Engaging T cells for cleanup

. 2025 ; 16 () : 1551424. [epub] 20250506

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40416957

T-cell engagers represent a transformative approach to cancer immunotherapy leveraging bispecific and multispecific antibody constructs to redirect T-cell cytotoxicity toward malignant cells. These molecules bridge T cells and tumor cells by simultaneously binding CD3 on T cells and tumor-associated antigens on cancer cells, thereby enabling precise immune targeting even in immunologically "cold" tumors. Recent advancements include conditional T-cell engagers activated by tumor microenvironment proteases to minimize off-tumor toxicity as well as T-cell receptor-based engagers targeting intracellular antigens via MHC presentation. Clinical successes, such as Kimmtrak in metastatic uveal melanoma, underscore good potential of these modalities, while challenges persist in the management of cytokine release syndrome, neurotoxicity, and tumor resistance. Emerging multispecific engagers are aimed at enhancing efficacy via incorporation of costimulatory signals, thus offering a promising trajectory for next-generation immunotherapies. T-cell engagers are also gaining attention in the treatment of autoimmune disorders, where they can be designed to selectively modulate pathogenic immune responses. By targeting autoreactive T or B cells, T-cell engagers hold promise for restoring immune tolerance in such conditions as HLA-B*27-associated autoimmunity subtypes, multiple sclerosis, rheumatoid arthritis, and type 1 diabetes mellitus. Engineering strategies that incorporate inhibitory receptors or tissue-specific antigens may further refine T-cell engagers' therapeutic potential in autoimmunity, by minimizing systemic immunosuppression while preserving immune homeostasis.

Zobrazit více v PubMed

Przepiorka D, Ko CW, Deisseroth A, Yancey CL, Candau-Chacon R, Chiu HJ, et al. . FDA approval: blinatumomab. Clin Cancer Res. (2015) 21:4035–9. doi: 10.1158/1078-0432.CCR-15-0612 PubMed DOI

Zhang W, Auguste A, Liao X, Walterskirchen C, Bauer K, Lin YH, et al. . A novel B7-H6–targeted igG-like T cell–engaging antibody for the treatment of gastrointestinal tumors. Clin Cancer Res. (2022) 28:5190–201. doi: 10.1158/1078-0432.CCR-22-2108 PubMed DOI PMC

Dhillon S. Tebentafusp: first approval. Drugs. (2022) 82:703–10. doi: 10.1007/s40265-022-01704-4 PubMed DOI

Goldberg SD, Felix N, McCauley M, Eberwine R, Casta L, Haskell K, et al. . A strategy for selective deletion of autoimmunity-related t cells by pmhc-targeted delivery. Pharmaceutics. (2021) 13:1–14. doi: 10.3390/pharmaceutics13101669 PubMed DOI PMC

Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. (1986) 233:1318–21. doi: 10.1126/science.3489291 PubMed DOI

Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ, Jia L, et al. . Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discovery. (2019) 9:1022–35. doi: 10.1158/2159-8290.CD-18-1494 PubMed DOI PMC

Kwong MLM, Yang JC. Lifileucel : FDA-approved T-cell therapy for melanoma. The Oncologist. (2024) 2:648–50. doi: 10.1093/oncolo/oyae136 PubMed DOI PMC

Schoenfeld AJ, Lee SM, Doger de Spéville B, Gettinger SN, Häfliger S, Sukari A, et al. . Lifileucel, an autologous tumor-infiltrating lymphocyte monotherapy, in patients with advanced non-small cell lung cancer resistant to immune checkpoint inhibitors. Cancer Discovery. (2024) 14:1389–402. doi: 10.1158/2159-8290.CD-23-1334 PubMed DOI PMC

Levin N, Kim SP, Marquardt CA, Vale NR, Yu Z, Sindiri S, et al. . Neoantigen-specific stimulation of tumor-infiltrating lymphocytes enables effective TCR isolation and expansion while preserving stem-like memory phenotypes. J Immunother Cancer. (2024) 12:e008645. doi: 10.1136/jitc-2023-008645 PubMed DOI PMC

Goncharov MM, Bryushkova EA, Sharaev NI, Skatova VD, Baryshnikova AM, Sharonov GV, et al. . Pinpointing the tumor-specific T cells via TCR clusters. Elife. (2022) 11:e77274. doi: 10.7554/eLife.77274 PubMed DOI PMC

Fradley MG, Damrongwatanasuk R, Chandrasekhar S, Alomar M, Kip KE, Sarnaik AA. Cardiovascular toxicity and mortality associated with adoptive cell therapy and tumor-infiltrating lymphocytes for advanced stage melanoma. J Immunother. (2021) 44:86–9. doi: 10.1097/CJI.0000000000000341 PubMed DOI

Khammari A, Nguyen JM, Leccia MT, Guillot B, Saiagh S, Pandolfino MC, et al. . Tumor infiltrating lymphocytes as adjuvant treatment in stage III melanoma patients with only one invaded lymph node after complete resection: results from a multicentre, randomized clinical phase III trial. Cancer Immunol Immunother. (2020) 69:1663–72. doi: 10.1007/s00262-020-02572-1 PubMed DOI PMC

Xin T, Cheng L, Zhou C, Zhao Y, Hu Z, Wu X. In-vivo induced CAR-T cell for the potential breakthrough to overcome the barriers of current CAR-T cell therapy. Front Oncol. (2022) 12:809754. doi: 10.3389/fonc.2022.809754 PubMed DOI PMC

Mullard A. In vivo CAR T cells move into clinical trials. Nat Rev Drug Discovery. (2024) 23:727–30. doi: 10.1038/d41573-024-00150-z PubMed DOI

D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: The long and winding road to solid tumors. Cell Death and Disease. (2018) 9(3). doi: 10.1038/s41419-018-0278-6 PubMed DOI PMC

Chen YJ, Abila B, Mostafa Kamel Y. CAR-T: what is next? Cancers (Basel). (2023) 15:663. doi: 10.3390/cancers15030663 PubMed DOI PMC

Ghilardi G, Fraietta JA, Gerson JN, Van Deerlin VM, Morrissette JJD, Caponetti GC, et al. . T cell lymphoma and secondary primary Malignancy risk after commercial CAR T cell therapy. Nat Med. (2024) 30:984–9. doi: 10.1038/s41591-024-02826-w PubMed DOI

Zhao L, Cao YJ. Engineered T cell therapy for cancer in the clinic. Front Immunol. (2019) 10:2250. doi: 10.3389/fimmu.2019.02250 PubMed DOI PMC

Khan SH, Choi Y, Veena M, Lee JK, Shin DS. Advances in CAR T cell therapy: antigen selection, modifications, and current trials for solid tumors. Front Immunol. (2024) 15:1489827. doi: 10.3389/fimmu.2024.1489827 PubMed DOI PMC

Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int. (2024) 24:1–24. doi: 10.1186/s12935-024-03315-3 PubMed DOI PMC

Michels KR, Sheih A, Hernandez SA, Brandes AH, Parrilla D, Irwin B, et al. . Preclinical proof of concept for VivoVec, a lentiviral-based platform for in vivo CAR T-cell engineering. J Immunother Cancer. (2023) 11:e006292. doi: 10.1136/jitc-2022-006292 PubMed DOI PMC

Park AK, Fong Y, Kim SI, Yang J, Murad JP, Lu J, et al. . Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci Trans Med. (2020) 12. doi: 10.1126/SCITRANSLMED.AAZ1863 PubMed DOI PMC

Aalipour A, Le Boeuf F, Tang M, Murty S, Simonetta F, Lozano AX, et al. . Viral delivery of CAR targets to solid tumors enables effective cell therapy. Mol Ther Oncolytics. (2020) 17:232–40. doi: 10.1016/j.omto.2020.03.018 PubMed DOI PMC

Wang L, Chard Dunmall LS, Cheng Z, Wang Y. Remodeling the tumor microenvironment by oncolytic viruses: Beyond oncolysis of tumor cells for cancer treatment. J ImmunoTherapy Cancer. (2022) 10. doi: 10.1136/jitc-2021-004167 PubMed DOI PMC

Zhang B, Wang X, Cheng P. Remodeling of tumor immune microenvironment by oncolytic viruses. Front Oncol. (2021) 10:561372. doi: 10.3389/fonc.2020.561372 PubMed DOI PMC

Brown CE, Hibbard JC, Alizadeh D, Blanchard MS, Natri HM, Wang D, et al. . Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial. Nat Med. (2024) 30:1001–12. doi: 10.1038/s41591-024-02875-1 PubMed DOI PMC

Zah E, Lin MY, Anne SB, Jensen MC, Chen YY. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by Malignant B cells. Cancer Immunol Res. (2016) 4:498–508. doi: 10.1158/2326-6066.CIR-15-0231 PubMed DOI PMC

Wang L, Zhang L, Zhang Z, Wu P, Zhang Y, Chen X. Advances in targeting tumor microenvironment for immunotherapy. Frontiers in Immunology. (2024) 15:1472772. doi: 10.3389/fimmu.2024.1472772 PubMed DOI PMC

Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives. Sci Adv. (2023) 9:1–15. doi: 10.1126/sciadv.adf3700 PubMed DOI PMC

Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, et al. . Adoptive immunotherapy beyond CAR T-cells. Cancers. (2021) 13(4):1–23. doi: 10.3390/cancers13040743 PubMed DOI PMC

Nerreter T, Letschert S, Götz R, Doose S, Danhof S, Einsele H, et al. . Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nature Communications. (2019) 10(1):1–11. doi: 10.1038/s41467-019-10948-w PubMed DOI PMC

Robbins PF, Kassim SH, Tran TLN, Crystal JS, Morgan RA, Feldman SA, et al. . A pilot trial using lymphocytes genetically engineered with an NY-ESO-1–reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. (2015) 21:1019–27. doi: 10.1158/1078-0432.CCR-14-2708 PubMed DOI PMC

Wermke M, Holderried TAW, Luke JJ, Morris VK, Alsdorf WH, Wetzko K, et al. . First-in-human dose escalation trial to evaluate the clinical safety and efficacy of an anti-MAGEA1 autologous TCR-transgenic T cell therapy in relapsed and refractory solid tumors. J ImmunoTherapy Cancer. (2024) 12. doi: 10.1136/jitc-2023-008668 PubMed DOI PMC

Stadtmauer E, Faitg T, Lowther D, Badros A, Chagin K, Dengel K, et al. . Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma. Blood Adv. (2019) 3:2022–34. doi: 10.1182/bloodadvances.2019000194 PubMed DOI PMC

Nagarsheth NB, Norberg SM, Sinkoe AL, Adhikary S, Meyer TJ, Lack JB, et al. . TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat Med. (2021) 27:419–25. doi: 10.1038/s41591-020-01225-1 PubMed DOI PMC

Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C, Shih Y-P, et al. . Neoantigen T-cell receptor gene therapy in pancreatic cancer. New Engl J Med. (2022) 386:2112–9. doi: 10.1056/nejmoa2119662 PubMed DOI PMC

Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Letters. (2022) 546(July):215840. doi: 10.1016/j.canlet.2022.215840 PubMed DOI

Lu D, Chen Y, Jiang M, Wang J, Li Y, Ma K, et al. . KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors. Nat Commun. (2023) 14:6389. doi: 10.1038/s41467-023-42010-1 PubMed DOI PMC

Drakes DJ, Abbas AM, Shields J, Steinbuck MP, Jakubowski A, Seenappa LM, et al. . Lymph node-targeted vaccine boosting of TCR T-cell therapy enhances antitumor function and eradicates solid tumors. Cancer Immunol Res. (2024) 12:214–31. doi: 10.1158/2326-6066.CIR-22-0978 PubMed DOI PMC

Perica K, Kotchetkov I, Mansilla-Soto J, Ehrich F, Herrera K, Shi Y, et al. . HIV immune evasin Nef enhances allogeneic CAR T cell potency. Nature. (2025) 22:303–10. doi: 10.1038/s41586-025-08657-0 PubMed DOI

Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. (2006) 24:419–66. doi: 10.1146/annurev.immunol.23.021704.115658 PubMed DOI

Tapia-Galisteo A, Álvarez-Vallina L, Sanz L. Bi- and trispecific immune cell engagers for immunotherapy of hematological Malignancies. J Hematol Oncol. (2023) 16:83. doi: 10.1186/s13045-023-01482-w PubMed DOI PMC

Dhillon S. Tarlatamab. First approval Drugs. (2024) 84:995–1003. doi: 10.1007/s40265-024-02070-z PubMed DOI

Wahlin BE, Brody J, Phillips T, Costello R, Lugtenburg P, Cordoba R, et al. . Subcutaneous epcoritamab with GemOX induced high response rates in patients with relapsed/refractory diffuse large B-cell lymphoma ineligible for autologous stem cell transplant. HemaSphere. (2022) 6:1099–100. doi: 10.1097/01.HS9.0000847716.29326.a8 DOI

Moreau P, Garfall AL, van de Donk NWCJ, Nahi H, San-Miguel JF, Oriol A, et al. . Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. (2022) 387:495–505. doi: 10.1056/NEJMoa2203478 PubMed DOI PMC

Goebeler ME, Bargou RC. T cell-engaging therapies — BiTEs and beyond. Nat Rev Clin Oncol. (2020) 17:418–34. doi: 10.1038/s41571-020-0347-5 PubMed DOI

Friedrich MJ, Neri P, Kehl N, Michel J, Steiger S, Kilian M, et al. . The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell. (2023) 41:711–25. doi: 10.1016/j.ccell.2023.02.008 PubMed DOI

Rolin C, Zimmer J. Bridging the gap with multispecific immune cell engagers in cancer and infectious diseases. Cell Mol Immunol. (2024) 21:643–61. doi: 10.1038/s41423-024-01176-4 PubMed DOI PMC

Coyle L, Morley NJ, Rambaldi A, Mason KD, Verhoef G, Furness CL, et al. . Open-label, phase 2 study of blinatumomab as second salvage therapy in adults with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Leuk Lymphoma. (2020) 61:2103–12. doi: 10.1080/10428194.2020.1759055 PubMed DOI

Ravandi F, Bashey A, Foran J, Stock W, Mawad R, Short N, et al. . Phase 1 study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. (2023) 7:6492–505. doi: 10.1182/bloodadvances.2023010956 PubMed DOI PMC

Michalk I, Feldmann A, Koristka S, Arndt C, Cartellieri M, Ehninger A, et al. . Characterization of a novel single-chain bispecific antibody for retargeting of T Cells to tumor cells via the TCR co-receptor CD8. PloS One. (2014) 9. doi: 10.1371/journal.pone.0095517 PubMed DOI PMC

Maghsoodi N, Zareinejad M, Golestan A, Mahmoudi Maymand E, Ramezani A. Anti-CD19/CD8 bispecific T cell engager for the potential treatment of B cell Malignancies. Cell Immunol. (2023), 393–4. doi: 10.1016/j.cellimm.2023.104787 PubMed DOI

Zeng Z, Roobrouck A, Deschamps G, Bonnevaux H, Guerif S, De Brabandere V, et al. . Dual-targeting CD33/CD123 NANOBODY T-cell engager with potent anti-AML activity and good safety profile. Blood Adv. (2024) 8:2059–73. doi: 10.1182/bloodadvances.2023011858 PubMed DOI PMC

Harper T, Sharma A, Kaliyaperumal S, Fajardo F, Hsu K, Liu L, et al. . Characterization of an anti-CD70 half-life extended bispecific T-cell engager (HLE-biTE) and associated on-target toxicity in cynomolgus monkeys. Toxicological Sci. (2022) 189:32–50. doi: 10.1093/toxsci/kfac052 PubMed DOI

Szijj PA, Gray MA, Ribi MK, Bahou C, Nogueira JCF, Bertozzi CR, et al. . Chemical generation of checkpoint inhibitory T cell engagers for the treatment of cancer. Nat Chem. (2023) 15:1636–47. doi: 10.1038/s41557-023-01280-4 PubMed DOI PMC

Correnti CE, Laszlo CL, de van der Schueren WJ, Godwin CD, Bandaranayake A, Busch MA. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia. (2018) 1:1239–43. doi: 10.1038/s41375-018-0014-3 PubMed DOI PMC

Austin RJ, Lemon BD, Aaron WH, Barath M, Culp PA, DuBridge RB, et al. . Wesche H.TriTACs, a novel class of T-cell-engaging protein constructs designed for the treatment of solid tumors. Mol Cancer Ther. (2021) 20:109–20. doi: 10.1158/1535-7163.MCT-20-0061 PubMed DOI

Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol. (2024) 21:1089–108. doi: 10.1038/s41423-024-01207-0 PubMed DOI PMC

Sterner RC, Sterner RM. CAR-T cell therapy : current limitations and potential strategies. Blood Cancer J. (2021) 11:69. doi: 10.1038/s41408-021-00459-7 PubMed DOI PMC

Wei F, Cheng X, Xue JZ, Xue S. Emerging strategies in TCR-engineered T cells. Front Immunol. (2022) 13:850358. doi: 10.3389/fimmu.2022.850358 PubMed DOI PMC

He W, Cui K, Farooq MA, Huang N, Zhu S, Jiang D, et al. . TCR-T cell therapy for solid tumors : challenges and emerging solutions. Front Pharmacol. (2025) 16:1493346. doi: 10.3389/fphar.2025.1493346 PubMed DOI PMC

Hussein MS, Li Q, Mao R, Peng Y. TCR T cells overexpressing c-Jun have better functionality with improved tumor infiltration and persistence in hepatocellular carcinoma. Front Immunol. (2023) 14:1114770. doi: 10.3389/fimmu.2023.1114770 PubMed DOI PMC

Li J, Zhang Y, Fu T, Xing G, Cai H, Li K, et al. . Clinical advances and challenges associated with TCR-T cell therapy for cancer treatment. Front Immunol. (2024) 15:1487782. doi: 10.3389/fimmu.2024.1487782 PubMed DOI PMC

Zhao Y, Deng J, Rao S, Guo S, Shen J, Du F, et al. . Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: progressions and challenges. Cancers. (2022) 14. doi: 10.3390/cancers14174160 PubMed DOI PMC

Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, et al. . Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol. (2022) 13:1018962. doi: 10.3389/fimmu.2022.1018962 PubMed DOI PMC

Creelan BC, Wang C, Teer JK, Toloza EM, Yao J, Kim S, et al. . Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat Med. (2021) 27:1410–8. doi: 10.1038/s41591-021-01462-y PubMed DOI PMC

Völzke C, Ehrhardt L, Fischer L, Maul P, Wenzel C, Riabinska A, et al. . Clinical-scale, modular manufacturing of tumor-reactive TILs using a closed and automated culture system. Front Immunol. (2024) 15:1483254. doi: 10.3389/fimmu.2024.1483254 PubMed DOI PMC

Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, et al. . A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE(R)) antibody construct, in patients with refractory solid tumors. Oncoimmunology. (2018) 7:e1450710. doi: 10.1080/2162402X.2018.1450710 PubMed DOI PMC

Moore PA, Zhang W, Rainey GJ, Burke S, Li H, Huang L, et al. . Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. (2011) 117:4542–51. doi: 10.1182/blood-2010-09-306449 PubMed DOI

Fisher TS, Hooper AT, Lucas J, Clark TH, Rohner AK, Peano B, et al. . A CD3-bispecific molecule targeting P-cadherin demonstrates T cell-mediated regression of established solid tumors in mice. Cancer Immunol Immunother. (2018) 67:247–59. doi: 10.1007/s00262-017-2081-0 PubMed DOI PMC

Reusch U, Duell J, Ellwanger K, Herbrecht C, Knackmuss SHJ, Fucek I, et al. . A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19+ tumor cells. MAbs. (2015) 7:584–604. doi: 10.1080/19420862.2015.1029216 PubMed DOI PMC

Ellwanger K, Reusch U, Fucek I, Knackmuss S, Weichel M, Gantke T, et al. . Highly specific and effective targeting of EGFRvIII-positive tumors with TandAb antibodies. Frontiers in Oncology. (2017) 7(MAY):1–17. doi: 10.3389/fonc.2017.00100 PubMed DOI PMC

Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T, et al. . Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: Reversing a T-cell-induced immune escape mechanism. Leukemia. (2016) 30:484–91. doi: 10.1038/leu.2015.214 PubMed DOI

Horn LA, Ciavattone NG, Atkinson R, Woldergerima N, Wolf J, Clements VK, et al. . CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1+ tumor cells, and extends the survival of tumor-bearing humanized mice. Oncotarget. (2017) 8:57964–80. doi: 10.18632/oncotarget.19865 PubMed DOI PMC

Compte M, Harwood SL, Muñoz IG, Navarro R, Zonca M, Perez-Chacon G, et al. . A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nature Communications. (2018) 9(1). doi: 10.1038/s41467-018-07195-w PubMed DOI PMC

Choi BD, Yu X, Castano AP, Bouffard AA, Schmidts A, Larson RC, et al. . CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. (2019) 37:1049–58. doi: 10.1038/s41587-019-0192-1 PubMed DOI

Choi BD, Gerstner ER, Frigault MJ, Leick MB, Mount CW, Balaj L, et al. . Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N Engl J Med. (2024) 390:1290–8. doi: 10.1056/NEJMoa2314390 PubMed DOI PMC

Lawrence R, Cayatte C, Izuzquiza Fernandez M, Rata S, Ciucci T, Lin W, et al. . Pre-Clinical Evaluation of AZD5492, a Novel CD8-Guided T Cell Engager, for B-Non Hodgkin Lymphoma Indications. BLOOD. (2024) 144(November):670–671. doi: 10.1182/blood-2024-194041 DOI

Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther. (2022) 17:. doi: 10.1038/s41392-022-00951-x PubMed DOI PMC

Zhu H, Zhang W, Guo Q, Fan R, Luo G. Engineered oncolytic virus expressing targeting BiTE enhances cell immune response. J ImmunoTher Cancer. (2024) 12:1–13. doi: 10.1136/jitc-2024-009901 PubMed DOI PMC

Taha Z, Crupi MJF, Alluqmani N, MacKenzie D, Vallati S, Whelan JT, et al. . Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnostic immunotherapy. Nat Commun. (2024) 15:1–20. doi: 10.1038/s41467-024-51498-0 PubMed DOI PMC

Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK, Nollau P, et al. . Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. (2017) 129:100–4. doi: 10.1182/blood-2016-05-718395 PubMed DOI

Bromley SK, Burack WR, Kenneth G, Somersalo K, Sims TN, Sumen C, et al. . Immunological synapse. Annu Rev Immunol. (2001) 19:375–96. doi: 10.1146/annurev.immunol.19.1.375 PubMed DOI

Scott EM, Jacobus EJ, Lyons B, Frost S, Freedman JD, Dyer A, et al. . Duffy MR.Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J Immunother Cancer. (2019) 7:320. doi: 10.1186/s40425-019-0807-6 PubMed DOI PMC

Xiao X, Cheng Y, Zheng X, Fang Y, Zhang Y, Sun R, et al. . Bispecific NK-cell engager targeting BCMA elicits stronger antitumor effects and produces less proinflammatory cytokines than T-cell engager. Front Immunol. (2023) 14:1113303. doi: 10.3389/fimmu.2023.1113303 PubMed DOI PMC

Hernandez-Hoyos G, Sewell T, Bader R, Bannink J, Chenault RA, Daugherty M, et al. . MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of metastatic castration-resistant prostate cancer. Mol Cancer Ther. (2016) 15:2155–65. doi: 10.1158/1535-7163.MCT-15-0242 PubMed DOI

Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B, et al. . Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. Ther Adv Urol. (2023) 15:17562872231182219. doi: 10.1177/17562872231182219 PubMed DOI PMC

Stadler CR, Ellinghaus U, Fischer L, Bähr-Mahmud H, Rao M, Lindemann C, et al. . Preclinical efficacy and pharmacokinetics of an RNA-encoded T cell-engaging bispecific antibody targeting human claudin 6. Sci Transl Med. (2024) 16:eadl2720. doi: 10.1126/scitranslmed.adl2720 PubMed DOI

Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, et al. . A mass spectrometric-derived cell surface protein atlas. PloS One. (2015) 10:1–22. doi: 10.1371/journal.pone.0121314 PubMed DOI PMC

Berman DM, Bell JI. Redirecting polyclonal T cells against cancer with soluble T-cell receptors. Clin Cancer Res. (2022) 29:OF1–8. doi: 10.1158/1078-0432.ccr-22-0028 PubMed DOI PMC

Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. Front Immunol. (2019) 10:909. doi: 10.3389/fimmu.2019.00909 PubMed DOI PMC

Novotny J, Ganju RK, Smiley ST, Hussey RE, Luther MA, Recny MA, et al. . A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. Proc Natl Acad Sci United States America. (1991) 88:8646–50. doi: 10.1073/pnas.88.19.8646 PubMed DOI PMC

Augsberger C, Hänel G, Xu W, Pulko V, Hanisch LJ, Augustin A, et al. . Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody. Blood. (2021) 138:2655–69. doi: 10.1182/blood.2020010477 PubMed DOI PMC

Chervin AS, Stone JD, Konieczna I, Calabrese KM, Wang N, Haribhai D, et al. . Reilly EB.ABBV-184: A novel survivin-specific TCR/CD3 bispecific T-cell engager is active against both solid tumor and hematologic Malignancies. Mol Cancer Ther. (2023) 22:903–12. doi: 10.1158/1535-7163.MCT-22-0770 PubMed DOI

van Diest E, Nicolasen MJT, Kramer L, Zheng J, Hernández-López P, Beringer DX. Kuball J.The making of multivalent gamma delta TCR anti-CD3 bispecific T cell engagers. Front Immunol. (2023) 13:1052090. doi: 10.3389/fimmu.2022.1052090 PubMed DOI PMC

Yarmarkovich M, Marshall QF, Warrington JM, Premaratne R, Farrel A, Groff D, et al. . Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature. (2023) 599:477–84. doi: 10.1038/s41586-021-04061-6 PubMed DOI PMC

Shah K, Leandro M, Cragg M, Kollert F, Schuler F, Klein C. Disrupting B and T cell Collaboration in Autoimmune Disease : T cell engagers versus CAR T cell therapy. Clin Exp Immunol. (2024) 217:1–26. doi: 10.1093/cei/uxae031 PubMed DOI PMC

Leone GM, Mangano K, Petralia MC, Nicoletti F, Past FP. Present and (Foreseeable) future of biological anti-TNF alpha therapy. J Clin Med. (2023) 12:1630. doi: 10.3390/jcm12041630 PubMed DOI PMC

Scott LJ. Tocilizumab: A review in rheumatoid arthritis. Drugs. (2017) 77:1865–79. doi: 10.1007/s40265-017-0829-7 PubMed DOI PMC

Armstrong AW, C.Pathophysiology R. Clinical presentation, and treatment of psoriasis: A review. JAMA. (2020) 323:1945–60. doi: 10.1001/jama.2020.4006 PubMed DOI

Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet. (2023) 402:571–84. doi: 10.1016/S0140-6736(23)00966-2 PubMed DOI

Yoshida S, Miyata M, Suzuki E, Kanno T, Sumichika Y, Saito K, et al. . Safety of JAK and IL-6 inhibitors in patients with rheumatoid arthritis: a multicenter cohort study. Front Immunol. (2023) 14:1267749. doi: 10.3389/fimmu.2023.1267749 PubMed DOI PMC

Parigi S, Licari A, Manti S, Marseglia GL, Tosca MA, Miraglia Del Giudice M, et al. . Tuberculosis and TNF-alpha inhibitors in children: how to manage a fine balance. Acta BioMed. (2020) 91:e2020009. doi: 10.23750/abm.v91i11-S.10311 PubMed DOI PMC

de Sèze J, Maillart E, Gueguen A, Laplaud DA, Michel L, Thouvenot E, et al. . Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front Immunol. (2023) 14:1004795. doi: 10.3389/fimmu.2023.1004795 PubMed DOI PMC

Schuh E, Berer K, Mulazzani M, Feil K, Meinl I, Lahm H, et al. . Features of human CD3+CD20+ T cells. J Immunol. (2016) 197:1111–7. doi: 10.4049/jimmunol.1600089 PubMed DOI

Bacac M, Colombetti S, Herter S, Sam J, Perro M, Chen S, et al. . CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic Malignancies. Clin Cancer Res. (2018) 24:4785–97. doi: 10.1158/1078-0432.CCR-18-0455 PubMed DOI

Cao HY, Chen H, Liu SB, Gong WJ, Qian CS, Zhang TT, et al. . Case Report: Blinatumomab therapy for the treatment of B-cell acute lymphoblastic leukemia patients with central nervous system infiltration. Front Immunol. (2023) 14:1181620. doi: 10.3389/fimmu.2023.1181620 PubMed DOI PMC

Stathopoulos P, Kumar A, Nowak RJ. O’Connor KCAutoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight. (2017) 2:e94263. doi: 10.1172/jci.insight.94263 PubMed DOI PMC

Cree BAC, Bennett JL, Kim HJ, Weinshenker BG, Pittock SJ, Wingerchuk DM, et al. . N-MOmentum study investigators. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. (2019) 394:1352–63. doi: 10.1016/S0140-6736(19)31817-3 PubMed DOI

Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. . Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. (2022) 28:2124–32. doi: 10.1038/s41591-022-02017-5 PubMed DOI

Müller F, Boeltz S, Knitza J, Aigner M, Völkl S, Kharboutli S, et al. . CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet. (2023) 401:815–8. doi: 10.1016/S0140-6736(23)00023-5 PubMed DOI

Müller F, Taubmann J, Bucci L, Wilhelm A, Bergmann C, Völkl S, et al. . Schett G.CD19 CAR T-cell therapy in autoimmune disease - A case series with follow-up. N Engl J Med. (2024) 390:687–700. doi: 10.1056/NEJMoa2308917 PubMed DOI

Tenspolde M, Zimmermann K, Weber LC, Hapke M, Lieber M, Dywicki J, et al. . Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun. (2019) 103:102289. doi: 10.1016/j.jaut.2019.05.017 PubMed DOI

Kretschmann S, Völkl S, Reimann H, Krönke G, Schett G, Achenbach S, et al. . Successful generation of CD19 chimeric antigen receptor T cells from patients with advanced systemic lupus erythematosus. Transplant Cell Ther. (2023) 29:27–33. doi: 10.1016/j.jtct.2022.10.004 PubMed DOI

d’Argouges S, Wissing S, Brandl C, Prang N, Lutterbuese R, Kozhich A, et al. . Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res. (2009) 33:465–73. doi: 10.1016/j.leukres.2008.08.025 PubMed DOI

Dingfelder J, Aigner M, Taubmann J, Minopoulou I, Park S, Kaplan CD, et al. . Fully human anti-CD19 CAR T cells derived from systemic lupus erythematosus patients exhibit cytotoxicity with reduced inflammatory cytokine production. Transplant Cell Ther. (2024) 30:582. doi: 10.1016/j.jtct.2024.03.023 PubMed DOI

Bucci L, Hagen M, Rothe T, Raimondo MG, Fagni F, Tur C, et al. . Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat Med. (2024) 30:1593–601. doi: 10.1038/s41591-024-02964-1 PubMed DOI

Pollmann R, Walter E, Schmidt T, Waschke J, Hertl M, Möbs C, et al. . Identification of autoreactive B cell subpopulations in peripheral blood of autoimmune patients with pemphigus vulgaris. Front Immunol. (2019) 10:1375. doi: 10.3389/fimmu.2019.01375 PubMed DOI PMC

Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, et al. . Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. (2016) 353:179–84. doi: 10.1126/science.aaf6756 PubMed DOI PMC

Perico L, Casiraghi F, Sônego F, Todeschini M, Corna D, Cerullo D, et al. . Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front Immunol. (2024) 15:1335998. doi: 10.3389/fimmu.2024.1335998 PubMed DOI PMC

Perico L, Casiraghi F, Sônego F, Todeschini M, Corna D, Cerullo D, et al. . Corrigendum: Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front Immunol. (2025) 15:1335998. doi: 10.3389/fimmu.2024.1335998 PubMed DOI PMC

Ferrari M, Righi M, Baldan V, Wawrzyniecka P, Bulek A, Kinna A, et al. . Structure-guided engineering of immunotherapies targeting TRBC1 and TRBC2 in T cell Malignancies. Nat Commun. (2024) 15:1583. doi: 10.1038/s41467-024-45854-3 PubMed DOI PMC

Nichakawade TD, Ge J, Mog BJ, Lee BS, Pearlman AH, Hwang MS, et al. . TRBC1-targeting antibody–drug conjugates for the treatment of T cell cancers. Nature. (2024) 628:416–23. doi: 10.1038/s41586-024-07233-2 PubMed DOI PMC

Zhang C, Palashati H, Rong Z, Lin N, Shen L, Liu Y, et al. . Pre-depletion of TRBC1+ T cells promotes the therapeutic efficacy of anti-TRBC1 CAR-T for T-cell Malignancies. Mol Cancer. (2020) 19:162. doi: 10.1186/s12943-020-01282-7 PubMed DOI PMC

Chiocchia G, Boissier MC. Fournier C.Therapy against murine collagen-induced arthritis with T cell receptor V beta-specific antibodies. Eur J Immunol. (1991) 21:2899–905. doi: 10.1002/eji.1830211202 PubMed DOI

Liu Z, Cort L, Eberwine R, Herrmann T, Leif JH, Greiner DL, et al. . Prevention of type 1 diabetes in the rat with an allele-specific anti-T-cell receptor antibody: Vβ13 as a therapeutic target and biomarker. Diabetes. (2012) 61:1160–8. doi: 10.2337/db11-0867 PubMed DOI PMC

Britanova OV, Lupyr KR, Staroverov DB, Shagina IA, Aleksandrov AA, Ustyugov YY, et al. . Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis. Nat Med. (2023) 29:2731–6. doi: 10.1038/s41591-023-02613-z PubMed DOI PMC

Yang X, Garner LI, Zvyagin IV, Paley MA, Komech EA, Jude KM, et al. . Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature. (2022) 612:771–7. doi: 10.1038/s41586-022-05501-7 PubMed DOI PMC

Lila AV, Dubinina TV, Tolkacheva DG, Sapozhnikov KV, Sableva NA, Morozova MA, et al. . Comparative analysis of the efficacy of seniprutug (BCD-180) and adalimumab in the treatment of active radiographic axial spondyloarthritis: results of a systematic review and matching-adjusted indirect comparison. Modern Rheumatol J. (2024) 18:33–40. doi: 10.14412/1996-7012-2024-2-33-40 DOI

Paul S, Pearlman AH, Douglass J, Mog BJ, Hsiue EH, Hwang MS, et al. . TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci Transl Med. (2021) 13:eabd3595. doi: 10.1126/scitranslmed.abd3595 PubMed DOI PMC

Li F, Zhang H, Wang W, Yang P, Huang Y, Zhang J, et al. . T cell receptor β-chain-targeting chimeric antigen receptor T cells against T cell Malignancies. Nat Commun. (2022) 13:4334. doi: 10.1038/s41467-022-32092-8 PubMed DOI PMC

Glavaris S, Pearlman A, Liu J, Ge J, Xia Y, Kaeo K, et al. . TRBV9-targeted bispecific T cell-engaging antibodies to reset the autoreactive T cell compartment in spondyloarthritis and HLA-DQ8 celiac disease [abstract. Arthritis Rheumatol. (2024) 76:1707.

Vincent BG, Young EF, Buntzman AS, Stevens R, Kepler TB, Tisch RM, et al. . Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in nonobese diabetic mice. J Immunol. (2010) 184:4196–204. doi: 10.4049/jimmunol.0903931 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...