Mutations in GFAP Alter Early Lineage Commitment of Organoids

. 2025 Nov ; 73 (11) : 2167-2188. [epub] 20250730

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40735838

Grantová podpora
LCF/PR/HR21/52410002 'la Caixa' Foundation
EJP RD 2019 ALEXANDER European Joint Programme on Rare Diseases
FO02021-0082 Svenska Sällskapet för Medicinsk Forskning
FO2022-1032 Svenska Sällskapet för Medicinsk Forskning
2018-02695 Vetenskapsrådet
2020-01148 Vetenskapsrådet
2019-00284 Vetenskapsrådet
Söderberg's Foundations
146051 ALF Gothenburg
965939 ALF Gothenburg
M-2019-1026 Petrus och Augusta Hedlunds Stiftelse
M2018-0803 Petrus och Augusta Hedlunds Stiftelse
24-11364S Czech science foundation
24-12028S Czech science foundation
Amlöv's Foundation
10.13039/501100011033 Agencia Estatal de Investigación
RVO 86652036 Institute of Biotechnology of the Czech Academy of Sciences (IBT CAS) institutional support
463002004 ZonMw - Netherlands
PID2021-126827OB-I00 MICIN and ERDF
RTI2018-097624-B-I00 MICIN and ERDF
PIPF-2022/SAL-GL-25771 Comunidad Autónoma de Madrid
463002004 ZonMw - Netherlands

Glial fibrillary acidic protein (GFAP) is a type-3 intermediate filament protein mainly expressed in astrocytes in the central nervous system. Mutations in GFAP cause Alexander disease (AxD), a rare and fatal neurological disorder. How exactly mutant GFAP eventually leads to white and gray matter deterioration in AxD remains unknown. GFAP is known to be expressed also in neural precursor cells in the developing brain. Here, we used AxD patient-derived induced pluripotent stem cells (iPSCs) to explore the impact of mutant GFAP during neurodifferentiation. Our results show that GFAP is already expressed in iPSCs. Moreover, we have found that mutations in GFAP can severely affect neural organoid development through altering lineage commitment in embryoid bodies. Together, these results support the notion that GFAP plays a role as an early modulator of neurodevelopment.

Zobrazit více v PubMed

Abuammah, A. , Maimari N., Towhidi L., et al. 2018. “New Developments in Mechanotransduction: Cross Talk of the Wnt, TGF‐β and Notch Signalling Pathways in Reaction to Shear Stress.” Current Opinion in Biomedical Engineering 5: 96–104. 10.1016/j.cobme.2018.03.003. DOI

Anders, S. , Pyl P. T., and Huber W.. 2015. “HTSeq‐A Python Framework to Work With High‐Throughput Sequencing Data.” Bioinformatics 31: 166–169. 10.1093/bioinformatics/btu638. PubMed DOI PMC

Andrews, S. , Biggins L., Inglesfield S., Carr H., and Montgomery J.. 2019. “FastQC: A Quality Control Tool for High Throughput Sequence Data.” 2010. Https://Www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/.

Arellano, J. I. , Morozov Y. M., Micali N., and Rakic P.. 2021. “Radial Glial Cells: New Views on Old Questions.” Neurochemical Research 46: 2512–2524. 10.1007/s11064-021-03296-z. PubMed DOI PMC

Aswendt, M. , Wilhelmsson U., Wieters F., et al. 2022. “Reactive Astrocytes Prevent Maladaptive Plasticity After Ischemic Stroke.” Progress in Neurobiology 209: 102199. 10.1016/j.pneurobio.2021.102199. PubMed DOI

Baek, J. , Kumar S., Schaffer D. V., and Im S. G.. 2022. “N‐Cadherin Adhesive Ligation Regulates Mechanosensitive Neural Stem Cell Lineage Commitment in 3D Matrices.” Biomaterials Science 10: 6768–6777. 10.1039/d2bm01349e. PubMed DOI PMC

Baek, J. , Lopez P. A., Lee S., Kim T. S., Kumar S., and Schaffer D. V.. 2022. “Egr1 Is a 3D Matrix–Specific Mediator of Mechanosensitive Stem Cell Lineage Commitment.” Science Advances 8: eabm4646. 10.1126/sciadv.abm4646. PubMed DOI PMC

Battaglia, R. A. , Beltran A. S., Delic S., et al. 2019. “Site‐Specific Phosphorylation and Caspase Cleavage of GFAP Are New Markers of Alexander Disease Severity.” eLife 8: e47789. 10.7554/eLife.47789. PubMed DOI PMC

Bhaduri, A. , Andrews M. G., Mancia Leon W., et al. 2020. “Cell Stress in Cortical Organoids Impairs Molecular Subtype Specification.” Nature 578: 142–148. 10.1038/s41586-020-1962-0. PubMed DOI PMC

Bolger, A. M. , Lohse M., and Usadel B.. 2014. “Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.” Bioinformatics 30: 2114–2120. 10.1093/bioinformatics/btu170. PubMed DOI PMC

Borrett, D. , and Becker L. E.. 1985. “Alexander's Disease. A Disease of Astrocytes.” Brain 108, no. Pt 2: 367–385. 10.1093/brain/108.2.367. PubMed DOI

Brenner, M. , Goldman J. E., Quinlan R. A., and Messing A.. 2009. “Alexander Disease: A Genetic Disorder of Astrocytes.” In Astrocytes in (Patho)physiology of the Nervous System, 591–648. Springer Science + Business Media.

Brenner, M. , Johnson A. B., Boespflug‐Tanguy O., Rodriguez D., Goldman J. E., and Messing A.. 2001. “Mutations in GFAP, Encoding Glial Fibrillary Acidic Protein, Are Associated With Alexander Disease.” Nature Genetics 27: 117–120. 10.1038/83679. PubMed DOI

Carbon, S. , Douglass E., Good B. M., et al. 2021. “The Gene Ontology Resource: Enriching a GOld Mine.” Nucleic Acids Research 49, no. D1: D325–D334. 10.1093/nar/gkaa1113. PubMed DOI PMC

Carlson, M. 2019. “Bioconductor—org.Hs.eg.db.”

Chambers, S. M. , Fasano C. A., Papapetrou E. P., Tomishima M., Sadelain M., and Studer L.. 2009. “Highly Efficient Neural Conversion of Human ES and iPS Cells by Dual Inhibition of SMAD Signaling.” Nature Biotechnology 27: 275–280. 10.1038/nbt.1529. PubMed DOI PMC

Cho, K. S. , Yang L., Lu B., et al. 2005. “Re‐Establishing the Regenerative Potential of Central Nervous System Axons in Postnatal Mice.” Journal of Cell Science 118: 863–872. 10.1242/jcs.01658. PubMed DOI PMC

Choi, B. H. 1988. “Prenatal Gliogenesis in the Developing Cerebrum of the Mouse.” Glia 1: 308–316. 10.1002/glia.440010503. PubMed DOI

Clevers, H. , and Nusse R.. 2012. “Wnt/β‐Catenin Signaling and Disease.” Cell 149: 1192–1205. 10.1016/j.cell.2012.05.012. PubMed DOI

Coulombe, P. A. , Hutton M. E., Letai A., Hebert A., Paller A. S., and Fuchs E.. 1991. “Point Mutations in Human Keratin 14 Genes of Epidermolysis Bullosa Simplex Patients: Genetic and Functional Analyses.” Cell 66: 1301–1311. 10.1016/0092-8674(91)90051-y. PubMed DOI

Coulombe, P. A. , and Wong P.. 2004. “Cytoplasmic Intermediate Filaments Revealed as Dynamic and Multipurpose Scaffolds.” Nature Cell Biology 6: 699–706. 10.1038/ncb0804-699. PubMed DOI

de Pablo, Y. , Nilsson M., Pekna M., and Pekny M.. 2013. “Intermediate Filaments Are Important for Astrocyte Response to Oxidative Stress Induced by Oxygen‐Glucose Deprivation and Reperfusion.” Histochemistry and Cell Biology 140: 81–91. 10.1007/s00418-013-1110-0. PubMed DOI

Dobin, A. , Davis C. A., Schlesinger F., et al. 2013. “STAR: Ultrafast Universal RNA‐Seq Aligner.” Bioinformatics 29: 15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC

Doench, J. G. , Fusi N., Sullender M., et al. 2016. “Optimized sgRNA Design to Maximize Activity and Minimize Off‐Target Effects of CRISPR‐Cas9.” Nature Biotechnology 34: 184–191. 10.1038/nbt.3437. PubMed DOI PMC

Edgar, R. , Domrachev M., and Lash A. E.. 2002. “Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository.” Nucleic Acids Research 30: 207–210. 10.1093/nar/30.1.207. PubMed DOI PMC

Emerson, J. A. 1988. “Disruption of the Cytokeratin Filament Network in the Preimplantation Mouse Embryo.” Development 104: 219–234. 10.1242/dev.104.2.219. PubMed DOI

Erickson, C. A. , Tucker R. P., and Edwards B. F.. 1987. “Changes in the Distribution of Intermediate‐Filament Types in Japanese Quail Embryos During Morphogenesis.” Differentiation 34: 88–97. 10.1111/j.1432-0436.1987.tb00054.x. PubMed DOI

Eriksson, M. , Brown W. T., Gordon L. B., et al. 2003. “Recurrent de Novo Point Mutations in Lamin A Cause Hutchinson‐Gilford Progeria Syndrome.” Nature 423: 293–298. 10.1038/nature01629. PubMed DOI PMC

Gjorevski, N. , Nikolaev M., Brown T. E., et al. 2022. “Tissue Geometry Drives Deterministic Organoid Patterning.” Science 375, no. 6576: eaaw9021. 10.1126/science.aaw9021. PubMed DOI PMC

Gomi, H. , Yokoyama T., Fujimoto K., et al. 1995. “Mice Devoid of the Glial Fibrillary Acidic Protein Develop Normally and Are Susceptible to Scrapie Prions.” Neuron 14: 29–41. 10.1016/0896-6273(95)90238-4. PubMed DOI

Gordon, A. , Yoon S. J., Tran S. S., et al. 2021. “Long‐Term Maturation of Human Cortical Organoids Matches Key Early Postnatal Transitions.” Nature Neuroscience 24: 331–342. 10.1038/s41593-021-00802-y. PubMed DOI PMC

Grosche, A. , Grosche J., Tackenberg M., et al. 2013. “Versatile and Simple Approach to Determine Astrocyte Territories in Mouse Neocortex and Hippocampus.” PLoS One 8: e69143. 10.1371/journal.pone.0069143. PubMed DOI PMC

Hagemann, T. L. , Boelens W. C., Wawrousek E. F., and Messing A.. 2009. “Suppression of GFAP Toxicity by alphaB‐Crystallin in Mouse Models of Alexander Disease.” Human Molecular Genetics 18: 1190–1199. 10.1093/hmg/ddp013. PubMed DOI PMC

Hagemann, T. L. , Connor J. X., and Messing A.. 2006. “Alexander Disease‐Associated Glial Fibrillary Acidic Protein Mutations in Mice Induce Rosenthal Fiber Formation and a White Matter Stress Response.” Journal of Neuroscience 26: 11162–11173. 10.1523/JNEUROSCI.3260-06.2006. PubMed DOI PMC

Hagemann, T. L. , Paylor R., and Messing A.. 2013. “Deficits in Adult Neurogenesis, Contextual Fear Conditioning, and Spatial Learning in a Gfap Mutant Mouse Model of Alexander Disease.” Journal of Neuroscience 33: 18698–18706. 10.1523/JNEUROSCI.3693-13.2013. PubMed DOI PMC

Hagemann, T. L. , Powers B., Lin N. H., et al. 2021. “Antisense Therapy in a Rat Model of Alexander Disease Reverses GFAP Pathology, White Matter Deficits, and Motor Impairment.” Science Translational Medicine 13: eabg4711. 10.1126/scitranslmed.abg4711. PubMed DOI PMC

Hansen, D. V. , Lui J. H., Parker P. R. L., and Kriegstein A. R.. 2010. “Neurogenic Radial Glia in the Outer Subventricular Zone of Human Neocortex.” Nature 464: 554–561. 10.1038/nature08845. PubMed DOI

Heaven, M. R. , Flint D., Randall S. M., et al. 2016. “Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease.” Journal of Proteome Research 15: 2265–2282. 10.1021/acs.jproteome.6b00316. PubMed DOI PMC

Herrmann, H. , and Aebi U.. 2000. “Intermediate Filaments and Their Associates: Multi‐Talented Structural Elements Specifying Cytoarchitecture and Cytodynamics.” Current Opinion in Cell Biology 12: 79–90. 10.1016/s0955-0674(99)00060-5. PubMed DOI

Herrmann, H. , and Aebi U.. 2004. “Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds.” Annual Review of Biochemistry 73: 749–789. 10.1146/annurev.biochem.73.011303.073823. PubMed DOI

Herrmann, H. , and Aebi U.. 2016. “Intermediate Filaments: Structure and Assembly.” Cold Spring Harbor Perspectives in Biology 8: a018242. 10.1101/cshperspect.a018242. PubMed DOI PMC

Hol, E. M. , and Pekny M.. 2015. “Glial Fibrillary Acidic Protein (GFAP) and the Astrocyte Intermediate Filament System in Diseases of the Central Nervous System.” Current Opinion in Cell Biology 32: 121–130. 10.1016/j.ceb.2015.02.004. PubMed DOI

Imura, T. , Kornblum H. I., and Sofroniew M. V.. 2003. “The Predominant Neural Stem Cell Isolated From Postnatal and Adult Forebrain but Not Early Embryonic Forebrain Expresses GFAP.” Journal of Neuroscience 23: 2824–2832. 10.1523/jneurosci.23-07-02824.2003. PubMed DOI PMC

Jany, P. L. , Hagemann T. L., and Messing A.. 2013. “GFAP Expression as an Indicator of Disease Severity in Mouse Models of Alexander Disease.” ASN Neuro 5: e00109. 10.1042/AN20130003. PubMed DOI PMC

Järlestedt, K. , Rousset C. I., Faiz M., et al. 2010. “Attenuation of Reactive Gliosis Does Not Affect Infarct Volume in Neonatal Hypoxic‐Ischemic Brain Injury in Mice.” PLoS One 5: e10397. 10.1371/journal.pone.0010397. PubMed DOI PMC

Jones, J. R. , Kong L., Hanna M. G., et al. 2018. “Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes.” Cell Reports 25: 947–958.e4. 10.1016/j.celrep.2018.09.083. PubMed DOI PMC

Kamphuis, W. , Kooijman L., Orre M., Stassen O., Pekny M., and Hol E. M.. 2015. “GFAP and Vimentin Deficiency Alters Gene Expression in Astrocytes and Microglia in Wild‐Type Mice and Changes the Transcriptional Response of Reactive Glia in Mouse Model for Alzheimer's Disease.” Glia 63: 1036–1056. 10.1002/glia.22800. PubMed DOI

Kempf, H. , Olmer R., Haase A., et al. 2016. “Bulk Cell Density and Wnt/TGFbeta Signalling Regulate Mesendodermal Patterning of Human Pluripotent Stem Cells.” Nature Communications 7: 13602. 10.1038/ncomms13602. PubMed DOI PMC

Keung, A. J. , De Juan‐Pardo E. M., Schaffer D. V., and Kumar S.. 2011. “Rho GTPases Mediate the Mechanosensitive Lineage Commitment of Neural Stem Cells.” Stem Cells 29: 1886–1897. 10.1002/stem.746. PubMed DOI PMC

Kopylova, E. , Noé L., and Touzet H.. 2012. “SortMeRNA: Fast and Accurate Filtering of Ribosomal RNAs in Metatranscriptomic Data.” Bioinformatics 28: 3211–3217. 10.1093/bioinformatics/bts611. PubMed DOI

Kosako, H. , Amano M., Yanagida M., et al. 1997. “Phosphorylation of Glial Fibrillary, Acidic Protein at the Same Sites by Cleavage Furrow Kinase and Rho‐Associated Kinase.” Journal of Biological Chemistry 272: 10333–10336. 10.1074/jbc.272.16.10333. PubMed DOI

Kraft, A. W. , Hu X., Yoon H., et al. 2013. “Attenuating Astrocyte Activation Accelerates Plaque Pathogenesis in APP/PS1 Mice.” FASEB Journal 27: 187–198. 10.1096/fj.12-208660. PubMed DOI PMC

Kriegstein, A. , and Alvarez‐Buylla A.. 2009. “The Glial Nature of Embryonic and Adult Neural Stem Cells.” Annual Review of Neuroscience 32: 149–184. 10.1146/annurev.neuro.051508.135600. PubMed DOI PMC

Lancaster, M. A. , Renner M., Martin C. A., et al. 2013. “Cerebral Organoids Model Human Brain Development and Microcephaly.” Nature 501: 373–379. 10.1038/nature12517. PubMed DOI PMC

Larsson, Å. , Wilhelmsson U., Pekna M., and Pekny M.. 2004. “Increased Cell Proliferation and Neurogenesis in the Hippocampal Dentate Gyrus of Old PubMed DOI

Lebkuechner, I. , Wilhelmsson U., Möllerström E., Pekna M., and Pekny M.. 2015. “Heterogeneity of Notch Signaling in Astrocytes and the Effects of GFAP and Vimentin Deficiency.” Journal of Neurochemistry 135: 234–248. 10.1111/jnc.13213. PubMed DOI

Li, L. , Lundkvist A., Andersson D., et al. 2008. “Protective Role of Reactive Astrocytes in Brain Ischemia.” Journal of Cerebral Blood Flow and Metabolism 28: 468–481. 10.1038/sj.jcbfm.9600546. PubMed DOI

Li, L. , Tian E., Chen X., et al. 2018. “GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease.” Cell Stem Cell 23: 239–251. 10.1016/j.stem.2018.07.009. PubMed DOI PMC

Lim, H. Y. G. , Alvarez Y. D., Gasnier M., et al. 2020. “Keratins Are Asymmetrically Inherited Fate Determinants in the Mammalian Embryo.” Nature 585: 404–409. 10.1038/s41586-020-2647-4. PubMed DOI

Love, M. I. , Huber W., and Anders S.. 2014. “Moderated Estimation of Fold Change and Dispersion for RNA‐Seq Data With DESeq2.” Genome Biology 15: 550. 10.1186/s13059-014-0550-8. PubMed DOI PMC

Lundkvist, A. , Reichenbach A., Betsholtz C., Carmeliet P., Wolburg H., and Pekny M.. 2004. “Under Stress, the Absence of Intermediate Filaments From Müller Cells in the Retina Has Structural and Functional Consequences.” Journal of Cell Science 117: 3481–3488. 10.1242/jcs.01221. PubMed DOI

Macauley, S. L. , Pekny M., and Sands M. S.. 2011. “The Role of Attenuated Astrocyte Activation in Infantile Neuronal Ceroid Lipofuscinosis.” Journal of Neuroscience 31: 15575–15585. 10.1523/JNEUROSCI.3579-11.2011. PubMed DOI PMC

Matsuoka, Y. , Nishizawa K., Yano T., et al. 1992. “Two Different Protein Kinases Act on a Different Time Schedule as Glial Filament Kinases During Mitosis.” EMBO Journal 11: 2895–2902. 10.1002/j.1460-2075.1992.tb05358.x. PubMed DOI PMC

Matusova, Z. , Dykstra W., de Pablo Y., et al. 2025. “Aberrant Neurodevelopment in Human iPS Cell‐Derived Models of Alexander Disease.” Glia 73: 57–79. 10.1002/glia.24618. PubMed DOI PMC

Messing, A. 2018. “Alexander Disease.” Handbook of Clinical Neurology 148: 693–700. 10.1016/B978-0-444-64076-5.00044-2. PubMed DOI

Messing, A. , Brenner M., Feany M. B., Nedergaard M., and Goldman J. E.. 2012. “Alexander Disease.” Journal of Neuroscience 32: 5017–5023. 10.1523/JNEUROSCI.5384-11.2012. PubMed DOI PMC

Middeldorp, J. , Boer K., Sluijs J. A., et al. 2010. “GFAPdelta in Radial Glia and Subventricular Zone Progenitors in the Developing Human Cortex.” Development 137: 313–321. 10.1242/dev.041632. PubMed DOI

Middeldorp, J. , and Hol E. M.. 2011. “GFAP in Health and Disease.” Progress in Neurobiology 93: 421–443. 10.1016/j.pneurobio.2011.01.005. PubMed DOI

Moeton, M. , Stassen O. M., Sluijs J. A., et al. 2016. “GFAP Isoforms Control Intermediate Filament Network Dynamics, Cell Morphology, and Focal Adhesions.” Cellular and Molecular Life Sciences 73: 4101–4120. 10.1007/s00018-016-2239-5. PubMed DOI PMC

Nawashiro, H. , Messing A., Azzam N., and Brenner M.. 1998. “Mice Lacking GFAP Are Hypersensitive to Traumatic Cerebrospinal Injury.” Neuroreport 9: 1691–1696. 10.1097/00001756-199806010-00004. PubMed DOI

Omary, M. B. , Coulombe P. A., and McLean W. H.. 2004. “Intermediate Filament Proteins and Their Associated Diseases.” New England Journal of Medicine 351: 2087–2100. 10.1056/NEJMra040319. PubMed DOI

Ormel, P. R. , Vieira de Sá R., van Bodegraven E. J., et al. 2018. “Microglia Innately Develop Within Cerebral Organoids.” Nature Communications 9: 4167. 10.1038/s41467-018-06684-2. PubMed DOI PMC

Pajares, M. , Hernández‐Gerez E., Pekny M., and Pérez‐Sala D.. 2023. “Alexander Disease: The Road Ahead.” Neural Regeneration Research 18: 2156–2160. 10.4103/1673-5374.369097. PubMed DOI PMC

Pașca, S. P. , Arlotta P., Bateup H. S., et al. 2022. “A Nomenclature Consensus for Nervous System Organoids and Assembloids.” Nature 609: 907–910. 10.1038/s41586-022-05219-6. PubMed DOI PMC

Pekny, M. , Leveen P., Pekna M., et al. 1995. “Mice Lacking Glial Fibrillary Acidic Protein Display Astrocytes Devoid of Intermediate Filaments but Develop and Reproduce Normally.” EMBO Journal 14: 1590–1598. PubMed PMC

Pekny, M. , and Pekna M.. 2014. “Astrocyte Reactivity and Reactive Astrogliosis: Costs and Benefits.” Physiological Reviews 94: 1077–1098. 10.1152/physrev.00041.2013. PubMed DOI

Pekny, M. , Pekna M., Messing A., et al. 2016. “Astrocytes: A Central Element in Neurological Diseases.” Acta Neuropathologica 131: 323–345. 10.1007/s00401-015-1513-1. PubMed DOI

Pekny, M. , Wilhelmsson U., Tatlisumak T., and Pekna M.. 2019. “Astrocyte Activation and Reactive Gliosis—A New Target in Stroke?” Neuroscience Letters 689: 45–55. 10.1016/j.neulet.2018.07.021. PubMed DOI

R Core Team . 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Rajasekaran, N. S. , Shelar S. B., Jones D. P., and Hoidal J. R.. 2020. “Reductive Stress Impairs Myogenic Differentiation.” Redox Biology 34: 101492. 10.1016/j.redox.2020.101492. PubMed DOI PMC

Rammensee, S. , Kang M. S., Georgiou K., Kumar S., and Schaffer D. V.. 2017. “Dynamics of Mechanosensitive Neural Stem Cell Differentiation.” Stem Cells 35: 497–506. 10.1002/stem.2489. PubMed DOI PMC

Ridge, K. M. , Eriksson J. E., Pekny M., and Goldman R. D.. 2022. “Roles of Vimentin in Health and Disease.” Genes & Development 36: 391–407. 10.1101/gad.349358.122. PubMed DOI PMC

Rossant, J. , and Tam P. P. L.. 2009. “Blastocyst Lineage Formation, Early Embryonic Asymmetries and Axis Patterning in the Mouse.” Development 136: 701–713. 10.1242/dev.017178. PubMed DOI

Schirmer, L. , Velmeshev D., Holmqvist S., et al. 2019. “Neuronal Vulnerability and Multilineage Diversity in Multiple Sclerosis.” Nature 573: 75–82. 10.1038/s41586-019-1404-z. PubMed DOI PMC

Sekimata, M. , Tsujimura K., Tanaka J., Takeuchi Y., Inagaki N., and Inagaki M.. 1996. “Detection of Protein Kinase Activity Specifically Activated at Metaphase‐Anaphase Transition.” Journal of Cell Biology 132: 635–641. 10.1083/jcb.132.4.635. PubMed DOI PMC

Sen, D. , Voulgaropoulos A., and Keung A. J.. 2021. “Effects of Early Geometric Confinement on the Transcriptomic Profile of Human Cerebral Organoids.” BMC Biotechnology 21: 59. 10.1186/s12896-021-00718-2. PubMed DOI PMC

Smith, T. , Heger A., and Sudbery I.. 2017. “UMI‐Tools: Modeling Sequencing Errors in Unique Molecular Identifiers to Improve Quantification Accuracy.” Genome Research 27: 491–499. 10.1101/gr.209601.116. PubMed DOI PMC

Sosunov, A. A. , McKhann G. M., and Goldman J. E.. 2017. “The Origin of Rosenthal Fibers and Their Contributions to Astrocyte Pathology in Alexander Disease.” Acta Neuropathologica Communications 5: 27. 10.1186/s40478-017-0425-9. PubMed DOI PMC

Spaas, J. , van Veggel L., Schepers M., et al. 2021. “Oxidative Stress and Impaired Oligodendrocyte Precursor Cell Differentiation in Neurological Disorders.” Cellular and Molecular Life Sciences 78: 4615–4637. 10.1007/s00018-021-03802-0. PubMed DOI PMC

Tiedemann, H. , Asashima M., Grunz H., and Knöchel W.. 2001. “Pluripotent Cells (Stem Cells) and Their Determination and Differentiation in Early Vertebrate Embryogenesis.” Development, Growth & Differentiation 43: 469–502. 10.1046/j.1440-169X.2001.00599.x. PubMed DOI

Tyser, R. C. V. , Mahammadov E., Nakanoh S., Vallier L., Scialdone A., and Srinivas S.. 2021. “Single‐Cell Transcriptomic Characterization of a Gastrulating Human Embryo.” Nature 600: 285–289. 10.1038/s41586-021-04158-y. PubMed DOI PMC

Van Deusen, A. L. , Kumar S., Calhan O. Y., et al. 2025. “A Single‐Cell Mass Cytometry‐Based Atlas of the Developing Mouse Brain.” Nature Neuroscience 28, no. 1: 174–188. 10.1038/s41593-024-01786-1. PubMed DOI

Verardo, M. R. , Lewis G. P., Takeda M., et al. 2008. “Abnormal Reactivity of Müller Cells After Retinal Detachment in Mice Deficient in GFAP and Vimentin.” Investigative Ophthalmology & Visual Science 49: 3659–3665. 10.1167/iovs.07-1474. PubMed DOI PMC

Viedma‐Poyatos, Á. , González‐Jiménez P., Pajares M. A., and Pérez‐Sala D.. 2022. “Alexander Disease GFAP R239C Mutant Shows Increased Susceptibility to Lipoxidation and Elicits Mitochondrial Dysfunction and Oxidative Stress.” Redox Biology 55: 102415. 10.1016/j.redox.2022.102415. PubMed DOI PMC

Wang, L. , Bukhari H., Kong L., et al. 2022. “Anastasis Drives Senescence and Non‐Cell Autonomous Neurodegeneration in the Astrogliopathy Alexander Disease.” Journal of Neuroscience 42: 2584–2597. 10.1523/JNEUROSCI.1659-21.2021. PubMed DOI PMC

Wang, L. , Xia J., Li J., et al. 2018. “Tissue and Cellular Rigidity and Mechanosensitive Signaling Activation in Alexander Disease.” Nature Communications 9: 1899. 10.1038/s41467-018-04269-7. PubMed DOI PMC

Widestrand, Å. , Faijerson J., Wilhelmsson U., et al. 2007. “Increased Neurogenesis and Astrogenesis From Neural Progenitor Cells Grafted in the Hippocampus of GFAP −/− Vim −/− Mice.” Stem Cells 25: 2619–2627. 10.1634/stemcells.2007-0122. PubMed DOI

Wilhelmsson, U. , Faiz M., De Pablo Y., et al. 2012. “Astrocytes Negatively Regulate Neurogenesis Through the Jagged1‐Mediated Notch Pathway.” Stem Cells 30: 2320–2329. 10.1002/stem.1196. PubMed DOI

Wilhelmsson, U. , Li L., Pekna M., et al. 2004. “Absence of Glial Fibrillary Acidic Protein and Vimentin Prevents Hypertrophy of Astrocytic Processes and Improves Post‐Traumatic Regeneration.” Journal of Neuroscience 24: 5016–5021. 10.1523/JNEUROSCI.0820-04.2004. PubMed DOI PMC

Wilhelmsson, U. , Pozo‐Rodrigalvarez A., Kalm M., et al. 2019. “The Role of GFAP and Vimentin in Learning and Memory.” Biological Chemistry 400: 1147–1156. 10.1515/hsz-2019-0199. PubMed DOI

Wingett, S. W. , and Andrews S.. 2018. “FastQ Screen: A Tool for Multi‐Genome Mapping and Quality Control.” F1000Research 7: 1338. 10.12688/f1000research.15931.2. PubMed DOI PMC

Wu, T. , Hu E., Xu S., et al. 2021. “clusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data.” PubMed DOI PMC

Yoon, S. J. , Elahi L. S., Pașca A. M., et al. 2019. “Reliability of Human Cortical Organoid Generation.” Nature Methods 16: 75–78. 10.1038/s41592-018-0255-0. PubMed DOI PMC

Yumlu, S. , Stumm J., Bashir S., et al. 2017. “Gene Editing and Clonal Isolation of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9.” Methods 121‐122: 29–44. 10.1016/j.ymeth.2017.05.009. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...