• This record comes from PubMed

qDESH: a method to quantify disproportionately enlarged subarachnoid space hydrocephalus

. 2025 Jul 01 ; 22 (1) : 67. [epub] 20250701

Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 40597328
PubMed Central PMC12219777
DOI 10.1186/s12987-025-00677-2
PII: 10.1186/s12987-025-00677-2
Knihovny.cz E-resources

BACKGROUND AND PURPOSE: Disproportionately enlarged subarachnoid space hydrocephalus (DESH) is a radiological biomarker for idiopathic normal pressure hydrocephalus (iNPH). DESH is a subjective measure, based on visual assessments, which may limit its reliability. The aim of this study was to develop and validate a method for the objective quantification of DESH. MATERIALS AND METHODS: By using a semiautomatic quantitative method, we calculated quantitative DESH (qDESH), defined as a ratio between CSF volumes at high convexities and Sylvian fissures. The analysis was based on three-dimensional T1-weighted images from 35 subjects with iNPH (mean age 74 yrs; 10 females) and 45 controls (mean age 72 yrs; 13 females). The interrater agreement for qDESH was evaluated by the intraclass correlation coefficient, and qDESH was compared with visual assessments performed by two neuroradiologists. RESULTS: All subjects with iNPH and 13% of the controls visually scored DESH positive. The median qDESH was 2.48 (5th to 95th percentile 0.88 to 5.42) for iNPH and 0.63 (5th to 95th percentile 0.37 to 1.73) for the controls. The area under the receiver operating characteristic curve for qDESH was 0.95 (95% confidence interval 0.90-1) in separating iNPH patients from controls. The interrater agreement for qDESH was 0.99 (95% CI 0.986-0.994, p < 0.001). CONCLUSION: Unlike visual DESH, qDESH generates a continuous variable, enabling reproducible quantification of DESH severity. With this method we can objectively investigate the diagnostic accuracy and prognostic assessment of DESH in iNPH.

See more in PubMed

Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure: a treatable syndrome. N Engl J Med. 1965;273:117–26. PubMed

Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. Am J Neuroradiol. 1998;19:1277–84. PubMed PMC

Nakajima M, Yamada S, Miyajima M, Ishii K, Kuriyama N, Kazui H, et al. Guidelines for management of idiopathic normal pressure hydrocephalus (Third edition): endorsed by the Japanese society of normal pressure hydrocephalus. Neurol Med Chir. 2021;61:63–97. PubMed PMC

Kockum K, Lilja-Lund O, Larsson EM, Rosell M, Söderström L, Virhammar J, et al. The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. Eur J Neurol. 2018;25:569–76. PubMed

Agerskov S, Wallin M, Hellström P, Ziegelitz D, Wikkelsö C, Tullberg M, et al. Absence of disproportionately enlarged subarachnoid space hydrocephalus, a sharp callosal angle, or other morphologic MRI markers should not be used to exclude patients with idiopathic normal pressure hydrocephalus from shunt surgery. Am J Neuroradiol. 2019;40:74–9. PubMed PMC

Garcia-Armengol R, Domenech S, Botella-Campos C, Goncalves FJ, Menéndez B, Teixidor P, et al. Comparison of elevated intracranial pressure pulse amplitude and disproportionately enlarged subarachnoid space (DESH) for prediction of surgical results in suspected idiopathic normal pressure hydrocephalus. Acta Neurochir. 2016;158:2207–13. PubMed

Park HY, Park CR, Suh CH, Kim MJ, Shim WH, Kim SJ. Prognostic utility of disproportionately enlarged subarachnoid space hydrocephalus in idiopathic normal pressure hydrocephalus treated with ventriculoperitoneal shunt surgery: a systematic review and meta-analysis. Am J Neuroradiol. 2021;42:1429–36. PubMed PMC

Thavarajasingam SG, El-Khatib M, Vemulapalli K, Iradukunda HAS, Sajeenth Vishnu K, Borchert R, et al. Radiological predictors of shunt response in the diagnosis and treatment of idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Acta Neurochir. 2023. PubMed PMC

Hong YJ, Kim MJ, Jeong E, Kim JE, Hwang J, Lee J, et al. Preoperative biomarkers in patients with idiopathic normal pressure hydrocephalus showing a favorable shunt surgery outcome. J Neurol Sci. 2018;387:21–6. PubMed

Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. Am J Neuroradiol. 2014;35:2311–8. PubMed PMC

Shinoda N, Hirai O, Hori S, Mikami K, Bando T, Shimo D, et al. Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: clinical research. J Neurosurg. 2017;127:1436–42. PubMed

Radovnický T, Adámek D, Derner M, Sameš M. Fractional anisotropy in patients with disproportionately enlarged subarachnoid space hydrocephalus. Acta Neurochir. 2016;158:1495–500. PubMed

Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelsø C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82:1449–54. PubMed PMC

Ishii K, Soma T, Shimada K, Oda H, Terashima A, Kawasaki R. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2013;3:489–96. PubMed PMC

Benedetto N, Gambacciani C, Aquila F, Di Carlo DT, Morganti R, Perrini P. A new quantitative method to assess disproportionately enlarged subarachnoid space (DESH) in patients with possible idiopathic normal pressure hydrocephalus: the SILVER index. Clin Neurol Neurosurg. 2017;158:27–32. PubMed

Yamada S, Ito H, Matsumasa H, Tanikawa M, Ii S, Otani T, et al. Tightened sulci in the high convexities as a noteworthy feature of idiopathic normal pressure hydrocephalus. World Neurosurg. 2023;176:e427–37. PubMed

Crook JE, Gunter JL, Ball CT, Jones DT, Graff-Radford J, Knopman DS, et al. Linear vs volume measures of ventricle size: relation to present and future gait and cognition. Neurology. 2020;94:e549–56. PubMed PMC

Yamada S, Ishikawa M, Yamamot K. Optimal diagnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. Am J Neuroradiol. 2015;36:2262–9. PubMed PMC

Malm J, Jacobsson J, Birgander R, Eklund A. Reference values for CSF outflow resistance and intracranial pressure in healthy elderly. Neurology. 2011;76:903–9. PubMed

Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab. 2015;35:648–54. PubMed PMC

Ryska P, Slezak O, Eklund A, Malm J, Salzer J, Zizka J. Radiological markers of idiopathic normal pressure hydrocephalus: relative comparison of their diagnostic performance. J Neurol Sci. 2020;408:116581. PubMed

Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PML. INPH guidelines, part II: diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 2005;57:4–16. PubMed

Friston KJ, Ashburner JT, Kiebel SJ, Nicholas TE, Penny WD. Statistical parametric Mappin: The Analysis of Functional Brain Images. 2007.

Ardekani BA, Kershaw J, Braun M, Kanno I. Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE Trans Mes Imaging. 1997;16:947–52. PubMed

Ardekani BA, Bachman AH. Model-based automatic detection of the anterior and posterior commissures on MRI scans. Neuroimage. 2009;46:677–82. PubMed PMC

Ardekani B. A new approach to symmetric registration of longitudinal structural MRI of the human brain. bioRxiv. 2018. PubMed PMC

Axelsson J, Behndig S. qDESH GitHub. https://github.com/SofiaBehndig/qDESH

Narita W, Nishio Y, Baba T, Iizuka O, Ishihara T, Matsuda M, et al. High-convexity tightness predicts the shunt response in idiopathic normal pressure hydrocephalus. Am J Neuroradiol. 2016;37:1831–7. PubMed PMC

Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology. 2008;50:117–22. PubMed

Alvarez Tolado N, Munakomi S, Prestigacomo CJ. Neuroanatomy, Sylvian Fissure. StatPearls. 2023. https://www.ncbi.nlm.nih.gov/books/NBK574552/ PubMed

Axelsson J. imlook4d. https://sites.google.com/site/imlook4d/

Huckman MS, Fox J, Topel J. The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology. 1975;116:85–92. PubMed

Gunasekera L, Richardson AE. Computerized axial tomography in idiopathic hydrocephalus. Brain. 1977;100:749–54. PubMed

Hashimoto M, Ishikawa M, Mori E, Kuwana N. Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010;7:1–11. PubMed PMC

Yamada S, Ishikawa M, Yamamoto K. Comparison of CSF distribution between idiopathic normal pressure hydrocephalus and Alzheimer disease. Am J Neuroradiol. 2016;37:1249–55. PubMed PMC

Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140:2691–705. PubMed PMC

Yamada S, Ito H, Matsumasa H, Ii S, Otani T, Tanikawa M, et al. Automatic assessment of disproportionately enlarged subarachnoid-space hydrocephalus from 3D MRI using two deep learning models. Front Aging Neurosci. 2024. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...