• This record comes from PubMed

Preparing O/W/O Emulsion for Curcumin (Curcuma longa) Delivery and In Vitro Digestibility Assay

. 2025 Jun 12 ; 26 (12) : . [epub] 20250612

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA/FT/2024/005 Tomas Bata University in Zlin, Czech Republic

In this study, simple oil-in-water emulsions (O/W) and multiple O/W/O emulsions were employed as carriers for a curcumin delivery system. The stability of emulsions was evaluated using DSC (differential scanning calorimetry), accompanied by particle size measurement by DLS (dynamic light scattering) and rheological analysis. The amount of freezable water (Wfs) in O/W emulsion was determined to be 80.4%, while that in O/W/O emulsion was 23.7%. Multiple emulsions had a more complex structure than simple emulsions, being characterized by higher stability with predominant loss modulus over storage modulus (G" > G'). The mean surface diameter for O/W emulsion was 198.7 ± 9.8 nm, being approximately two times lower than that for multiple emulsions. Curcumin in vitro digestibility was observed for both emulsions and, additionally, the digestibility of fresh and dried curcuma root powders was investigated. Multiple emulsions were found to be a superior matrix for curcumin delivery, with higher stability and emulsion digestibility of 50.6% for the stomach and small intestine. In vitro digestion of dried curcuma powders and curcuma root samples was monitored by HPLC (high-performance liquid chromatography). The DMD (dry matter digestibility) for dried curcuma powders ranged between 52.9% to 78.8%, and for fresh curcuma (KF) was 95.5%.

See more in PubMed

Hayakawa H., Minaniya Y., Ito K., Yamamoto Y., Fukuda T. Difference of Curcumin Content in Curcuma longa L. (Zingiberaceae) Caused by Hybridization with Other Curcuma Species. Am. J. Plant Sci. 2011;2:111–119. doi: 10.4236/ajps.2011.22013. DOI

Agrawal S., Nair R., Thomas M., Anjana G., Patel S.K., Uikey P., Birla S., Singh J., Tripathi N. Morphological Characterization of Turmeric (Curcuma spp.) Genotypes. J. Eco-Friendly Agric. 2024;19:67–72. doi: 10.48165/jefa.2024.19.01.12. DOI

Hewlings S.J., Kalman D.S. Curcumin: A Review of its Effects on Human Health. Foods. 2017;6:92. doi: 10.3390/foods6100092. PubMed DOI PMC

Syed H.K., Liew K.B., Loh G.O.K., Peh K.K. Stability Indicating HPLC–UV Method for Detection of Curcumin in Curcuma Longa Extract and Emulsion Formulation. Food Chem. 2015;170:321–326. doi: 10.1016/j.foodchem.2014.08.066. PubMed DOI

Kim K., Kim J., Jung Y., Noh J., Syed A., Lee M., Lim K., Bae O., Chung J. Cyclocurcumin, an Antivasoconstrictive Constituent of Curcuma longa (Turmeric) J. Nat. Prod. 2017;80:196–200. doi: 10.1021/acs.jnatprod.6b00331. PubMed DOI

Akram M., Afzal A., Khan U., Abdul H., Mohiuddin E., Asif M. Curcuma longa and Curcumin: A Review Article. [(accessed on 6 June 2025)];Rom. J. Biol-Plant Biol. 2010 55:65–70. Available online: https://www.ibiol.ro/plant/revue55n2.html.

Giordano A., Tommonaro G. Curcumin and Cancer. Nutrients. 2019;11:2376. doi: 10.3390/nu11102376. PubMed DOI PMC

Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007;4:807–818. doi: 10.1021/mp700113r. PubMed DOI

Kumar S., Singh A., Kushwaha P., Prajapati K., Shuaib M., Gupta S. Identification of Compounds from Curcuma longa with in Silico Binding Potential Against SARS-CoV-2 and Human Host Proteins Involve in Virus Entry and Pathogenesis. Indian J. Pharm. Sci. 2021;83:1181–1195. doi: 10.36468/pharmaceutical-sciences.873. DOI

Kaur R. Turmeric: A Golden Herb with Health-Promoting Components. [(accessed on 1 April 2025)];Just Agric. 2024 4:1–5. Available online: https://justagriculture.in/files/newsletter/2024/january.

Dima C., Assadpour E., Nechifor A., Dima S., Li Y., Jafari S.M. Oral Bioavailability of Bioactive Compounds; Modulating Factors, in vitro Analysis Methods, and Enhancing Strategies. Crit. Rev. Food Sci. Nutr. 2024;64:8501–8539. doi: 10.1080/10408398.2023.2199861. PubMed DOI

Kamath A.J., Donadkar A.D., Nair B., Kumar A.R., Sabitha M., Sethi G., Chauhan A.S., Nath L.R. Smart Polymer-Based Delivery Systems for Curcumin in Colon Cancer Therapy: A Review. Phytother. Res. 2025;39:698–713. doi: 10.1002/ptr.8394. PubMed DOI

Chauhan M., Saha S., Roy A. Curcumin: A Review. J. Appl. Pharm. Res. 2014;2:18–28. doi: 10.52403/ijhsr.20211030. DOI

Jiang T., Liao W., Charcosset C. Recent Advances in Encapsulation of Curcumin in Nanoemulsions: A Review of Encapsulation Technologies, Bioaccessibility and Applications. Food Res. Int. 2020;132:109035. doi: 10.1016/j.foodres.2020.109035. PubMed DOI

Ghasemi H., Darjani S., Mazloomi H., Mozaffari S. Preparation of Stable Multiple Emulsions using Food-Grade Emulsifiers: Evaluating the Effects of Emulsifier Concentration, W/O Phase Ratio, and Emulsification Process. SN Appl. Sci. 2020;2:1–9. doi: 10.1007/s42452-020-03879-5. DOI

Chen Y., XV J., Yuan F. Curcumin-Loaded Nano-Emulsion Prepared by High Pressure Homogenization: Impact of Emulsifiers on Physicochemical Stability and in vitro Digestion. Food Sci. Technol. 2022;42:e115121. doi: 10.1590/fst.115121. DOI

Opustilová K., Lapčíková B., Lapčík L., Gautam S., Valenta T., Li P. Physico-Chemical Study of Curcumin and its Application in O/W/O Multiple Emulsion. Foods. 2023;12:1394. doi: 10.3390/foods12071394. PubMed DOI PMC

Sousa F.L., Santos M., Rocha S.M., Trindade T. Encapsulation of Essential Oils in SiO2 Microcapsules and Release Behaviour of Volatile Compounds. J. Microencapsul. 2014;31:627–635. doi: 10.3109/02652048.2014.911376. PubMed DOI

Pal R. Rheology of Double Emulsions. J. Colloid Interface Sci. 2007;307:509–515. doi: 10.1016/j.jcis.2006.12.024. PubMed DOI

Tan C., McClements D.J. Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods. 2021;10:812. doi: 10.3390/foods10040812. PubMed DOI PMC

Schuch A., Deiters P., Henne J., Köhler K., Schuchmann H.P. Production of W/O/W (Water-in-Oil-in-Water) Multiple Emulsions: Droplet Breakup and Release of Water. J. Colloid Interface Sci. 2013;402:157–164. doi: 10.1016/j.jcis.2013.03.066. PubMed DOI

Dalmazzone C., Noïk C., Clausse D. Application of DSC for Emulsified System Characterization. Oil Gas Sci. Technol. 2008;64:543–555. doi: 10.2516/ogst:2008041. DOI

Khatoon S., Kalam N. Mechanistic Insight of Curcumin: A Potential Pharmacological Candidate for Epilepsy. Front. Pharmacol. 2025;15:1531288. doi: 10.3389/fphar.2024.1531288. PubMed DOI PMC

Lu X., Huang Q. Stability and in vitro Digestion Study of Curcumin-encapsulated in Different Milled Cellulose Particle Stabilized Pickering Emulsions. Food Funct. 2020;11:606–616. doi: 10.1039/C9FO02029B. PubMed DOI

Hu Z., Feng T., Zeng X., Janaswamy S., Wang H., Campanella O. Structural Characterization and Digestibility of Curcumin Loaded Octenyl Succinic Nanoparticles. Nanomaterials. 2019;9:1073. doi: 10.3390/nano9081073. PubMed DOI PMC

Sabet S., Rashidinejad A., Melton L.D., McGillivray D.J. Recent Advances to Improve Curcumin Oral Bioavailability. Trends Food Sci. Technol. 2021;110:253–266. doi: 10.1016/j.tifs.2021.02.006. DOI

Stohs S.J., Chen O., Ray S.D., Ji J., Bucci L.R., Preuss H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules. 2020;25:1397. doi: 10.3390/molecules25061397. PubMed DOI PMC

De Leo V., Maurelli A.M., Giotta L., Daniello V., Di Gioia S., Conese M., Ingrosso C., Ciriaco F., Catucci L. Polymer Encapsulated Liposomes for Oral Co-Delivery of Curcumin and Hydroxytyrosol. Int. J. Mol. Sci. 2023;24:790. doi: 10.3390/ijms24010790. PubMed DOI PMC

Chen Q., Di X., Zhai Y., Zhao Q., Song X. Influence of Oil Phases on the Digestibility and Curcumin Delivery Properties of Pickering Emulsions. Food Chem. X. 2025;26:102270. doi: 10.1016/j.fochx.2025.102270. PubMed DOI PMC

Koláčková T., Sumczynski D., Minařík A., Yalçin E., Orsavová J. The Effect of in vitro Digestion on Matcha Tea (Camellia sinensis) Active Components and Antioxidant Activity. Antioxidants. 2022;11:889. doi: 10.3390/antiox11050889. PubMed DOI PMC

Sumczynski D., Kotásková E., Družbíková H., Mlček J. Determination of Contents and Antioxidant Activity of Free and Bound Phenolics Compounds and in vitro Digestibility of Commercial Black and Red Rice (Oryza sativa L.) Varieties. Food Chem. 2016;211:339–346. doi: 10.1016/j.foodchem.2016.05.081. PubMed DOI

Sumczynski D., Fišera M., Salek R.N., Orsavová J. The Effect of Flake Production and in vitro Digestion on Releasing Minerals and Trace Elements from Wheat Flakes: The Extended Study of Dietary Intakes for Individual Life Stage Groups. Nutrients. 2023;15:2509. doi: 10.3390/nu15112509. PubMed DOI PMC

Niu H., Wang W., Dou Z., Chen X., Chen X., Chen H., Fu X. Multiscale Combined Techniques for Evaluating Emulsion Stability: A Critical Review. Adv. Colloid Interface Sci. 2023;311:102813. doi: 10.1016/j.cis.2022.102813. PubMed DOI

Tylewicz U., Aganovic K., Vannini M., Toepfl S., Bortolotti V., Dalla Rosa M., Oey I., Heinz V. Effect of Pulsed Electric Field Treatment on Water Distribution of Freeze-Dried Apple Tissue Evaluated with DSC and TD-NMR Techniques. Innov. Food Sci. Emerg. Technol. 2016;37:352–358. doi: 10.1016/j.ifset.2016.06.012. DOI

Zhou H., Zheng B., McClements D.J. Encapsulation of Lipophilic Polyphenols in Plant-Based Nanoemulsions: Impact of Carrier Oil on Lipid Digestion and Curcumin, Resveratrol and Quercetin Bioaccessibility. Food Funct. 2021;12:3420–3432. doi: 10.1039/D1FO00275A. PubMed DOI

Wichitnithad W., Jongaroonngamsang N., Pummangura S., Rojsitthisak P. A Simple Isocratic HPLC Method for the Simultaneous Determination of Curcuminoids in Commercial Turmeric Extracts. Phytochem. Anal. 2009;20:314–319. doi: 10.1002/pca.1129. PubMed DOI

Santos-Sánchez G., Pérez-Jiménez J., Saura-Calixto F. Current Advances for in vitro Protein Digestibility. Front. Nutr. 2024;11:1404538. doi: 10.3389/fnut.2024.1404538. PubMed DOI PMC

Muttakin S., Moxon T.E., Gouseti O. In vivo, in vitro, and in silico Studies of the GI Tract. In: Gouseti O., Bornhorst G., Bakalis S., Mackie A., editors. Interdisciplinary Approaches to Food Digestion. Springer; Cham, Switzerland: 2019. pp. 29–67. DOI

Cereals and Cereal Products—Determination of Moisture Content—Reference Method. International Organization for Standardization; Geneva, Switzerland: 2009.

Cereals, Pulses and By-Products—Determination of Ash Yield by Incineration. International Organization for Standardization; Geneva, Switzerland: 2007.

Granato D., de Araújo Calado V.M., Jarvis B. Observations on the use of Statistical Methods in Food Science and Technology. Food Res. Int. 2014;55:137–149. doi: 10.1016/j.foodres.2013.10.024. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...