PET/CT imaging of esophageal cancer targeting tumor cell specific αvβ6-integrin expression
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40540027
DOI
10.1007/s00259-025-07408-7
PII: 10.1007/s00259-025-07408-7
Knihovny.cz E-zdroje
- Klíčová slova
- Esophageal Cancer, Integrins, Positron Emission Tomography, Surveillance, Theranostics,
- Publikační typ
- časopisecké články MeSH
PURPOSE: To assess the potential of αvβ6-integrin as a theranostic target in esophageal cancer. METHODS: Membranous β6-integrin (ITGB6) expression was analyzed in 306 specimens of human esophageal squamous cell carcinoma (ESCC) obtained by immunohistochemistry (IHC) from 100 patient cases (1, 37, 58, and 4 of grade G1, G2, G3, and G4, respectively). Ga-68 labeling of D0103 was done manually for preclinical experiments and fully automated for clinical application. Preclinical characterization of Ga-68-D0103 was performed in SCID mice bearing subcutaneous xenografts of H2009 (αvβ6-positive) or MDA-MB-231 (αvβ6-negative) carcinoma cell lines, by ex vivo biodistribution (10, 30, 90, and 180 min p.i) and PET imaging (30, 90, and 180 min p.i.)., without and with co-injection of gelofusine (4% succinylated gelatin). A patient with type-II diabetes (f, 68y, 115 kg) with proximal G2 ESCC was investigated by Ga-68-D0103 PET/CT (193 MBq) at 15, 45, 90, and 104 min p.i.. RESULTS: 99% of ESCC cases were found β6-integrin positive by IHC, of which 48%, 31%, and 20% showed strong, moderate, and low ITGB6 expression, respectively, with no correlation to tumor grade. Ex vivo biodistribution of Ga-68-D0103 in H2009 xenografted mice after 30, 90, and 180 min showed tumor-to-blood ratios of 6.8, 37, and 124, respectively; tumor-to-muscle ratios of 12, 14, and 36, respectively; tumor-to-liver ratios of 10, 17, and 14, respectively; and tumor-to-pancreas ratios of 20, 47, and 56, respectively. Co-administration of gelofusine did not change the tumor uptake but reduced the kidney uptake by 89% (from 178%iA/g to 19.1%iA/g, 90 min p.i.), resulting in an 8.7-fold higher tumor/kidney ratio. µPET imaging in H2009 xenografted mice confirmed a high tumor uptake and low background already 30 min p.i.. Blockade biodistribution and µPET in αvβ6-(-) MDA-MB-231 mice demonstrated target specificity. Clinical PET/CT of a patient with ESCC showed increasing tracer uptake over time in the primary tumor (SUVmax 9.0 and 11.3 at 15 and 104 min p.i., respectively) and in a lymph node metastasis (SUVmax 19.5 and 28.3, respectively), and a decreasing blood pool activity (SUVmean 2.75 and 0.98, respectively). CONCLUSIONS: High (99%) membranous expression frequency and density on tumor cells underscores the potential of αvβ6-integrin as a theranostic target in ESCC, suggesting that αvβ6-integrin PET/CT imaging may adopt a role in re-staging and therapy guidance in this cancer type. The prolonged tumor retention furthermore indicates a therapeutic potential of αvβ6-integrin targeted radiopharmaceuticals when labeled with radionuclides such as lutetium-177, terbium-161, or actinium-225.
Czech Advanced Technology and Research Institute Palacký University Olomouc Olomouc Czech Republic
Institute of Pathology School of Medicine and Health Technical University of Munich Munich Germany
Institute of Pathology University Hospital Marburg 35043 Marburg Germany
Zobrazit více v PubMed
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48. PubMed DOI PMC
Brown NF, Marshall JF. Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers. 2019;11:1221. PubMed DOI PMC
Worthington JJ, Klementowicz JE, Travis MA. TGFβ: a sleeping giant awoken by integrins. Trends Biochem Sci. 2011;36:47–54. PubMed DOI
Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, et al. Force interacts with macromolecular structure in activation of TGF-β. Nature. 2017;542:55–9. PubMed DOI PMC
Ha T. Growth factor rattled out of its cage. Nature. 2017;542:40–1. PubMed DOI
Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, Hameed Zargar M, Afroze D. Transforming growth factor-beta (TGF-β) signaling in cancer-a betrayal within. Front Pharmacol. 2022;28(13):791272. DOI
Inman GJ. Switching TGFβ from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev. 2011;21:93–9. PubMed DOI
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell. 2009;137:87–98. PubMed DOI
Ahmed S, Bradshaw AD, Geta S, Dewan MZ, Xu R. The TGFβ/Smad4 signalling pathway in pancreatic carcinogenesis and its clinical significance. J Clin Med. 2017;6:5–15. PubMed DOI PMC
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6(1):8. PubMed DOI PMC
Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7. PubMed DOI PMC
Niu J, Li Z. The roles of integrin αvβ6 in cancer. Cancer Lett. 2017;403:128–37. PubMed DOI
Steiger K, Schlitter AM, Weichert W, Esposito I, Wester HJ, Notni J. Perspective of αvβ6-integrin imaging for clinical management of pancreatic carcinoma and its precursor lesions. Mol Imaging. 2017;16:1536012117709384. PubMed DOI PMC
Lawaetz M, Christensen A, Juhl K, Karnov K, Lelkaitis G, Kanstrup Fiehn AM, Kjaer A, von Buchwald C. Potential of uPAR, αvβ6 integrin, and tissue factor as targets for molecular imaging of oral squamous cell carcinoma: evaluation of nine targets in primary tumors and metastases by immunohistochemistry. Int J Mol Sci. 2023;24:3853. PubMed DOI PMC
Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS. αvβ6 integrin-A marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem. 2002;50:1371–80. PubMed DOI
Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, Weinreb PH, Fleuren GJ. Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol. 2007;212:316–24. PubMed DOI
Elayadi AN, Samli KN, Prudkin L, Liu YH, Bian A, Xie XJ, Wistuba II, Roth JA, McGuire MJ, Brown KC. A peptide selected by biopanning identifies the integrin αvβ6 as a prognostic biomarker for nonsmall cell lung cancer. Cancer Res. 2007;67:5889–95. PubMed DOI
Berghoff AS, Kovanda AK, Melchardt T, Bartsch R, Hainfellner JA, Sipos B, Schittenhelm J, Zielinski CC, Widhalm G, Dieckmann K, Weller M, Goodman SL, Birner P, Preusser M. αvβ3, αvβ5 and αvβ6 integrins in brain metastases of lung cancer. Clin Exp Metastasis. 2014;31:841–51. PubMed DOI
Meecham A, Cutmore LC, Protopapa P, Rigby LG, Marshall JF. Ligand-bound integrin αvβ6 internalisation and trafficking. Front Cell Dev Biol. 2022;10:920303. PubMed DOI PMC
Davis RA, Ganguly T, Harris R, Hausner SH, Kovacs L, Sutcliffe JL. Synthesis and evaluation of a monomethyl auristatin E─integrin αvβ6 binding peptide-drug conjugate for tumor targeted drug delivery. J Med Chem. 2023;66:9842–52. PubMed DOI PMC
Moore KM, Desai A, Delgado BL, Trabulo SMD, Reader C, Brown NF, Murray ER, Brentnall A, Howard P, Masterson L, Zammarchi F, Hartley JA, van Berkel PH, Marshall JF. Integrin αvβ6-specific therapy for pancreatic cancer developed from foot-and-mouth-disease virus. Theranostics. 2020;10:2930–42. PubMed DOI PMC
Altmann A, Haberkorn U, Siveke J. The latest developments in imaging of fibroblast activation protein. J Nucl Med. 2021;62:160–7. PubMed DOI
Schmidkonz C, Kuwert T, Atzinger A, Cordes M, Schett G, Ramming A, Götz T. Fibroblast activation protein inhibitor imaging in nonmalignant diseases: a new perspective for molecular imaging. J Nucl Med. 2022;63:1786–92. PubMed DOI
Dziadek S, Kraxner A, Cheng W-Y, Ou Yang T-H, Flores M, Theiss N, Tsao T-S, Andersson E, Harring SV, Bröske A-ME, Ceppi M, Teichgräber V, Charo J. Comprehensive analysis of fibroblast activation protein expression across 23 tumor indications: insights for biomarker development in cancer immunotherapies. Front Immunol. 2024;15:1352615. PubMed DOI PMC
Xin L, Gao J, Zheng Z, Chen Y, Lv S, Zhao Z, Yu C, Yang X, Zhang R. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front Oncol. 2021;11:648187. PubMed DOI PMC
Ryan M, Westendorf L, Meyer EB, Kostner HJ. WO2021113697A1.
Lyon RP, Jonas M, Frantz C, Trueblood ES, Yumul R, Westendorf L, Hale CJ, Stilwell JL, Yeddula N, Snead KM, Kumar V, Patilea-Vrana GI, Klussman K, Ryan MC. SGN-B6A: a new vedotin antibody-drug conjugate directed to integrin beta-6 for multiple carcinoma indications. Mol Cancer Ther. 2023;22:1444–53. PubMed DOI PMC
Di Leva FS, Tomassi S, Di Maro S, Reichart F, Notni J, Dangi A, Marelli UK, Brancaccio D, Merlino F, Wester HJ, Novellino E, Kessler H, Marinelli L. From a helix to a small cycle: metadynamics-inspired αvβ6 integrin selective ligands. Angew Chem Int Ed Engl. 2018;57:14645–9. PubMed DOI
Quigley NG, Tomassi S, Di Leva FS, Di Maro S, Richter F, Steiger K, Kossatz S, Marinelli L, Notni J. Click-chemistry (CuAAC) trimerization of an αvβ6 integrin targeting Ga-68-peptide: enhanced contrast for in-vivo PET imaging of human lung adenocarcinoma xenografts. ChemBioChem. 2020;21:2836–43. PubMed DOI PMC
Altmann A, Sauter M, Roesch S, Mier W, Warta R, Debus J, et al. Identification of a novel ITGα
Roesch S, Lindner T, Sauter M, Loktev A, Flechsig P, Müller M, et al. Comparison of the RGD motif-containing α
Müller M, Altmann A, Sauter M, Lindner T, Jäger D, Rathke H, et al. Preclinical evaluation of peptide-based radiotracers for integrin αvβ6-positive pancreatic carcinoma. Nuklearmedizin. 2019;58:309–18. PubMed DOI
Flechsig P, Lindner T, Loktev A, Roesch S, Mier W, Sauter M, et al. PET/CT imaging of NSCLC with a α
Kimura RH, Wang L, Shen B, Huo L, Tummers W, Filipp FV, et al. Evaluation of integrin α
Hausner SH, Bold RJ, Cheuy LY, Chew HK, Daly ME, Davis RA, et al. Preclinical development and first-in-human imaging of the integrin αvβ6 with [
Stangl S, Nguyen NT, Brosch-Lenz J, et al. Efficiency of succinylated gelatin and amino acid infusions for kidney uptake reduction of radiolabeled αvβ6-integrin targeting peptides: considerations on clinical safety profiles. Eur J Nucl Med Mol Imaging. 2024;51:3191–201. PubMed DOI PMC
Quigley NG, Czech N, Sendt W, Notni J. PET/CT imaging of pancreatic carcinoma targeting the “cancer integrin” αvβ6. Eur J Nucl Med Mol Imaging. 2021;48:4107–8. PubMed DOI PMC
Rehm J, Winzer R, Pretze M, Müller J, Notni J, Hempel S, Distler M, Folprecht G, Kotzerke J. αvβ6-integrin targeted PET/CT imaging in pancreatic cancer patients using
Quigley NG, Steiger K, Hoberück S, Czech N, Zierke MA, Kossatz S, Pretze M, Richter F, Weichert W, Pox C, Kotzerke J, Notni J. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the “Cancer Integrin” αvβ6 with Ga-68-Trivehexin. Eur J Nucl Med Mol Imaging. 2022;49:1136–47. PubMed DOI
Das SS, Ahlawat S, Thakral P, Malik D, Simecek J, Cb V, Koley M, Gupta J, Sen I. Potential efficacy of
Rehm J, Winzer R, Notni J, Hempel S, Distler M, Folprecht G, Kotzerke J. Concomitant metastatic head-and-neck cancer and pancreatic cancer assessed by αvβ6-integrin PET/CT using
Marafi F, Esmail AA, Alfeeli MA, Sadeq A.
Kuyumcu S, Denizmen D, Has-Simsek D, Poyanli A, Uzum AK, Buyukkaya F, Isik EG, Onder S, Aksakal N, Ozkan ZG, Sanli Y.
Denizmen Zorba D, Kuyumcu S, Kubat Uzum A, Isik EG, Sanli Y. Detection of recurrent parathyroid cancer using
Wu H, Li L, Xiao Z, Li C, He Y. αvβ6-integrin targeted [
Singhal T, Agrawal K, Mandal S, Parida GK. Cancer-specific integrin imaging with
Selçuk AN, Akçay K, Yaprak O, Kalaycı M, Kabasakal L, Beydağı G. Cancer integrin imaging with [
Kömek H, Güzel Y, Kaplan İ, Yilmaz EE, Can C. Superiority of
Sipos B, Hahn D, Carceller A, Piulats J, Hedderich J, Kalthoff H, Goodman SL, Kosmahl M, Klöppel G. Immunohistochemical screening for beta6-integrin subunit expression in adenocarcinomas using a novel monoclonal antibody reveals strong up-regulation in pancreatic ductal adenocarcinomas in vivo and in vitro. Histopathology. 2004;45:226–36. PubMed DOI
Petrik M, Knetsch PA, Knopp R, Imperato G, Ocak M, von Guggenberg E, Haubner R, Silbernagl R, Decristoforo C. Radiolabelling of peptides for PET, SPECT and therapeutic applications using a fully automated disposable cassette system. Nucl Med Commun. 2011;32:887–95. PubMed DOI
Rheinfrank T, Lebruška V, Stangl S, Vojtíčková M, Nguyen NT, Koller L, Šimeček J, Kubíček V, Kossatz S, Notni J. Three is a magic number: tailored clickable chelators used to determine optimal RGD-peptide multiplicity in αvβ6-integrin targeted
Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, et al. In-vivo PET imaging of the cancer integrin αvβ6 using
Kossatz S, Beer AJ, Notni J. It’s time to shift the paradigm: translation and clinical application of non-αvβ3 integrin targeting radiopharmaceuticals. Cancers. 2021;13:5958. PubMed DOI PMC
Data source: global cancer observatory (GCO), International agency for research on cancer (IARC), World health organization (WHO), https://gco.iarc.fr , retrieved in 09/2024.
Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik und therapie der plattenepithelkarzinome und adenokarzinome des ösophagus, kurzversion 4.0, 2023, AWMF-Registernummer: 021–023OL https://www.leitlinienprogramm-onkologie.de/leitlinien/oesophaguskarzinom/ ; retrieved in 09/2024.
Grille VJ, Campbell S, Gibbs JF, Bauer TL. Esophageal cancer: the rise of adenocarcinoma over squamous cell carcinoma in the Asian belt. J Gastrointest Oncol. 2021;12:S339–49. PubMed DOI PMC
de Gouw DJJM, Klarenbeek BR, Driessen M, Bouwense SAW, van Workum F, Fütterer JJ, Rovers MM, Ten Broek RPG, Rosman C. Detecting pathological complete response in esophageal cancer after neoadjuvant therapy based on imaging techniques: a diagnostic systematic review and meta-analysis. J Thorac Oncol. 2019;14:1156–71. PubMed DOI
Strik C, ten Broek RP, van der Kolk M, et al. Health-related quality of life and hospital costs following esophageal resection: a prospective cohort study. World J Surg Oncol. 2015;13:266. PubMed DOI PMC
Semenkovich TR, Meyers BF. Surveillance versus esophagectomy in esophageal cancer patients with a clinical complete response after induction chemoradiation. Ann Transl Med. 2018;6:81. PubMed DOI PMC
Lordick F, Mariette C, Haustermans K, Obermannová R, Arnold D, ESMO Guidelines Committee. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v50–7. PubMed DOI
Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46:983–95. PubMed
Bryant J, Day J, Whiteside G, Marshall C, Hyde C. A systematic review of the clinical and economic benefits of PET imaging in colorectal cancer. Nucl Med Commun. 2005;26:667–78.
Eyck BM, Onstenk BD, Noordman BJ, Nieboer D, Spaander MCW, Valkema R, Lagarde SM, Wijnhoven BPL, van Lanschot JJB. Accuracy of detecting residual disease after neoadjuvant chemoradiotherapy for esophageal cancer: a systematic review and meta-analysis. Ann Surg. 2020;271:245–56. PubMed DOI
Kwee RM. Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of
Andersson M, Johansson L, Minarik D, Leide-Svegborn S, Mattsson S. Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. EJNMMI Phys. 2014;1:1–13.
International commission of radiological protection: ICRP publication 106: radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP publication 53. Oxford: Elsevier; 2008.