Preparing O/W/O Emulsion for Curcumin (Curcuma longa) Delivery and In Vitro Digestibility Assay
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA/FT/2024/005
Tomas Bata University in Zlin, Czech Republic
PubMed
40565103
PubMed Central
PMC12192626
DOI
10.3390/ijms26125639
PII: ijms26125639
Knihovny.cz E-resources
- Keywords
- curcuma root powders, curcumin, digestibility, emulsions, encapsulation, particle size, stability,
- MeSH
- Curcuma * chemistry MeSH
- Emulsions chemistry MeSH
- Curcumin * chemistry administration & dosage MeSH
- Drug Delivery Systems * MeSH
- Oils chemistry MeSH
- Rheology MeSH
- Digestion MeSH
- Particle Size MeSH
- Water chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Emulsions MeSH
- Curcumin * MeSH
- Oils MeSH
- Water MeSH
In this study, simple oil-in-water emulsions (O/W) and multiple O/W/O emulsions were employed as carriers for a curcumin delivery system. The stability of emulsions was evaluated using DSC (differential scanning calorimetry), accompanied by particle size measurement by DLS (dynamic light scattering) and rheological analysis. The amount of freezable water (Wfs) in O/W emulsion was determined to be 80.4%, while that in O/W/O emulsion was 23.7%. Multiple emulsions had a more complex structure than simple emulsions, being characterized by higher stability with predominant loss modulus over storage modulus (G" > G'). The mean surface diameter for O/W emulsion was 198.7 ± 9.8 nm, being approximately two times lower than that for multiple emulsions. Curcumin in vitro digestibility was observed for both emulsions and, additionally, the digestibility of fresh and dried curcuma root powders was investigated. Multiple emulsions were found to be a superior matrix for curcumin delivery, with higher stability and emulsion digestibility of 50.6% for the stomach and small intestine. In vitro digestion of dried curcuma powders and curcuma root samples was monitored by HPLC (high-performance liquid chromatography). The DMD (dry matter digestibility) for dried curcuma powders ranged between 52.9% to 78.8%, and for fresh curcuma (KF) was 95.5%.
See more in PubMed
Hayakawa H., Minaniya Y., Ito K., Yamamoto Y., Fukuda T. Difference of Curcumin Content in Curcuma longa L. (Zingiberaceae) Caused by Hybridization with Other Curcuma Species. Am. J. Plant Sci. 2011;2:111–119. doi: 10.4236/ajps.2011.22013. DOI
Agrawal S., Nair R., Thomas M., Anjana G., Patel S.K., Uikey P., Birla S., Singh J., Tripathi N. Morphological Characterization of Turmeric (Curcuma spp.) Genotypes. J. Eco-Friendly Agric. 2024;19:67–72. doi: 10.48165/jefa.2024.19.01.12. DOI
Hewlings S.J., Kalman D.S. Curcumin: A Review of its Effects on Human Health. Foods. 2017;6:92. doi: 10.3390/foods6100092. PubMed DOI PMC
Syed H.K., Liew K.B., Loh G.O.K., Peh K.K. Stability Indicating HPLC–UV Method for Detection of Curcumin in Curcuma Longa Extract and Emulsion Formulation. Food Chem. 2015;170:321–326. doi: 10.1016/j.foodchem.2014.08.066. PubMed DOI
Kim K., Kim J., Jung Y., Noh J., Syed A., Lee M., Lim K., Bae O., Chung J. Cyclocurcumin, an Antivasoconstrictive Constituent of Curcuma longa (Turmeric) J. Nat. Prod. 2017;80:196–200. doi: 10.1021/acs.jnatprod.6b00331. PubMed DOI
Akram M., Afzal A., Khan U., Abdul H., Mohiuddin E., Asif M. Curcuma longa and Curcumin: A Review Article. [(accessed on 6 June 2025)];Rom. J. Biol-Plant Biol. 2010 55:65–70. Available online: https://www.ibiol.ro/plant/revue55n2.html.
Giordano A., Tommonaro G. Curcumin and Cancer. Nutrients. 2019;11:2376. doi: 10.3390/nu11102376. PubMed DOI PMC
Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007;4:807–818. doi: 10.1021/mp700113r. PubMed DOI
Kumar S., Singh A., Kushwaha P., Prajapati K., Shuaib M., Gupta S. Identification of Compounds from Curcuma longa with in Silico Binding Potential Against SARS-CoV-2 and Human Host Proteins Involve in Virus Entry and Pathogenesis. Indian J. Pharm. Sci. 2021;83:1181–1195. doi: 10.36468/pharmaceutical-sciences.873. DOI
Kaur R. Turmeric: A Golden Herb with Health-Promoting Components. [(accessed on 1 April 2025)];Just Agric. 2024 4:1–5. Available online: https://justagriculture.in/files/newsletter/2024/january.
Dima C., Assadpour E., Nechifor A., Dima S., Li Y., Jafari S.M. Oral Bioavailability of Bioactive Compounds; Modulating Factors, in vitro Analysis Methods, and Enhancing Strategies. Crit. Rev. Food Sci. Nutr. 2024;64:8501–8539. doi: 10.1080/10408398.2023.2199861. PubMed DOI
Kamath A.J., Donadkar A.D., Nair B., Kumar A.R., Sabitha M., Sethi G., Chauhan A.S., Nath L.R. Smart Polymer-Based Delivery Systems for Curcumin in Colon Cancer Therapy: A Review. Phytother. Res. 2025;39:698–713. doi: 10.1002/ptr.8394. PubMed DOI
Chauhan M., Saha S., Roy A. Curcumin: A Review. J. Appl. Pharm. Res. 2014;2:18–28. doi: 10.52403/ijhsr.20211030. DOI
Jiang T., Liao W., Charcosset C. Recent Advances in Encapsulation of Curcumin in Nanoemulsions: A Review of Encapsulation Technologies, Bioaccessibility and Applications. Food Res. Int. 2020;132:109035. doi: 10.1016/j.foodres.2020.109035. PubMed DOI
Ghasemi H., Darjani S., Mazloomi H., Mozaffari S. Preparation of Stable Multiple Emulsions using Food-Grade Emulsifiers: Evaluating the Effects of Emulsifier Concentration, W/O Phase Ratio, and Emulsification Process. SN Appl. Sci. 2020;2:1–9. doi: 10.1007/s42452-020-03879-5. DOI
Chen Y., XV J., Yuan F. Curcumin-Loaded Nano-Emulsion Prepared by High Pressure Homogenization: Impact of Emulsifiers on Physicochemical Stability and in vitro Digestion. Food Sci. Technol. 2022;42:e115121. doi: 10.1590/fst.115121. DOI
Opustilová K., Lapčíková B., Lapčík L., Gautam S., Valenta T., Li P. Physico-Chemical Study of Curcumin and its Application in O/W/O Multiple Emulsion. Foods. 2023;12:1394. doi: 10.3390/foods12071394. PubMed DOI PMC
Sousa F.L., Santos M., Rocha S.M., Trindade T. Encapsulation of Essential Oils in SiO2 Microcapsules and Release Behaviour of Volatile Compounds. J. Microencapsul. 2014;31:627–635. doi: 10.3109/02652048.2014.911376. PubMed DOI
Pal R. Rheology of Double Emulsions. J. Colloid Interface Sci. 2007;307:509–515. doi: 10.1016/j.jcis.2006.12.024. PubMed DOI
Tan C., McClements D.J. Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods. 2021;10:812. doi: 10.3390/foods10040812. PubMed DOI PMC
Schuch A., Deiters P., Henne J., Köhler K., Schuchmann H.P. Production of W/O/W (Water-in-Oil-in-Water) Multiple Emulsions: Droplet Breakup and Release of Water. J. Colloid Interface Sci. 2013;402:157–164. doi: 10.1016/j.jcis.2013.03.066. PubMed DOI
Dalmazzone C., Noïk C., Clausse D. Application of DSC for Emulsified System Characterization. Oil Gas Sci. Technol. 2008;64:543–555. doi: 10.2516/ogst:2008041. DOI
Khatoon S., Kalam N. Mechanistic Insight of Curcumin: A Potential Pharmacological Candidate for Epilepsy. Front. Pharmacol. 2025;15:1531288. doi: 10.3389/fphar.2024.1531288. PubMed DOI PMC
Lu X., Huang Q. Stability and in vitro Digestion Study of Curcumin-encapsulated in Different Milled Cellulose Particle Stabilized Pickering Emulsions. Food Funct. 2020;11:606–616. doi: 10.1039/C9FO02029B. PubMed DOI
Hu Z., Feng T., Zeng X., Janaswamy S., Wang H., Campanella O. Structural Characterization and Digestibility of Curcumin Loaded Octenyl Succinic Nanoparticles. Nanomaterials. 2019;9:1073. doi: 10.3390/nano9081073. PubMed DOI PMC
Sabet S., Rashidinejad A., Melton L.D., McGillivray D.J. Recent Advances to Improve Curcumin Oral Bioavailability. Trends Food Sci. Technol. 2021;110:253–266. doi: 10.1016/j.tifs.2021.02.006. DOI
Stohs S.J., Chen O., Ray S.D., Ji J., Bucci L.R., Preuss H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules. 2020;25:1397. doi: 10.3390/molecules25061397. PubMed DOI PMC
De Leo V., Maurelli A.M., Giotta L., Daniello V., Di Gioia S., Conese M., Ingrosso C., Ciriaco F., Catucci L. Polymer Encapsulated Liposomes for Oral Co-Delivery of Curcumin and Hydroxytyrosol. Int. J. Mol. Sci. 2023;24:790. doi: 10.3390/ijms24010790. PubMed DOI PMC
Chen Q., Di X., Zhai Y., Zhao Q., Song X. Influence of Oil Phases on the Digestibility and Curcumin Delivery Properties of Pickering Emulsions. Food Chem. X. 2025;26:102270. doi: 10.1016/j.fochx.2025.102270. PubMed DOI PMC
Koláčková T., Sumczynski D., Minařík A., Yalçin E., Orsavová J. The Effect of in vitro Digestion on Matcha Tea (Camellia sinensis) Active Components and Antioxidant Activity. Antioxidants. 2022;11:889. doi: 10.3390/antiox11050889. PubMed DOI PMC
Sumczynski D., Kotásková E., Družbíková H., Mlček J. Determination of Contents and Antioxidant Activity of Free and Bound Phenolics Compounds and in vitro Digestibility of Commercial Black and Red Rice (Oryza sativa L.) Varieties. Food Chem. 2016;211:339–346. doi: 10.1016/j.foodchem.2016.05.081. PubMed DOI
Sumczynski D., Fišera M., Salek R.N., Orsavová J. The Effect of Flake Production and in vitro Digestion on Releasing Minerals and Trace Elements from Wheat Flakes: The Extended Study of Dietary Intakes for Individual Life Stage Groups. Nutrients. 2023;15:2509. doi: 10.3390/nu15112509. PubMed DOI PMC
Niu H., Wang W., Dou Z., Chen X., Chen X., Chen H., Fu X. Multiscale Combined Techniques for Evaluating Emulsion Stability: A Critical Review. Adv. Colloid Interface Sci. 2023;311:102813. doi: 10.1016/j.cis.2022.102813. PubMed DOI
Tylewicz U., Aganovic K., Vannini M., Toepfl S., Bortolotti V., Dalla Rosa M., Oey I., Heinz V. Effect of Pulsed Electric Field Treatment on Water Distribution of Freeze-Dried Apple Tissue Evaluated with DSC and TD-NMR Techniques. Innov. Food Sci. Emerg. Technol. 2016;37:352–358. doi: 10.1016/j.ifset.2016.06.012. DOI
Zhou H., Zheng B., McClements D.J. Encapsulation of Lipophilic Polyphenols in Plant-Based Nanoemulsions: Impact of Carrier Oil on Lipid Digestion and Curcumin, Resveratrol and Quercetin Bioaccessibility. Food Funct. 2021;12:3420–3432. doi: 10.1039/D1FO00275A. PubMed DOI
Wichitnithad W., Jongaroonngamsang N., Pummangura S., Rojsitthisak P. A Simple Isocratic HPLC Method for the Simultaneous Determination of Curcuminoids in Commercial Turmeric Extracts. Phytochem. Anal. 2009;20:314–319. doi: 10.1002/pca.1129. PubMed DOI
Santos-Sánchez G., Pérez-Jiménez J., Saura-Calixto F. Current Advances for in vitro Protein Digestibility. Front. Nutr. 2024;11:1404538. doi: 10.3389/fnut.2024.1404538. PubMed DOI PMC
Muttakin S., Moxon T.E., Gouseti O. In vivo, in vitro, and in silico Studies of the GI Tract. In: Gouseti O., Bornhorst G., Bakalis S., Mackie A., editors. Interdisciplinary Approaches to Food Digestion. Springer; Cham, Switzerland: 2019. pp. 29–67. DOI
Cereals and Cereal Products—Determination of Moisture Content—Reference Method. International Organization for Standardization; Geneva, Switzerland: 2009.
Cereals, Pulses and By-Products—Determination of Ash Yield by Incineration. International Organization for Standardization; Geneva, Switzerland: 2007.
Granato D., de Araújo Calado V.M., Jarvis B. Observations on the use of Statistical Methods in Food Science and Technology. Food Res. Int. 2014;55:137–149. doi: 10.1016/j.foodres.2013.10.024. DOI