Multireference Theory of Scanning Tunneling Spectroscopy Beyond One-Electron Molecular Orbitals: Can We Image Molecular Orbitals?

. 2025 Jul 16 ; 147 (28) : 24993-25003. [epub] 20250702

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40600652

Recent progress in on-surface chemistry has enabled the synthesis of novel polyradical molecules with interesting electronic structure, which are hardly available in solution chemistry. Moreover, the possibility to characterize their electronic structure with scanning tunneling spectroscopy (STS) with the unprecedented spatial resolution opens new possibilities to understand their nontrivial electronic structure. However, experimental STS maps of molecules on surfaces are interpreted using one-electron STM theory within the framework of one-electron molecular orbitals nowadays. Although this standard practice often gives relatively good agreement with experimental data for closed-shell molecules, it fails to address multireference polyradical molecules. In this manuscript, we provide multireference STM theory including out-of-equilibrium processes of removing/adding an electron within the formalism of many-electron wave functions for the neutral and charged states. This can be accomplished by the concept of so-called Dyson orbitals. We will discuss the examples where the concept of Dyson orbitals is mandatory to reproduce experimental STS maps of polyradical molecules. Finally, we critically review the possibility of the experimental verification of the so-called SOMO/HOMO inversion effect using STS maps in polyradical molecules. Namely, we will demonstrate that experimental STS measurements cannot provide any information in case of strongly correlated molecules about the ordering of one-electron molecular orbitals and, therefore neither about the SOMO/HOMO inversion effect.

Zobrazit více v PubMed

Binnig G., Rohrer H., Gerber C., Weibel E.. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982;49:57–61. doi: 10.1103/PhysRevLett.49.57. DOI

Chen, C. J. Introduction to Scanning Tunneling Microscopy; Oxford University Press Oxford, 2007; . 10.1093/acprof:oso/9780199211500.001.0001. DOI

Stroscio J. A., Feenstra R. M., Fein A. P.. Electronic Structure of the Si(111)­2 × 1 Surface by Scanning-Tunneling Microscopy. Phys. Rev. Lett. 1986;57:2579–2582. doi: 10.1103/PhysRevLett.57.2579. PubMed DOI

Zandvliet H. J., van Houselt A.. Scanning Tunneling Spectroscopy. Annu. Rev. Anal. Chem. 2009;2:37–55. doi: 10.1146/annurev-anchem-060908-155213. PubMed DOI

Chiang S.. Scanning Tunneling Microscopy Imaging of Small Adsorbed Molecules on Metal Surfaces in an Ultrahigh Vacuum Environment. Chem. Rev. 1997;97:1083–1096. doi: 10.1021/cr940555a. PubMed DOI

Repp J., Meyer G., Stojković S. M., Gourdon A., Joachim C.. Molecules on Insulating Films: Scanning-Tunneling Microscopy Imaging of Individual Molecular Orbitals. Phys. Rev. Lett. 2005;94:026803. doi: 10.1103/PhysRevLett.94.026803. PubMed DOI

Pham B. Q., Gordon M. S.. Can orbitals really be observed in scanning tunneling microscopy experiments? J. Phys. Chem. A. 2017;121:4851–4852. doi: 10.1021/acs.jpca.7b05789. PubMed DOI

Krylov A. I.. From orbitals to observables and back. J. Chem. Phys. 2020;153:080901. doi: 10.1063/5.0018597. PubMed DOI

Scerri E. R.. Have Orbitals Really Been Observed? J. Chem. Educ. 2000;77:1492. doi: 10.1021/ed077p1492. DOI

Zhao Y., Jiang K., Li C., Liu Y., Zhu G., Pizzochero M., Kaxiras E., Guan D., Li Y., Zheng H., Liu C., Jia J., Qin M., Zhuang X., Wang S.. Quantum nanomagnets in on-surface metal-free porphyrin chains. Nat. Chem. 2023;15:53–60. doi: 10.1038/s41557-022-01061-5. PubMed DOI

Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J. I.. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/physrevlett.124.177201. PubMed DOI

Pavlicek N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI

Su J., Lyu P., Lu J.. Atomically precise imprinting π-magnetism in nanographenes via probe chemistry. Precis. chem. 2023;1:565–575. doi: 10.1021/prechem.3c00072. PubMed DOI PMC

Song S.. et al. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nat. Chem. 2024;16:938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI

Zuzak R., Kumar M., Stoica O., Soler-Polo D., Brabec J., Pernal K., Veis L., Blieck R., Echavarren A. M., Jelinek P.. et al. On-Surface Synthesis and Determination of the Open-Shell Singlet Ground State of Tridecacene. Angew. Chem., Int. Ed. 2024;63:e202317091. doi: 10.1002/anie.202317091. PubMed DOI

Villalobos F.. et al. Globally aromatic odd-electron π-magnetic macrocycle. Chem. 2025;11:102316. doi: 10.1016/j.chempr.2024.09.015. DOI

Calupitan J. P., Berdonces-Layunta A., Aguilar-Galindo F., Vilas-Varela M., Peña D., Casanova D., Corso M., de Oteyza D. G., Wang T.. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. Nano Lett. 2023;23:9832–9840. doi: 10.1021/acs.nanolett.3c02586. PubMed DOI PMC

Vilas-Varela M., Romero-Lara F., Vegliante A., Calupitan J. P., Martínez A., Meyer L., Uriarte-Amiano U., Friedrich N., Wang D., Schulz F.. et al. On-Surface Synthesis and Characterization of a High-Spin Aza-[5]-Triangulene. Angew. Chem. 2023;135:e202307884. doi: 10.1002/ange.202307884. PubMed DOI

Toroz D., Rontani M., Corni S.. Proposed Alteration of Images of Molecular Orbitals Obtained Using a Scanning Tunneling Microscope as a Probe of Electron Correlation. Phys. Rev. Lett. 2013;110:018305. doi: 10.1103/physrevlett.110.018305. PubMed DOI

Schulz F., Ijäs M., Drost R., Hämäläinen S. K., Harju A., Seitsonen A. P., Liljeroth P.. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nat. Phys. 2015;11:229–234. doi: 10.1038/nphys3212. DOI

Kasemthaveechok S., Abella L., Crassous J., Autschbach J., Favereau L.. Organic radicals with inversion of SOMO and HOMO energies and potential applications in optoelectronics. Chem. Sci. 2022;13:9833–9847. doi: 10.1039/D2SC02480B. PubMed DOI PMC

Kumar A., Sevilla M. D.. SOMO–HOMO Level Inversion in Biologically Important Radicals. J. Phys. Chem. B. 2018;122:98–105. doi: 10.1021/acs.jpcb.7b10002. PubMed DOI PMC

Westcott B. L., Gruhn N. E., Michelsen L. J., Lichtenberger D. L.. Experimental Observation of Non-Aufbau Behavior: Photoelectron Spectra of Vanadyloctaethylporphyrinate and Vanadylphthalocyanine. J. Am. Chem. Soc. 2000;122:8083–8084. doi: 10.1021/ja994018p. DOI

Kusamoto T., Kume S., Nishihara H.. Realization of SOMO- HOMO level conversion for a TEMPO-dithiolate ligand by coordination to platinum (II) J. Am. Chem. Soc. 2008;130:13844–13845. doi: 10.1021/ja805751h. PubMed DOI

Mishra S., Vilas-Varela M., Fatayer S., Albrecht F., Peña D., Gross L.. Observation of SOMO-HOMO Inversion in a Neutral Polycyclic Conjugated Hydrocarbon. ACS Nano. 2024;18:15898–15904. doi: 10.1021/acsnano.4c03257. PubMed DOI PMC

Yu P., Kocić N., Repp J., Siegert B., Donarini A.. Apparent reversal of molecular orbitals reveals entanglement. Phys. Rev. Lett. 2017;119:056801. doi: 10.1103/PhysRevLett.119.056801. PubMed DOI

Truhlar D. G., Hiberty P. C., Shaik S., Gordon M. S., Danovich D.. Orbitals and the interpretation of photoelectron spectroscopy and (e, 2e) ionization experiments. Angew. Chem. 2019;131:12460–12466. doi: 10.1002/ange.201904609. PubMed DOI

Ortiz J.. Dyson-orbital concepts for description of electrons in molecules. J. Chem. Phys. 2020;153:070902. doi: 10.1063/5.0016472. PubMed DOI

Kohn W., Sham L. J.. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Szabo, A. ; Ostlund, N. S. . Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Revised Edition; Dover Publications: New York, 1989.

Eriksen J. J., Baudin P., Ettenhuber P., Kristensen K., Kjærgaard T., Jørgensen P.. Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–Expand–Consolidate CCSD­(T) Model. J. Chem. Theory Comput. 2015;11:2984–2993. doi: 10.1021/acs.jctc.5b00086. PubMed DOI

Krejčí O., Hapala P., Ondráček M., Jelínek P.. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/physrevb.95.045407. DOI

Tersoff J., Hamann D. R.. Theory of the scanning tunneling microscope. Phys. Rev. B. 1985;31:805–813. doi: 10.1103/PhysRevB.31.805. PubMed DOI

Vegliante A., Vilas-Varela M., Ortiz R., Romero Lara F., Kumar M., Gómez-Rodrigo L., Trivini S., Schulz F., Soler-Polo D., Ahmoum H.. et al. On-Surface Synthesis of a Ferromagnetic Molecular Spin Trimer. J. Am. Chem. Soc. 2025;147:19530–19538. doi: 10.1021/jacs.4c15736. PubMed DOI PMC

Adamo C., Barone V.. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Sun Q., Mateo L. M., Robles R., Ruffieux P., Lorente N., Bottari G., Torres T., Fasel R.. Inducing open-shell character in porphyrins through surface-assisted phenalenyl π-extension. J. Am. Chem. Soc. 2020;142:18109–18117. doi: 10.1021/jacs.0c07781. PubMed DOI

Calvo-Fernández A., Kumar M., Soler-Polo D., Eiguren A., Blanco-Rey M., Jelínek P.. Theoretical model for multiorbital Kondo screening in strongly correlated molecules with several unpaired electrons. Phys. Rev. B. 2024;110:165113. doi: 10.1103/PhysRevB.110.165113. DOI

Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M.. Ab initio Mol. Simul.s with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI

Tkatchenko A., Scheffler M.. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI

Neese F.. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...