Using species ranges and macroeconomic data to fill the gap in costs of biological invasions
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40419738
DOI
10.1038/s41559-025-02697-5
PII: 10.1038/s41559-025-02697-5
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- zachování přírodních zdrojů * ekonomika MeSH
- zavlečené druhy * ekonomika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Biological invasions threaten global biodiversity, human well-being and economies. Many regional and taxonomic syntheses of monetary costs have been produced recently but with important knowledge gaps owing to uneven geographic and taxonomic research intensity. Here we combine species distribution models, macroeconomic data and the InvaCost database to produce the highest resolution spatio-temporal cost estimates currently available to bridge these gaps. From a subset of 162 invasive species with 'highly reliable' documented costs at the national level, our interpolation focuses on countries that have not reported any costs despite the known presence of invasive species. This analysis demonstrates a substantial underestimation, with global costs potentially estimated to be 1,646% higher for these species than previously recorded. This discrepancy was uneven geographically and taxonomically, respectively peaking in Europe and for plants. Our results showed that damage costs were primarily driven by gross domestic product, human population size, agricultural area and environmental suitability, whereas management expenditure correlated with gross domestic product and agriculture areas. We also found a lag time for damage costs of 46 years, but management spending was not delayed. The methodological predictive approach of this study provides a more complete view of the economic dimensions of biological invasions and narrows the global disparity in invasion cost reporting.
AMURE University of Western Brittany Plouzané France
Bieler School of Environment McGill University Montreal Quebec Canada
CEE M University of Montpellier CNRS INRAE Instit Agro Montpellier France
Department of Biology McGill University Montreal Quebec Canada
Department of Botany Institute of Ecology and Earth Science University of Tartu Tartu Estonia
Estación Biológica de Doñana CSIC Seville Spain
GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel Kiel Germany
Institute for Biochemistry and Biology University of Potsdam Potsdam Germany
Institute of Biology Freie Universität Berlin Berlin Germany
Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
Marine Policy Center Woods Hole MA USA
School of Biological Sciences Faculty of Science Monash University Clayton Victoria Australia
Université Paris Saclay CNRS AgroParisTech Ecologie Société Evolution Gif sur Yvette France
Zobrazit více v PubMed
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020). PubMed DOI
Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207 (2019). DOI
Roy, H. E., Pauchard, A., Stoett, P. & Renard Truong, T. Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Zenodo https://doi.org/10.5281/zenodo.7430682 (2023).
Turbelin, A. J. et al. Biological invasions are as costly as natural hazards. Perspect. Ecol. Conserv. 21, 143–150 (2023).
Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021). PubMed DOI
Ahmed, D. A. et al. Recent advances in availability and synthesis of the economic costs of biological invasions. Bioscience 73, 560–574 (2023). PubMed DOI PMC
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017). PubMed DOI PMC
Haubrock, P. J. et al. Geographic and taxonomic trends of rising biological invasion costs. Sci. Total Environ. 817, 152948 (2022). PubMed DOI
Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7, 277 (2020). PubMed DOI PMC
Crystal-Ornelas, R. et al. Economic costs of biological invasions within North America. NeoBiota 67, 485–510 (2021). DOI
Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021). PubMed DOI
Angulo, E. et al. Non-English languages enrich scientific knowledge: the example of economic costs of biological invasions. Sci. Total Environ. 775, 144441 (2021). PubMed DOI
Nuñez, M. A., Chiuffo, M. C., Pauchard, A. & Zenni, R. D. Making ecology really global. Trends Ecol. Evol. 36, 766–769 (2021). PubMed DOI
Elith, J. In Invasive Species: Risk Assessment and Management (eds. Robinson, A. P. et al.) (Cambridge Univ. Press, 2017).
Della Venezia, L., Samson, J. & Leung, B. The rich get richer: invasion risk across North America from the aquarium pathway under climate change. Divers. Distrib. 24, 285–296 (2018). DOI
Parker, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19 (1999). DOI
Essl, F. et al. Potential sources of time lags in calibrating species distribution models. J. Biogeogr. 51, 89–102 (2023). PubMed DOI PMC
Henry, M. et al. Unveiling the hidden economic toll of biological invasions in the European Union. Environ. Sci. Eur. 35, 1–16 (2023). DOI
Courtois, P., Figuieres, C., Mulier, C. & Weill, J. A cost–benefit approach for prioritizing invasive species. Ecol. Econ. 146, 607–620 (2018). DOI
Newman, R. & Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 14, 6103 (2023). PubMed DOI PMC
Briski, E., Drake, D. A. R., Chan, F. T., Bailey, S. A. & MacIsaac, H. J. Variation in propagule and colonization pressures following rapid human‐mediated transport: implications for a universal assemblage‐based management model. Limnol. Oceanogr. 59, 2068–2076 (2014). DOI
Turbelin, A. J. et al. Biological invasions as burdens to primary economic sectors. Glob. Environ. Change 87, 102858 (2024). DOI
Boscutti, F., Sigura, M., De Simone, S. & Marini, L. Exotic plant invasion in agricultural landscapes: a matter of dispersal mode and disturbance intensity. Appl. Veg. Sci. 21, 250–257 (2018). DOI
Soto, I. et al. The wild cost of invasive feral animals worldwide. Sci. Total Environ. 912, 169281 (2024). PubMed DOI
Wang, S., Deng, T., Zhang, J. & Li, Y. Global economic costs of mammal invasions. Sci. Total Environ. 857, 159479 (2023). PubMed DOI
Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011). PubMed DOI
Ahmed, D. A. et al. Managing biological invasions: the cost of inaction. Biol. Invasions 24, 1927–1946 (2022). DOI
Haubrock, P. J., Cuthbert, R. N., Ricciardi, A., Diagne, C. & Courchamp, F. Economic costs of invasive bivalves in freshwater ecosystems. Diversity Distrib. 28, 1010–1021 (2022). DOI
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020). PubMed DOI
Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021). DOI
Bradshaw, C. J. et al. Damage costs from invasive species exceed management expenditure in nations experiencing lower economic activity. Ecol. Econ. 220, 108166 (2024). DOI
Hudgins, E. J. et al. Unevenly distributed biological invasion costs among origin and recipient regions. Nat. Sustain. 6, 1113–1124 (2023). DOI
Novoa, A. et al. Global costs of plant invasions must not be underestimated. NeoBiota 69, 75–78 (2021). DOI
Zhang, C. & Boyle, K. J. The effect of an aquatic invasive species (Eurasian watermilfoil) on lakefront property values. Ecol. Econ. 70, 394–404 (2010). DOI
Lazzaro, L. et al. Invasive alien plant impacts on human health and well-being. in Invasive Species and Human Health (eds. Mazza, G. & Tricario, E.) pp. 16–33 (CAB International, 2018).
Cuthbert, R. et al. Economic impact disharmony in global biological invasions. Sci. Total Environ. 913, 169622 (2024). PubMed DOI
Heringer, G. et al. Economic costs of invasive non-native species in urban areas: an underexplored financial drain. Sci. Total Environ. 917, 170336 (2024). PubMed DOI
Soto, I. et al. Global economic costs of herpetofauna invasions. Sci. Rep. 12, 10829 (2022). PubMed DOI PMC
Parkes, J. P. & Panetta, F. D. Eradication of invasive species: progress and emerging issues in the 21st century. in Invasive Species Management. A Handbook of Principles and Techniques. 47–60 (Oxford Univ. Press, 2009).
Nguyen, D. & Leung, B. How well do species distribution models predict occurrences in exotic ranges? Glob. Ecol. Biogeogr. 31, 1051–1065 (2022). DOI
Kourantidou, M. et al. The economic costs, management and regulation of biological invasions in the Nordic countries. J. Environ. Manag. 324, 116374 (2022). DOI
Leroy, B. et al. Analysing economic costs of invasive alien species with the invacost R package. Methods Ecol. Evol. 13, 1930–1937 (2022). DOI
Global Biodiversity Information Facility (GBIF, 2023); https://www.gbif.org
Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009). PubMed DOI
Barbet‐Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo‐absences for species distribution models: how, where and how many? Methods Ecol. Evolution 3, 327–338 (2012). DOI
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI
Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 1–15 (2018). DOI
Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307 (2021). PubMed DOI PMC
CIESIN. Global Roads Open Access Data Set, Version 1 (gROADSv1) (NASA Socioeconomic Data and Applications Center, 2013); https://doi.org/10.7927/H4VD6WCT
Mainali, K. P. et al. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Glob. Change Biol. 21, 4464–4480 (2015). DOI
Naimi, B., Skidmore, A. K., Groen, T. A. & Hamm, N. A. S. On uncertainty in species distribution modelling. ITC dissertation, Univ. Twente (2015).
Wood, S. mgcv: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL (Chapman and Hall/CRC, 2017).
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017). DOI
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019). PubMed DOI PMC
Merow, C. et al. What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267–1281 (2014). DOI
Briski, E. et al. Does non-native diversity mirror earth’s biodiversity. Glob. Ecol. Biodivers. 33, 48–62 (2024). DOI
World Development Indicators (World Bank, 2023); www.data.worldbank.org
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2023); https://www.R-project.org/