Fluorescein-Functionalized Iridium(III) Complexes as Dual-Mode Type I Photosensitizers for Hypoxia-Tolerant Photodynamic and X-ray-Induced Therapy

. 2025 Jun 09 ; 64 (22) : 10894-10905. [epub] 20250527

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40423655

The development of photosensitizers that function effectively in hypoxic environments and enable deep-tissue treatment remains a significant challenge in photodynamic therapy (PDT). Here, we report two novel Ir(III) complexes functionalized with fluorescein designed as efficient Type I photosensitizers for both light-driven PDT and X-ray-induced PDT (X-PDT). By populating the triplet state of the fluorescein ligands, these complexes facilitate the generation of reactive oxygen species (ROS) through electron transfer, producing superoxide anion radicals (O2•-) and hydroxyl radicals (•OH) under irradiation. The complexes exhibit pronounced phototoxicity against cancer cells, particularly under hypoxic conditions, where oxygen-dependent Type II photosensitizers are less effective. Remarkably, these complexes also demonstrate direct X-ray activation, offering a solution for deep-tissue cancer treatment. The lead complex, PS1, outperforms existing systems by efficiently generating both singlet oxygen O2(1Δg) and free radicals, enabling synergistic Type I and II PDT effects. This work represents a major advancement in the design of oxygen-independent PDT agents by using fluorescein's triplet state, with potential applications in deep-tissue and hypoxic tumor environments.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...