Kalymmatonema gen. nov. (Scytonemataceae, Cyanobacteria): A desert soil crust genus previously identified as Scytonema hyalinum, with description of seven species new to science
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PAPIIT Project IN206821
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
89340
California Institute for Biodiversity
DACA88-95-C-0015
U.S. Army Construction Engineering Research Laboratory
N62473-21-2-0002
U.S. Navy
DEB-0842702
U.S. National Science Foundation, Division of Environmental Biology
DEB-9870201
U.S. National Science Foundation, Division of Environmental Biology
GAČR 22-06374S
Grantová Agentura České Republiky
PubMed
40673602
PubMed Central
PMC12547630
DOI
10.1111/jpy.70058
Knihovny.cz E-zdroje
- Klíčová slova
- Kalymmatonema, Scytonema, ITS, Scytonemataceae, biological soil crust, cyanobacteria, ribosomal operons,
- MeSH
- fylogeneze MeSH
- pouštní klima MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- RNA ribozomální 23S genetika MeSH
- sinice * klasifikace genetika cytologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
- RNA ribozomální 23S MeSH
Numerous cyanobacterial strains previously identified as Scytonema hyalinum were determined to be phylogenetically distant from the type species of Scytonema, S. hofmannii. Morphological and molecular evidence suggests this distinct clade necessitates placement in a new genus, and we have described Kalymmatonema gen. nov. herein. Kalymmatonema has been demonstrated to exhibit five ribosomal operons, all of which differed in both sequence and secondary structure of conserved helical domains in the 16S-23S internal transcribed spacer rRNA region. Four of these operon copies were highly similar in 16S and 23S rRNA gene sequences, whereas the divergent fifth copy is thought to represent a whole-operon horizontal gene transfer event. Through in-depth analysis, we were able to recognize seven species new to science, the type species K. desertorum sp. nov., K. arcangelii comb. nov., K. chimaera sp. nov., K. ethiopiense sp. nov., K. gypsitolerans sp. nov., K. mateoae sp. nov., and K. oahuense sp. nov. We also created the new combination, K. hyalinum comb. nov., in order to include the original Scytonema hyalinum in this new genus based upon the common morphological feature of a mucilaginous apical cap on the trichomes. Kalymmatonema displays a complex evolution of its ribosomal operons, with evidence not only of horizontal gene transfer but also of internal rearrangements and mobile genetic elements that have transposed the tRNA-containing region of the ITS rRNA region among the four similar operons. Additional investigation of the evolutionary history of this interesting genus will likely lead to a better understanding of the processes shaping ribosomal evolution in cyanobacteria.
Department of Biology Cuyahoga Community College Cleveland Ohio USA
Department of Biology Faculty of Science University of Hradec Králové Czech Republic
Department of Biology John Carroll University University Heights Ohio USA
Faculty of Science University of South Bohemia České Budějovice Czech Republic
School of Life Sciences University of Nevada Las Vegas Las Vegas Nevada USA
Zobrazit více v PubMed
Becerra‐Absalón, I. , Muñoz‐Martín, M. Á. , Montejano, G. , & Mateo, P. (2019). Differences in the cyanobacterial community composition of biocrusts from the drylands of Central Mexico. Are there endemic species? Frontiers in Microbiology, 10, 937. PubMed PMC
Bohunická, M. , Johansen, J. R. , Villanueva, C. D. , Mareš, J. , Štenclová, L. , Becerra‐Absalón, I. , Hauer, T. , & Kaštovský, J. (2024). Revision of the pantropical genus
Bornet, E. , & Flahault, C. (1886). Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France (Troisième fragment). Annales Des Sciences Naturelles, Botanique, Septième série, 5, 51–129.
Boyer, S. L. , Flechtner, V. R. , & Johansen, J. R. (2001). Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution, 18(6), 1057–1069. PubMed
Boyer, S. L. , Johansen, J. R. , Flechtner, V. R. , & Howard, G. L. (2002). Phylogeny and genetic variance in terrestrial
Cano‐Díaz, C. , Mateo, P. , Muñoz‐Martín, M. Á. , & Maestre, F. T. (2018). Diversity of biocrust‐forming cyanobacteria in a semiarid gypsiferous site from Central Spain. Journal of Arid Environments, 151, 83–89. PubMed PMC
Drouet, F. E. (1973). Revision of the Nostocaceae with cylindrical trichomes (formerly Scytonemataceae and Rivulariaceae). Hafner Publishing.
Drummond, A. J. , Ho, S. Y. W. , Phillips, M. J. , & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88. PubMed PMC
Flechtner, V. R. , Boyer, S. L. , Johansen, J. R. , & DeNoble, M. L. (2002).
Flechtner, V. R. , Johansen, J. R. , & Clark, W. H. (1998). Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. The Great Basin Naturalist, 58(4), 295–311.
Gardner, N. L. (1927). On a collection of Myxophyceae from Fukien Province, China. University of California Publications in Botany, 14(1), 1–20.
Gelman, A. , & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.
Hirose, Y. , Ohtsubo, Y. , Misawa, N. , Yonekawa, C. , Nagao, N. , Shimura, Y. , Takatomo Fujisawa, T. , Kanesaki, Y. , Katoh, H. , Katayama, M. , Yamaguchi, H. , Yoshikawa, H. , Ikeuchi, M. , Eki, T. , Nakamura, Y. , & Kawachi, M. (2021). Genome sequencing of the NIES cyanobacteria collection with a focus on the heterocyst‐forming clade. DNA Research, 28(6), dsab024. PubMed PMC
Johansen, J. R. , Bohunická, M. , Lukešová, A. , Hrčková, K. , Vaccarino, M. A. , & Chesarino, N. M. (2014). Morphological and molecular characterization within 26 strains of the genus PubMed
Johansen, J. R. , Britton, C. , Rosati, T. C. , Li, X. , St. Clair, L. L. , Webb, B. L. , Kennedy, A. J. , & Yanko, K. S. (2001). Microbiotic crusts of the Mojave Desert: Factors influencing distribution and abundance. Nova Hedwigia. Beiheft, 123, 339–369.
Johansen, J. R. , & Casamatta, D. A. (2005). Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies, 117(1), 71–93.
Johansen, J. R. , Mareš, J. , Pietrasiak, N. , Bohunická, M. , Zima, J., Jr. , Štenclová, L. , & Hauer, T. (2017). Highly divergent 16S rRNA sequences in ribosomal operons of PubMed PMC
Jusko, B. M. , & Johansen, J. R. (2024). Description of six new cyanobacterial species from soil biocrusts on san Nicolas Island, California, in three genera previously restricted to Brazil. Journal of Phycology, 60(1), 133–151. PubMed
Komárek, J. (2016). A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. European Journal of Phycology, 51(3), 346–353.
Komárek, J. , Kaštovský, J. , Mareš, J. , & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.
Komárek, J. , Sant'Anna, C. L. , Bohunická, M. , Mareš, J. , Hentschke, G. S. , Rigonato, J. , & Fiore, M. F. (2013). Phenotype diversity and phylogeny of selected
Lane, D. J. (1991). 16S/23S rRNA sequencing. In Stackebrandt E. & Goodfellow M. (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–147). John Wiley & Sons.
McGregor, G. B. , & Sendall, B. C. (2017a).
McGregor, G. B. , & Sendall, B. C. (2017b). PubMed
Mehda, S. , Muñoz‐Martín, M. Á. , Oustani, M. , Hamdi‐Aïssa, B. , Perona, E. , & Mateo, P. (2022). Lithic cyanobacterial communities in the polyextreme Sahara Desert: Implications for the search for the limits of life. Environmental Microbiology, 24(1), 451–474. PubMed
Miller, M. A. , Pfeiffer, W. , & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (pp. 45–52). IEEE. 10.1109/GCE.2010.5676129 DOI
Mühlsteinová, R. , Hauer, T. , De Ley, P. , & Pietrasiak, N. (2018). Seeking the true
Muñoz‐Martín, M. Á. , Becerra‐Absalón, I. , Perona, E. , Fernández‐Valbuena, L. , Garcia‐Pichel, F. , & Mateo, P. (2019). Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytologist, 221(1), 123–141. PubMed
Neilan, B. A. , Jacobs, D. , Therese, D. D. , Blackall, L. L. , Hawkins, P. R. , Cox, P. T. , & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus PubMed
Nübel, U. , Garcia‐Pichel, F. , & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. PubMed PMC
Paper, M. , Koch, M. , Jung, P. , Lakatos, M. , Nilges, T. , & Brück, T. B. (2023). Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements. Frontiers in Bioengineering and Biotechnology, 11, 1130939. PubMed PMC
Pietrasiak, N. , Osorio‐Santos, K. , Lipson, D. L. , & Johansen, J. R. (2021). PubMed
Pietrasiak, N. , Osorio‐Santos, K. , Shalygin, S. , Martin, M. P. , & Johansen, J. R. (2019). When is a lineage a species? A case study in PubMed
Rambaut, A. (2009). FigTree. Tree figure drawing tool [Software]. http://tree.bio.ed.ac.uk/software/figtree/
Roncero‐Ramos, B. , Muñoz‐Martín, M. Á. , Chamizo, S. , Fernández‐Valbuena, L. , Mendoza, D. , Perona, E. , Cantón, Y. , & Mateo, P. (2019). Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ, 7, e6169. PubMed PMC
Ronquist, F. , Teslenko, M. , Van Der Mark, P. , Ayres, D. L. , Darling, A. , Höhna, S. , Larget, B. , Liu, L. , Suchard, M. A. , & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. PubMed PMC
Saraf, A. , Singh, P. , Kumar, N. , Pal, S. , & Johansen, J. R. (2024). Two new species of PubMed
Sendall, B. C. , & McGregor, G. B. (2018). Cryptic diversity within the PubMed
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. PubMed PMC
Strunecký, O. , Ivanova, A. P. , & Mareš, J. (2023). An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59(1), 12–51. PubMed
Swofford, D. L. (1998). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates.
Thiers, B. M. (2025). Index Herbariorum. https://sweetgum.nybg.org/science/ih/
Villanueva, C. D. , Bohunická, M. , & Johansen, J. R. (2024). We're doing it wrong: Putting homology before phylogeny in cyanobacterial taxonomy. Journal of Phycology, 60(5), 1071–1089. PubMed
Wilmotte, A. (1994). Molecular evolution and taxonomy of the cyanobacteria. In Bryant D. A. (Ed.), The molecular biology of cyanobacteria (pp. 1–25). Kluwer.
Wilmotte, A. , Van der Auwera, G. , & De Wachter, R. (1993). Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium PubMed
Yeager, C. M. , Kornosky, J. L. , Morgan, R. E. , Cain, E. C. , Garcia‐Pichel, F. , Housman, D. C. , Belnap, J. , & Kuske, C. R. (2007). Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2‐fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiology Ecology, 60(1), 85–97. PubMed
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. PubMed PMC