Multireference Theory of Scanning Tunneling Spectroscopy Beyond One-Electron Molecular Orbitals: Can We Image Molecular Orbitals?
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40600652
PubMed Central
PMC12272701
DOI
10.1021/jacs.5c08166
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recent progress in on-surface chemistry has enabled the synthesis of novel polyradical molecules with interesting electronic structure, which are hardly available in solution chemistry. Moreover, the possibility to characterize their electronic structure with scanning tunneling spectroscopy (STS) with the unprecedented spatial resolution opens new possibilities to understand their nontrivial electronic structure. However, experimental STS maps of molecules on surfaces are interpreted using one-electron STM theory within the framework of one-electron molecular orbitals nowadays. Although this standard practice often gives relatively good agreement with experimental data for closed-shell molecules, it fails to address multireference polyradical molecules. In this manuscript, we provide multireference STM theory including out-of-equilibrium processes of removing/adding an electron within the formalism of many-electron wave functions for the neutral and charged states. This can be accomplished by the concept of so-called Dyson orbitals. We will discuss the examples where the concept of Dyson orbitals is mandatory to reproduce experimental STS maps of polyradical molecules. Finally, we critically review the possibility of the experimental verification of the so-called SOMO/HOMO inversion effect using STS maps in polyradical molecules. Namely, we will demonstrate that experimental STS measurements cannot provide any information in case of strongly correlated molecules about the ordering of one-electron molecular orbitals and, therefore neither about the SOMO/HOMO inversion effect.
Zobrazit více v PubMed
Binnig G., Rohrer H., Gerber C., Weibel E.. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982;49:57–61. doi: 10.1103/PhysRevLett.49.57. DOI
Chen, C. J. Introduction to Scanning Tunneling Microscopy; Oxford University Press Oxford, 2007; . 10.1093/acprof:oso/9780199211500.001.0001. DOI
Stroscio J. A., Feenstra R. M., Fein A. P.. Electronic Structure of the Si(111)2 × 1 Surface by Scanning-Tunneling Microscopy. Phys. Rev. Lett. 1986;57:2579–2582. doi: 10.1103/PhysRevLett.57.2579. PubMed DOI
Zandvliet H. J., van Houselt A.. Scanning Tunneling Spectroscopy. Annu. Rev. Anal. Chem. 2009;2:37–55. doi: 10.1146/annurev-anchem-060908-155213. PubMed DOI
Chiang S.. Scanning Tunneling Microscopy Imaging of Small Adsorbed Molecules on Metal Surfaces in an Ultrahigh Vacuum Environment. Chem. Rev. 1997;97:1083–1096. doi: 10.1021/cr940555a. PubMed DOI
Repp J., Meyer G., Stojković S. M., Gourdon A., Joachim C.. Molecules on Insulating Films: Scanning-Tunneling Microscopy Imaging of Individual Molecular Orbitals. Phys. Rev. Lett. 2005;94:026803. doi: 10.1103/PhysRevLett.94.026803. PubMed DOI
Pham B. Q., Gordon M. S.. Can orbitals really be observed in scanning tunneling microscopy experiments? J. Phys. Chem. A. 2017;121:4851–4852. doi: 10.1021/acs.jpca.7b05789. PubMed DOI
Krylov A. I.. From orbitals to observables and back. J. Chem. Phys. 2020;153:080901. doi: 10.1063/5.0018597. PubMed DOI
Scerri E. R.. Have Orbitals Really Been Observed? J. Chem. Educ. 2000;77:1492. doi: 10.1021/ed077p1492. DOI
Zhao Y., Jiang K., Li C., Liu Y., Zhu G., Pizzochero M., Kaxiras E., Guan D., Li Y., Zheng H., Liu C., Jia J., Qin M., Zhuang X., Wang S.. Quantum nanomagnets in on-surface metal-free porphyrin chains. Nat. Chem. 2023;15:53–60. doi: 10.1038/s41557-022-01061-5. PubMed DOI
Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J. I.. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/physrevlett.124.177201. PubMed DOI
Pavlicek N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and characterization of triangulene. Nat. Nanotechnol. 2017;12:308–311. doi: 10.1038/nnano.2016.305. PubMed DOI
Su J., Lyu P., Lu J.. Atomically precise imprinting π-magnetism in nanographenes via probe chemistry. Precis. chem. 2023;1:565–575. doi: 10.1021/prechem.3c00072. PubMed DOI PMC
Song S.. et al. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nat. Chem. 2024;16:938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI
Zuzak R., Kumar M., Stoica O., Soler-Polo D., Brabec J., Pernal K., Veis L., Blieck R., Echavarren A. M., Jelinek P.. et al. On-Surface Synthesis and Determination of the Open-Shell Singlet Ground State of Tridecacene. Angew. Chem., Int. Ed. 2024;63:e202317091. doi: 10.1002/anie.202317091. PubMed DOI
Villalobos F.. et al. Globally aromatic odd-electron π-magnetic macrocycle. Chem. 2025;11:102316. doi: 10.1016/j.chempr.2024.09.015. DOI
Calupitan J. P., Berdonces-Layunta A., Aguilar-Galindo F., Vilas-Varela M., Peña D., Casanova D., Corso M., de Oteyza D. G., Wang T.. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. Nano Lett. 2023;23:9832–9840. doi: 10.1021/acs.nanolett.3c02586. PubMed DOI PMC
Vilas-Varela M., Romero-Lara F., Vegliante A., Calupitan J. P., Martínez A., Meyer L., Uriarte-Amiano U., Friedrich N., Wang D., Schulz F.. et al. On-Surface Synthesis and Characterization of a High-Spin Aza-[5]-Triangulene. Angew. Chem. 2023;135:e202307884. doi: 10.1002/ange.202307884. PubMed DOI
Toroz D., Rontani M., Corni S.. Proposed Alteration of Images of Molecular Orbitals Obtained Using a Scanning Tunneling Microscope as a Probe of Electron Correlation. Phys. Rev. Lett. 2013;110:018305. doi: 10.1103/physrevlett.110.018305. PubMed DOI
Schulz F., Ijäs M., Drost R., Hämäläinen S. K., Harju A., Seitsonen A. P., Liljeroth P.. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nat. Phys. 2015;11:229–234. doi: 10.1038/nphys3212. DOI
Kasemthaveechok S., Abella L., Crassous J., Autschbach J., Favereau L.. Organic radicals with inversion of SOMO and HOMO energies and potential applications in optoelectronics. Chem. Sci. 2022;13:9833–9847. doi: 10.1039/D2SC02480B. PubMed DOI PMC
Kumar A., Sevilla M. D.. SOMO–HOMO Level Inversion in Biologically Important Radicals. J. Phys. Chem. B. 2018;122:98–105. doi: 10.1021/acs.jpcb.7b10002. PubMed DOI PMC
Westcott B. L., Gruhn N. E., Michelsen L. J., Lichtenberger D. L.. Experimental Observation of Non-Aufbau Behavior: Photoelectron Spectra of Vanadyloctaethylporphyrinate and Vanadylphthalocyanine. J. Am. Chem. Soc. 2000;122:8083–8084. doi: 10.1021/ja994018p. DOI
Kusamoto T., Kume S., Nishihara H.. Realization of SOMO- HOMO level conversion for a TEMPO-dithiolate ligand by coordination to platinum (II) J. Am. Chem. Soc. 2008;130:13844–13845. doi: 10.1021/ja805751h. PubMed DOI
Mishra S., Vilas-Varela M., Fatayer S., Albrecht F., Peña D., Gross L.. Observation of SOMO-HOMO Inversion in a Neutral Polycyclic Conjugated Hydrocarbon. ACS Nano. 2024;18:15898–15904. doi: 10.1021/acsnano.4c03257. PubMed DOI PMC
Yu P., Kocić N., Repp J., Siegert B., Donarini A.. Apparent reversal of molecular orbitals reveals entanglement. Phys. Rev. Lett. 2017;119:056801. doi: 10.1103/PhysRevLett.119.056801. PubMed DOI
Truhlar D. G., Hiberty P. C., Shaik S., Gordon M. S., Danovich D.. Orbitals and the interpretation of photoelectron spectroscopy and (e, 2e) ionization experiments. Angew. Chem. 2019;131:12460–12466. doi: 10.1002/ange.201904609. PubMed DOI
Ortiz J.. Dyson-orbital concepts for description of electrons in molecules. J. Chem. Phys. 2020;153:070902. doi: 10.1063/5.0016472. PubMed DOI
Kohn W., Sham L. J.. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Szabo, A. ; Ostlund, N. S. . Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Revised Edition; Dover Publications: New York, 1989.
Eriksen J. J., Baudin P., Ettenhuber P., Kristensen K., Kjærgaard T., Jørgensen P.. Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–Expand–Consolidate CCSD(T) Model. J. Chem. Theory Comput. 2015;11:2984–2993. doi: 10.1021/acs.jctc.5b00086. PubMed DOI
Krejčí O., Hapala P., Ondráček M., Jelínek P.. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/physrevb.95.045407. DOI
Tersoff J., Hamann D. R.. Theory of the scanning tunneling microscope. Phys. Rev. B. 1985;31:805–813. doi: 10.1103/PhysRevB.31.805. PubMed DOI
Vegliante A., Vilas-Varela M., Ortiz R., Romero Lara F., Kumar M., Gómez-Rodrigo L., Trivini S., Schulz F., Soler-Polo D., Ahmoum H.. et al. On-Surface Synthesis of a Ferromagnetic Molecular Spin Trimer. J. Am. Chem. Soc. 2025;147:19530–19538. doi: 10.1021/jacs.4c15736. PubMed DOI PMC
Adamo C., Barone V.. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Sun Q., Mateo L. M., Robles R., Ruffieux P., Lorente N., Bottari G., Torres T., Fasel R.. Inducing open-shell character in porphyrins through surface-assisted phenalenyl π-extension. J. Am. Chem. Soc. 2020;142:18109–18117. doi: 10.1021/jacs.0c07781. PubMed DOI
Calvo-Fernández A., Kumar M., Soler-Polo D., Eiguren A., Blanco-Rey M., Jelínek P.. Theoretical model for multiorbital Kondo screening in strongly correlated molecules with several unpaired electrons. Phys. Rev. B. 2024;110:165113. doi: 10.1103/PhysRevB.110.165113. DOI
Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M.. Ab initio Mol. Simul.s with numeric atom-centered orbitals. Comput. Phys. Commun. 2009;180:2175–2196. doi: 10.1016/j.cpc.2009.06.022. DOI
Tkatchenko A., Scheffler M.. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Neese F.. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI