to habitat change: Herbivore performance, climate and leaf traits in regenerating tropical dry forests. Journal of Animal Ecology, 86(3), 590–604.
Basset, Y., Eastwood, R., Sam, L., Lohman, D. J., Novotny, V., Treuer, T., Miller, S. E., Weiblen, G. D., Pierce, N. E., Bunyavejchewin, S., Sakchoowong, W., Kongnoo, P., & Osorio‐Arenas, M. A. (2013). Cross‐continental comparisons of butterfly assemblages in rainforests: Implications for biological monitoring. Insect Conservation and Diversity, 6, 223–233.
Bladon, A. J., Lewis, M., Bladon, E. K., Buckton, S. J., Corbett, S., Ewing, S. R., Hitchcock, G. E., Knock, R., Lucas, C., McVeigh, A., Menéndez, R., Walker, J. M., Fayle, T. M., & Turner, E. C. (2020). How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. Journal of Animal Ecology, 89(11), 2440–2450.
Bonebrake, T. C., Boggs, C. L., Stamberger, J. A., Deutsch, C. A., & Ehrlich, P. R. (2014). From global change to a butterfly flapping: Biophysics and behaviour affect tropical climate change impacts. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141264.
Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400.
Buckley, L. B., Ehrenberger, J. C., & Angilletta, M. J. (2015). Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology, 29(8), 1038–1047.
Cheng, W., Xing, S., Chen, Y., Lin, R., Bonebrake, T. C., & Nakamura, A. (2018). Dark butterflies camouflaged from predation in dark tropical forest understories. Ecological Entomology, 43(3), 304–309.
Cosset, C. C., Gilroy, J. J., Tomassi, S., Benedick, S., Nelson, L., Cannon, P. G., Messina, S., Kaputa, M., Fandrem, M., Madrid, R. S., Lello‐Smith, A., Pavan, L., King, B., Fogliano, R., Hackney, T. B., Gerald, E., Chai, J. Y.‐W., Cros, E., Chong, Y. Y., … Edwards, D. P. (2021). Impacts of tropical selective logging on local‐scale movements of understory birds. Biological Conservation, 264, 109374.
Dreisig, H. (1979). Daily activity, thermoregulation and water loss in the tiger beetle Cicindela hybrida. Oecologia, 44(3), 376–389.
Ek‐Amnuay, P. (2012). Butterflies of Thailand (2nd ed.). Amarin Printing and Publishing.
Franzén, M., Francioli, Y., Askling, J., Kindvall, O., Johansson, V., & Forsman, A. (2022). Differences in phenology, daily timing of activity, and associations of temperature utilization with survival in three threatened butterflies. Scientific Reports, 12(1), 7534.
Freimuth, J., Bossdorf, O., Scheepens, J. F., & Willems, F. M. (2022). Climate warming changes synchrony of plants and pollinators. Proceedings of the Royal Society B, 289(1971), 20212142.
Giam, X. (2017). Global biodiversity loss from tropical deforestation. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5775–5777.
Grant, B. W., & Dunham, A. E. (1988). Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology, 69(1), 167–176.
Gunderson, A. R., & Leal, M. (2015). Patterns of thermal constraint on ectotherm activity. The American Naturalist, 185(5), 653–664.
Heard, T. A., & Hendrikz, J. K. (1993). Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera, Apidae). Australian Journal of Zoology, 41(4), 343–353.
Hoang, N. T., & Kanemoto, K. (2021). Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nature Ecology & Evolution, 5(6), 845–853.
Huey, R. B., Hertz, P. E., & Sinervo, B. (2003). Behavioral drive versus behavioral inertia in evolution: A null model approach. The American Naturalist, 161, 357–366.
Ide, J. Y. (2010). Weather factors affecting the male mate‐locating tactics of the small copper butterfly (Lepidoptera: Lycaenidae). European Journal of Entomology, 107(3), 369–376.
Jiang, Z. W., Ma, L., Mi, C. R., Tao, S. A., Guo, F., & Du, W. G. (2023). Distinct responses and range shifts of lizard populations across an elevational gradient under climate change. Global Change Biology, 29(10), 2669–2680.
Kenagy, G. J., & Stevenson, R. D. (1982). Role of body temperature in the seasonality of daily activity in tenebrionid beetles of eastern Washington. Ecology, 63(5), 1491–1503.
Kendall, M. G. (1945). The treatment of ties in ranking problems. Biometrika, 33(3), 239–251.
Kharouba, H. M., & Vellend, M. (2015). Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight. Journal of Animal Ecology, 84(5), 1311–1321.
Kingsolver, J. G. (1983). Ecological significance of flight activity in Colias butterflies: Implications for reproductive strategy and population structure. Ecology, 64(3), 546–551.
Kingsolver, J. G., & Moffat, R. J. (1982). Thermoregulation and the determinants of heat transfer in Colias butterflies. Oecologia, 53(1), 27–33.
Laird‐Hopkins, B. C., Ashe‐Jepson, E., Basset, Y., Arizala Cobo, S., Eberhardt, L., Freiberga, I., Hellon, J., Hitchcock, G. E., Kleckova, I., Linke, D., Lamarre, G. P. A., McFarlane, A., Savage, A. F., Turner, E. C., Zamora, A. C., Sam, K., & Bladon, A. J. (2023). Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies. Global Change Biology, 29(15), 4180–4192. https://doi.org/10.1111/gcb.16797
Landry Yuan, F., Freedman, A. H., Chirio, L., LeBreton, M., & Bonebrake, T. C. (2018). Ecophysiological variation across a forest‐ecotone gradient produces divergent climate change vulnerability within species. Ecography, 41(10), 1627–1637. https://doi.org/10.1111/ecog.03427
Laurance, W. F., & Curran, T. J. (2008). Impacts of wind disturbance on fragmented tropical forests: A review and synthesis. Austral Ecology, 33(4), 399–408.
Leitao, R. P., Zuanon, J., Villéger, S., Williams, S. E., Baraloto, C., Fortunel, C., Mendonça, F. P., & Mouillot, D. (2016). Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society B: Biological Sciences, 283(1828), 20160084.
Liao, H., Shi, L., Liu, W., Du, T., Ma, Y., Zhou, C., & Deng, J. (2017). Effects of light intensity on the flight behaviour of adult Tirumala limniace (Cramer) (Lepidoptera: Nymphalidae: Danainae). Journal of Insect Behavior, 30(2), 139–154.
Logan, M. L., Fernandez, S. G., & Calsbeek, R. (2015). Abiotic constraints on the activity of tropical lizards. Functional Ecology, 29(5), 694–700.
Maclean, I. M., & Klinges, D. H. (2021). Microclimc: A mechanistic model of above, below and within‐canopy microclimate. Ecological Modelling, 451, 109567.
Marsh, C. J., Turner, E. C., Blonder, B. W., Bongalov, B., Both, S., Cruz, R. S., Elias, D. M. O., Hemprich‐Bennett, D., Jotan, P., Kemp, V., Kritzler, U. H., Milne, S., Milodowski, D. T., Mitchell, S. L., Pillco, M. M., Nunes, M. H., Riutta, T., Robinson, S. J. B., Slade, E. M., … Hector, A. (2025). Tropical forest clearance impacts biodiversity and function, whereas logging changes structure. Science, 387(6730), 171–175.
Niesenbaum, R. A., & Kluger, E. C. (2006). When studying the effects of light on herbivory, should one consider temperature? The case of Epimecis hortaria F. (Lepidoptera: Geometridae) feeding on Lindera benzoin L. (Lauraceae). Environmental Entomology, 35(3), 600–606.
Nokelainen, O., de Moraes Rezende, F., Valkonen, J. K., & Mappes, J. (2022). Context‐dependent coloration of prey and predator decision making in contrasting light environments. Behavioral Ecology, 33(1), 77–86.
Otsuka, K. (2001). A field guide to the butterflies of Borneo & South East Asia. Hornbill Books.
Pfeifer, M., Boyle, M. J., Dunning, S., & Olivier, P. I. (2019). Forest floor temperature and greenness link significantly to canopy attributes in South Africa's fragmented coastal forests. PeerJ, 7, e6190.
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org
Reserve, P., & Reserve, S. A. H. F. (2005). Air and soil temperature characteristics of two sizes forest gap in tropical forest. Asian Journal of Plant Sciences, 4(2), 144–148.
Roland, J. (1982). Melanism and diel activity of alpine Colias (Lepidoptera: Pieridae). Oecologia, 53(2), 214–221.
Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C., & Jansen, P. A. (2014). Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 5(11), 1170–1179.
Saastamoinen, M., & Hanski, I. (2008). Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly. The American Naturalist, 171(6), 701–712.
Santos, E. G., Svátek, M., Nunes, M. H., Aalto, J., Senior, R. A., Matula, R., Plichta, R., & Maeda, E. E. (2024). Structural changes caused by selective logging undermine the thermal buffering capacity of tropical forests. Agricultural and Forest Meteorology, 348, 109912. https://doi.org/10.1016/j.agrformet.2024.109912
Saunders, D. S. (2009). Circadian rhythms and the evolution of photoperiodic timing in insects. Physiological Entomology, 34(4), 301–308.
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E., & Evans, T. A. (2014). Microhabitats reduce animal's exposure to climate extremes. Global Change Biology, 20(2), 495–503.
Scheffers, B. R., Edwards, D. P., Macdonald, S. L., Senior, R. A., Andriamahohatra, L. R., Roslan, N., Rogers, A. M., Haugaasen, T., Wright, P., & Williams, S. E. (2017). Extreme thermal heterogeneity in structurally complex tropical rain forests. Biotropica, 49(1), 35–44. https://doi.org/10.1111/btp.12355
Schwarz, B., Dormann, C. F., Vázquez, D. P., & Fründ, J. (2021). Within‐day dynamics of plant–pollinator networks are dominated by early flower closure: An experimental test of network plasticity. Oecologia, 196(3), 781–794.
Senior, R. A. (2020). Hot and bothered: The role of behaviour and microclimates in buffering species from rising temperatures. Journal of Animal Ecology, 89(11), 2392–2396.
Senior, R. A., Hill, J. K., Benedick, S., & Edwards, D. P. (2018). Tropical forests are thermally buffered despite intensive selective logging. Global Change Biology, 24(3), 1267–1278.
Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K., & Edwards, D. P. (2017). A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecology and Evolution, 7(19), 7897–7908.
Seymoure, B. M. (2018). Enlightening butterfly conservation efforts: The importance of natural lighting for butterfly behavioral ecology and conservation. Insects, 9(1), 22.
Stark, G., Ma, L., Zeng, Z. G., Du, W. G., & Levy, O. (2023). Cool shade and not‐so‐cool shade: How habitat loss may accelerate thermal stress under current and future climate. Global Change Biology, 29(22), 6201–6216.
Sun, B. J., Huebner, C., Treidel, L. A., Clark, R. M., Roberts, K. T., Kenagy, G. J., & Williams, C. M. (2020). Nocturnal dispersal flight of crickets: Behavioural and physiological responses to cool environmental temperatures. Functional Ecology, 34(9), 1907–1920.
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal‐safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5610–5615.
Vitt, L. J., Caldwell, J. P., Sartorius, S. S., Cooper, W. E., Jr., Baird, T. A., Baird, T. D., & Pérez‐Mellado, V. (2005). Pushing the edge: Extended activity as an alternative to risky body temperatures in a herbivorous teiid lizard (Cnemidophorus murinus: Squamata). Functional Ecology, 19, 152–158.
von Arx, G., Dobbertin, M., & Rebetez, M. (2012). Spatio‐temporal effects of forest canopy on understory microclimate in a long‐term experiment in Switzerland. Agricultural and Forest Meteorology, 166, 144–155.
Wang, L., Xing, S., Chang, X., Ma, L., & Wenda, C. (2024). Cropland microclimate and leaf‐nesting behavior shape the growth of Caterpillar under future warming. Integrative and Comparative Biology, 64(3), icae043. https://doi.org/10.1093/icb/icae043
Wenda, C., Luk, C., Benedick, S., Nakamura, A., Basset, Y., Bonebrake, T. C., Scheffers, B. R., Ashton, L. A., & Xing, S. (2025). Data from: Butterflies respond to habitat disturbance in tropical forests through activity shifts. Dryad Digital Repository. https://doi.org/10.5061/dryad.prr4xgxzc
Wenda, C., Xing, S., Nakamura, A., & Bonebrake, T. C. (2021). Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments. Journal of Animal Ecology, 90(12), 2888–2900.
Wetterer, J. K. (1990). Diel changes in forager size, activity, and load selectivity in a tropical leaf‐cutting ant, Atta cephalotes. Ecological Entomology, 15(1), 97–104.
Woods, H. A., Dillon, M. E., & Pincebourde, S. (2015). The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. Journal of Thermal Biology, 54, 86–97.
Xing, S., Bonebrake, T. C., Tang, C. C., Pickett, E. J., Cheng, W., Greenspan, S. E., Williams, S. E., & Scheffers, B. R. (2016). Cool habitats support darker and bigger butterflies in Australian tropical forests. Ecology and Evolution, 6(22), 8062–8074. https://doi.org/10.1002/ece3.2464
Xing, S., Cheng, W., Nakamura, A., Tang, C. C., Huang, S., Odell, E., Goodale, E., Goodale, U. M., & Bonebrake, T. C. (2018). Elevational clines in morphological traits of subtropical and tropical butterfly assemblages. Biological Journal of the Linnean Society, 123(3), 506–517. https://doi.org/10.1093/biolinnean/blx159
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt‐Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368(6492), 772–775.
Zhou, Y. (1994). Monographia rhopalocerorum sinensium. Henan Scientific Publishing.
Zoller, L., Bennett, J. M., & Knight, T. M. (2020). Diel‐scale temporal dynamics in the abundance and composition of pollinators in the Arctic summer. Scientific Reports, 10(1), 21187.
Dryad
10.5061/dryad.prr4xgxzc