Fluorescein-Functionalized Iridium(III) Complexes as Dual-Mode Type I Photosensitizers for Hypoxia-Tolerant Photodynamic and X-ray-Induced Therapy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- MeSH
- fluorescein * chemie farmakologie MeSH
- fotochemoterapie * MeSH
- fotosenzibilizující látky * farmakologie chemie chemická syntéza MeSH
- iridium * chemie farmakologie MeSH
- komplexní sloučeniny * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rentgenové záření MeSH
- screeningové testy protinádorových léčiv MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescein * MeSH
- fotosenzibilizující látky * MeSH
- iridium * MeSH
- komplexní sloučeniny * MeSH
- protinádorové látky * MeSH
- reaktivní formy kyslíku MeSH
The development of photosensitizers that function effectively in hypoxic environments and enable deep-tissue treatment remains a significant challenge in photodynamic therapy (PDT). Here, we report two novel Ir(III) complexes functionalized with fluorescein designed as efficient Type I photosensitizers for both light-driven PDT and X-ray-induced PDT (X-PDT). By populating the triplet state of the fluorescein ligands, these complexes facilitate the generation of reactive oxygen species (ROS) through electron transfer, producing superoxide anion radicals (O2•-) and hydroxyl radicals (•OH) under irradiation. The complexes exhibit pronounced phototoxicity against cancer cells, particularly under hypoxic conditions, where oxygen-dependent Type II photosensitizers are less effective. Remarkably, these complexes also demonstrate direct X-ray activation, offering a solution for deep-tissue cancer treatment. The lead complex, PS1, outperforms existing systems by efficiently generating both singlet oxygen O2(1Δg) and free radicals, enabling synergistic Type I and II PDT effects. This work represents a major advancement in the design of oxygen-independent PDT agents by using fluorescein's triplet state, with potential applications in deep-tissue and hypoxic tumor environments.
Citace poskytuje Crossref.org