Increased Donor-Derived Cell-Free DNA as a Predictor for the Early Detection of Antibody-Mediated Rejection Following Heart Transplantation
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
NU20-06-00061
the Ministry of Health of the Czech Republic
the Ministry of Health of the Czech Republic-DRO
IN 00023001
Institute for Clinical and Experimental Medicine-IKEM
PubMed
40478999
DOI
10.1111/ctr.70209
Knihovny.cz E-zdroje
- Klíčová slova
- SNP, biomarker, cfDNA, rejection, transplantation,
- MeSH
- biologické markery * krev MeSH
- časná diagnóza MeSH
- dárci tkání * MeSH
- dospělí MeSH
- isoprotilátky * imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- následné studie MeSH
- přežívání štěpu MeSH
- prognóza MeSH
- rejekce štěpu * diagnóza etiologie krev MeSH
- rizikové faktory MeSH
- transplantace srdce * škodlivé účinky MeSH
- volné cirkulující nukleové kyseliny * krev genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery * MeSH
- isoprotilátky * MeSH
- volné cirkulující nukleové kyseliny * MeSH
Plasma circulating donor-derived cell-free DNA (ddcfDNA) can be used to noninvasively monitor acute rejection of heart transplants (HTx). This study utilized digital droplet PCR to analyze ddcfDNA concentrations (measured in copies per milliliter) and the fractional abundance (%ddcfDNA) to differentiate between donor and recipient DNA on the basis of single nucleotide polymorphism (SNP) homozygosity. Seventy-seven patients participated in a study, providing 300 plasma samples. Both markers, mean ddcfDNA (cp/mL) and %ddcfDNA, showed similar decreasing trends following the HTx, (R2 < 0.2; p < 0.001). Significantly higher levels of ddcfDNA (cp/mL) and %ddcfDNA were observed during episodes of acute rejection (AR) compared to non-rejection samples (p < 0.001). Additionally, antibody-mediated rejection (AMR) was associated with increased %ddcfDNA levels compared to non-rejection and to acute cellular rejection samples (p < 0.001 and p < 0.01). A logistic regression model identified %ddcfDNA as an early predictor of AMR risk 10-19 days post-heart transplant (odds ratio 158, p < 0.02). Performance analysis established an optimal %ddcfDNA threshold of 0.125% for AMR detection, correctly identifying all patients without subsequent AMR. These findings suggest that early %ddcfDNA measurements post-HTx can accurately identify individuals unlikely to develop AMR during the first posttransplant year.
3rd Department of Internal Medicine 1st Faculty of Medicine Charles University Prague Czech Republic
Cardio Center Institute of Clinical and Experimental Medicine Prague Czech Republic
Department of Data Science Institute of Clinical and Experimental Medicine Prague Czech Republic
Experimental Medicine Center Institute of Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
J. Kobashigawa, A. Zuckermann, P. Macdonald, et al., Consensus Conference participants, “Report From a Consensus Conference on Primary Graft Dysfunction After Cardiac Transplantation,” Journal of Heart and Lung Transplantation 33, no. 4 (2014): 327–340, https://doi.org/10.1016/j.healun.2014.02.027.
M. I. Hertz, D. O. Taylor, E. P. Trulock, et al., “The Registry of the International Society for Heart and Lung Transplantation: Nineteenth Official Report,” Journal of Heart and Lung Transplantation 21 (2002): 950–970, https://doi.org/10.1016/s1053‐2498(02)00498‐9.
S. C. Stoica, F. Cafferty, M. Pauriah, et al., “The Cumulative Effect of Acute Rejection on Development of Cardiac Allograft Vasculopathy,” Journal of Heart and Lung Transplantation 25, no. 4 (2006): 420–425, https://doi.org/10.1016/j.healun.2005.11.449.
E. Raichlin, B. S. Edwards, W. K. Kremers, et al., “Acute Cellular Rejection and the Subsequent Development of Allograft Vasculopathy After Cardiac Transplantation,” Journal of Heart and Lung Transplantation 28, no. 4 (2009): 320–327, https://doi.org/10.1016/j.healun.2009.01.006.
M. E. Richmond, S. D. Zangwill, and S. J. Kindel, “Donor Fraction Cell‐Free DNA and Rejection in Adult and Pediatric Heart Transplantation,” Journal of Heart and Lung Transplantation 39, no. 5 (2020): 454–463, https://doi.org/10.1016/j.healun.2019.11.015.
K. K. Khush, J. Patel, S. Pinney, et al., “Noninvasive Detection of Graft Injury After Heart Transplant Using Donor‐Derived Cell‐Free DNA: A Prospective Multicenter Study,” American Journal of Transplantation 19, no. 10 (2019): 2889–2899, https://doi.org/10.1111/ajt.15339.
K. K. Khush, “Clinical Utility of Donor‐Derived Cell‐Free DNA Testing in Cardiac Transplantation,” Journal of Heart and Lung Transplantation 40, no. 6 (2021): 397–404, https://doi.org/10.1016/j.healun.2021.01.1564.
S. Agbor‐Enoh, P. Shah, I. Tunc, et al., GRAfT Investigators, “Cell‐Free DNA to Detect Heart Allograft Acute Rejection,” Circulation 143, no. 12 (2021): 1184–1197, https://doi.org/10.1161/CIRCULATIONAHA.120.049098.
I. De Vlaminck, H. A. Valantine, T. M. Snyder, et al., “Circulating Cell‐Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection,” Science Translational Medicine 6, no. 241 (2014): 241ra77, https://doi.org/10.1126/scitranslmed.3007803.
M. W. Snyder, M. Kircher, A. J. Hill, R. M. Daza, and J. Shendure, “Cell‐Free DNA Comprises an In Vivo Nucleosome Footprint That Informs Its Tissues‐of‐Origin,” Cell 164, no. 1‐2 (2016): 57–68, https://doi.org/10.1016/j.cell.2015.11.050.
M. Keller and S. Agbor‐Enoh, “Donor‐Derived Cell‐Free DNA for Acute Rejection Monitoring in Heart and Lung Transplantation,” Current Transplantation Report 8, no. 4 (2021): 351–358, https://doi.org/10.1007/s40472‐021‐00349‐8.
S. Agbor‐Enoh, Y. Wang, I. Tunc, et al., “Donor‐Derived Cell‐Free DNA Predicts Allograft Failure and Mortality After Lung Transplantation,” EBioMedicine 40 (2019): 541–553, https://doi.org/10.1016/j.ebiom.2018.12.029.
M. Keller, E. Bush, J. M. Diamond, et al., “Use of Donor‐Derived‐Cell‐Free DNA as a Marker of Early Allograft Injury in Primary Graft Dysfunction (PGD) to Predict the Risk of Chronic Lung Allograft Dysfunction (CLAD),” Journal of Heart and Lung Transplantation 40, no. 6 (2021): 488–493, https://doi.org/10.1016/j.healun.2021.02.008.
S. D. Zangwill, S. J. Kindel, W. S. Ragalie, et al., “Early Changes in Cell‐Free DNA Levels in Newly Transplanted Heart Transplant Patients,” Pediatric Transplantation 24, no. 1 (2020): e13622, https://doi.org/10.1111/petr.13622.
World Medical Association, “World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects,” JAMA 310, no. 20 (2013): 2191–2194, https://doi.org/10.1001/jama.2013.281053.
G. J. Berry, M. M. Burke, C. Andersen, et al., “The 2013 International Society for Heart and Lung Transplantation Working Formulation for the Standardization of Nomenclature in the Pathologic Diagnosis of Antibody‐Mediated Rejection in Heart Transplantation,” Journal of Heart and Lung Transplantation 32, no. 12 (2013): 1147–1162, https://doi.org/10.1016/j.healun.2013.08.011.
S. Stewart, G. L. Winters, M. C. Fishbein, et al., “Revision of the 1990 Working Formulation for the Standardization of Nomenclature in the Diagnosis of Heart Rejection,” Journal of Heart and Lung Transplantation 24 (2005): 1710–1720, https://doi.org/10.1016/j.healun.2005.03.019.
L. T. Cooper, K. L. Baughman, A. M. Feldman, et al., American Heart Association; American College of Cardiology; European Society of Cardiology, “The Role of Endomyocardial Biopsy in the Management of Cardiovascular Disease: A Scientific Statement From the American Heart Association, the American College of Cardiology, and the European Society of Cardiology,” Circulation 116 (2007): 2216–2233, https://doi.org/10.1161/CIRCULATIONAHA.107.186093.
D. Dlouha, J. Vymetalova, S. Novakova, P. Huckova, V. Lanska, and J. A. Hubacek, “Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients,” Genes (Basel) 13, no. 10 (2022): 1855, https://doi.org/10.3390/genes13101855.
J. Beck, M. Oellerich, and E. Schütz, “A Universal Droplet Digital PCR Approach for Monitoring of Graft Health After Transplantation Using a Preselected SNP Set,” Methods in Molecular Biology 1768 (2018): 335–348, https://doi.org/10.1007/978‐1‐4939‐7778‐9_19.
D. Dlouha, P. Huckova, E. Rohlova, J. Vymetalova, S. Novakova, and J. A. Hubacek, “Monitoring of Plasma Circulating Donor DNA Reflects Cardiac Graft Injury: Report of Two Cases,” Biomedical Reports 20, no. 3 (2024): 50, https://doi.org/10.3892/br.2024.1738.
M. Hidestrand, A. Tomita‐Mitchell, P. M. Hidestrand, et al., “Highly Sensitive Noninvasive Cardiac Transplant Rejection Monitoring Using Targeted Quantification of Donor‐Specific Cell‐Free Deoxyribonucleic Acid,” Journal of the American College of Cardiology 63, no. 12 (2014): 1224–1226, https://doi.org/10.1016/j.jacc.2013.09.029.
J. B. Whitlam, L. Ling, A. Skene, et al., “Diagnostic Application of Kidney Allograft‐Derived Absolute Cell‐Free DNA Levels During Transplant Dysfunction,” American Journal of Transplantation 19, no. 4 (2019): 1037–1049, https://doi.org/10.1111/ajt.15142.