Polygenic Hazard Score for Predicting Age-associated Risk of Alzheimer's Disease in European Populations: Development and Validation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
U24 DA055330
NIDA NIH HHS - United States
U24 DA041123
NIDA NIH HHS - United States
OT2 HL161847
NHLBI NIH HHS - United States
R01 AG076838
NIA NIH HHS - United States
Wellcome Trust - United Kingdom
R01 AG037985
NIA NIH HHS - United States
U01 DK066134
NIDDK NIH HHS - United States
PubMed
40766162
PubMed Central
PMC12324663
DOI
10.1101/2025.07.28.25332293
PII: 2025.07.28.25332293
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
OBJECTIVES: Polygenic hazard score (PHS) models can be used to predict the age-associated risk for complex diseases, including Alzheimer's disease (AD). In this study, we present an improved PHS model for AD that incorporates a large number of genetic variants and demonstrates enhanced predictive accuracy for age of onset in European populations compared to alternative models. METHODS: We used the genotyped European Alzheimer & Dementia Biobank (EADB) sample (n=42,120) to develop and evaluate the performance of the PHS model. We developed a PHS model building on 720 genetic variants, including Apolipoprotein E (APOE) ε2 and ε4 alleles. We used Elastic Net-regularized Cox regression approach to develop the PHS model. RESULTS: The new PHS model (EADB720) improved prediction accuracy compared to alternative models in European populations, with the Odds Ratio OR80/20 from the highest quintile of risk (80th risk percentile and above) to the lowest quintile of risk (20th risk percentile and below) varying between 5.10 and 13.15 within the range of age of onset from 65 - 85 years. Our model also improved risk stratification across ε3/3 individuals of European ancestry (OR80/20 ranges from 1.95 to 3.52). It was also successfully validated in independent datasets (HUSK, DemGene and ADNI) by achieving OR80/20 up to 10.00 in each independent dataset. CONCLUSION: Our EADB720 model significantly improves the accuracy of age-associated risk of AD across European populations (pval<0.03). Accurately predicting the age of onset of AD is of large clinical importance to implementing new AD medication and early intervention in clinical settings.
Ace Alzheimer Center Barcelona Universitat Internacional de Catalunya Barcelona Spain
Alzheimer Research Center and Memory Clinic Instituto Andaluz de Neurociencia Málaga Spain
Alzheimer's Centre Reina Sofia CIEN Foundation ISCIII Madrid Spain
CAEBI Centro Andaluz de Estudios Bioinformáticos Sevilla Spain
Cardiff School of Medicine Cardiff University Cardiff UK
Center for Multimodal Imaging and Genetics University of California San Diego La Jolla CA USA
Centre for Age Related Medicine Stavanger University Hospital Stavanger Norway
Centro de Biología Molecular Severo Ochoa Madrid Spain
Chronic Disease Programme Instituto de Salud Carlos 3 Madrid Spain
CHU de Bordeaux Pole santé publique Bordeaux France
CIEN Foundation Queen Sofia Foundation Alzheimer Center Madrid Spain
Clinic of Neurology UH Alexandrovska Medical University Sofia Sofia Bulgaria
Complex Genetics of Alzheimer's Disease Group VIB Center for Molecular Neurology VIB Antwerp Belgium
Delft Bioinformatics Lab Delft University of technology Delft The Netherlands
Departamento de Medicina Facultad de Medicina Universidad de Sevilla Seville Spain
Departamento de Medicina y Psiquiatría Universidad de Cantabria Santander Spain
Department of Adult Psychiatry University Hospital of Psychiatry Zürich Zürich Switzerland
Department of Biomedical Sciences University of Antwerp Antwerp Belgium
Department of Biomedicine University of Bergen Bergen Norway
Department of Clinical and Experimental Sciences University of Brescia Brescia Italy
Department of Clinical Biochemistry Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Clinical Sciences and Community Health University of Milan 20122 Milan Italy
Department of Cognitive Science University of California San Diego La Jolla CA USA
Department of Geriatric Medicine Oslo University Hospital Oslo Norway
Department of Hematology and Stem Cell Transplant Vito Fazzi Hospital Lecce Italy
Department of Neurology Akershus University Hospital Lørenskog Norway
Department of Neurology ErasmusMC Rotterdam The Netherlands
Department of Neurology Hospital Universitario de Navarra Pamplona Spain
Department of Neurology Hospital Universitario Son Espases Palma Spain
Department of Neurology Oslo University Hospital Oslo Norway
Department of Neuroscience Rita Levi Montalcini University of Torino Torino Italy
Department of Neuroscience Università Cattolica del Sacro Cuore Rome Italy
Department of Psychiatry and Psychotherapy Medical University of Vienna Vienna Austria
Department of Psychiatry Namsos Hospital Namsos Norway
Department of Radiology School of Medicine University of California San Diego La Jolla CA USA
Department of Research and Innovation Helse Fonna Haugesund Norway
Dept of Biomedical Surgical and Dental Sciences University of Milan Milan Italy
Dept of Public Health and Caring Sciences Geriatrics Uppsala University Uppsala Sweden
Experimental Neuro psychobiology Laboratory IRCCS Fondazione Santa Lucia Rome Italy
Faculty of Medicine University of Lisbon Lisbon Portugal
Faculty of Medicine University of Oslo Oslo Norway
Fundación de Medicina Xenómica Servicio Galego de Saúde Santiago de Compostela Spain
Geriatric Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico 20122 Milan Italy
German Center for Neurodegenerative Diseases Bonn Germany
Hospital Universitario Ramon y Cajal IRYCIS Madrid Spain
Institute for Regenerative Medicine University of Zürich Zürich Switzerland
Institute for Urban Public Health University Hospital of University Duisburg Essen Essen Germany
Institute of Biomedicine University of Eastern Finland Kuopio Finland
Institute of Clinical Medicine Neurology University of Eastern Finland Kuopio Finland
Institute of Clinical Medicine University of Oslo Oslo Norway
Institute of Neurology Catholic University of the Sacred Heart Rome Italy
Instituto de Investigacion Sanitaria 'Hospital la Paz' Madrid Spain
Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
IRCCS Fondazione Don Carlo Gnocchi Florence Italy
Krembil Brain Institute University Health Network Toronto Ontario Canada
Laboratorio de Genética Hospital Universitario Central de Asturias Oviedo Spain
Laboratory of Neuropsychiatry IRCCS Santa Lucia Foundation Rome Italy
Luxembourg Centre for Systems Biomedicine University of Luxembourg Luxembourg
Networking Research Center on Neurodegenerative Diseases Instituto de Salud Carlos 3 Madrid Spain
Neurodegenerative Diseases Unit Fondazione IRCCS Ca' Granda Ospedale Policlinico Milan Italy
Neurological Tissue Bank Biobanc Hospital Clinic IDIBAPS Barcelona Spain
Neurology Service Marqués de Valdecilla University Hospital Santander Spain
Neurology Unit IRCCS Fondazione Policlinico Universitario A Gemelli Rome Italy
Neurology Unit IRCCS San Gerardo dei Tintori Monza Italy
Neuroscience Center Zurich University of Zurich and ETH Zurich Zurich Switzerland
Norwegian National Centre for Ageing and Health Vestfold Hospital Trust Tønsberg Norway
Old Age Psychiatry Department of Psychiatry Lausanne University Hospital Lausanne Switzerland
Sant Pau Memory Unit IR SANT PAU Hospital de la Santa Creu i Sant Pau Barcelona Spain
School of Medicine and Surgery University of Milano Bicocca Monza Italy
Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
Unit of Neurology 8 Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
Unitat de Genètica Molecular Institut de Biomedicina de València CSIC Valencia Spain
Universidad Autónoma de Madrid Madrid Spain
University of Bergen Department of Clinical Medicine Bergen Norway
University of Bordeaux Inserm Bordeaux Population Health Research Center U1219 Bordeaux France
Zurich Center for Integrative Human Physiology University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Liu C.-C., Liu C.-C., Kanekiyo T., Xu H., and Bu G., ‘Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.’, Nat Rev Neurol, vol. 9, no. 2, pp. 106–118, Feb. 2013, doi: 10.1038/nrneurol.2012.263. PubMed DOI PMC
‘2012 Alzheimer’s disease facts and figures.’, Alzheimers Dement, vol. 8, no. 2, pp. 131–168, 2012, doi: 10.1016/j.jalz.2012.02.001. PubMed DOI
Ertekin-Taner N., ‘Genetics of Alzheimer’s disease: a centennial review.’, Neurol Clin, vol. 25, no. 3, pp. 611–667, v, Aug. 2007, doi: 10.1016/j.ncl.2007.03.009. PubMed DOI PMC
Jackson R. J., Hyman B. T., and Serrano-Pozo A., ‘Multifaceted roles of APOE in Alzheimer disease.’, Nat Rev Neurol, vol. 20, no. 8, pp. 457–474, Aug. 2024, doi: 10.1038/s41582-024-00988-2. PubMed DOI PMC
Baker E. et al. , ‘What does heritability of Alzheimer’s disease represent?’, PLoS One, vol. 18, no. 4, p. e0281440, 2023, doi: 10.1371/journal.pone.0281440. PubMed DOI PMC
Wightman D. P. et al. , ‘A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease.’, Nat Genet, vol. 53, no. 9, pp. 1276–1282, Sep. 2021, doi: 10.1038/s41588-021-00921-z. PubMed DOI PMC
Jansen W. J. et al. , ‘Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia: A Meta-analysis’, JAMA, vol. 313, no. 19, pp. 1924–1938, May 2015, doi: 10.1001/jama.2015.4668. PubMed DOI PMC
Jia J. et al. , ‘Biomarker Changes during 20 Years Preceding Alzheimer’s Disease.’, N Engl J Med, vol. 390, no. 8, pp. 712–722, Feb. 2024, doi: 10.1056/NEJMoa2310168. PubMed DOI
Barnett J. H., Lewis L., Blackwell A. D., and Taylor M., ‘Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing.’, BMC Neurol, vol. 14, p. 101, May 2014, doi: 10.1186/1471-2377-14-101. PubMed DOI PMC
Livingston G. et al. , ‘Dementia prevention, intervention, and care: 2020 report of the Lancet Commission.’, Lancet, vol. 396, no. 10248, pp. 413–446, Aug. 2020, doi: 10.1016/S01406736(20)30367-6. PubMed DOI PMC
Harris E., ‘Alzheimer Drug Lecanemab Gains Traditional FDA Approval.’, JAMA, vol. 330, no. 6, p. 495, Aug. 2023, doi: 10.1001/jama.2023.12548. PubMed DOI
Mullard A., ‘FDA approves third anti-amyloid antibody for Alzheimer disease.’, Nat Rev Drug Discov, vol. 23, no. 8, p. 571, Aug. 2024, doi: 10.1038/d41573-024-00116-1. PubMed DOI
Loomis S. J. et al. , ‘Genome-Wide Association Studies of ARIA From the Aducanumab Phase 3 ENGAGE and EMERGE Studies’, Neurology, vol. 102, no. 3, p. e207919, Feb. 2024, doi: 10.1212/WNL.0000000000207919. PubMed DOI PMC
Gatz M. et al. , ‘Role of genes and environments for explaining Alzheimer disease.’, Arch Gen Psychiatry, vol. 63, no. 2, pp. 168–174, Feb. 2006, doi: 10.1001/archpsyc.63.2.168. PubMed DOI
Desikan R. S. et al. , ‘Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score.’, PLoS Med, vol. 14, no. 3, p. e1002258, Mar. 2017, doi: 10.1371/journal.pmed.1002258. PubMed DOI PMC
Vacher M. et al. , ‘Assessment of a polygenic hazard score for the onset of pre-clinical Alzheimer’s disease’, BMC Genomics, vol. 23, no. 1, p. 401, May 2022, doi: 10.1186/s12864-022-08617-2. PubMed DOI PMC
Motazedi E. et al. , ‘Using Polygenic Hazard Scores to Predict Age at Onset of Alzheimer’s Disease in Nordic Populations.’, J Alzheimers Dis, vol. 88, no. 4, pp. 1533–1544, 2022, doi: 10.3233/JAD-220174. PubMed DOI PMC
Karunamuni R. A. et al. , ‘Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer’, Prostate Cancer and Prostatic Diseases, vol. 24, no. 2, pp. 532–541, Jun. 2021, doi: 10.1038/s41391-020-00311-2. PubMed DOI PMC
Hahn G. et al. , ‘Polygenic hazard score models for the prediction of Alzheimer’s free survival using the lasso for Cox’s proportional hazards model.’, Genet Epidemiol, Jul. 2024, doi: 10.1002/gepi.22581. PubMed DOI
Chang C. C., Chow C. C., Tellier L. C., Vattikuti S., Purcell S. M., and Lee J. J., ‘Second-generation PLINK: rising to the challenge of larger and richer datasets.’, Gigascience, vol. 4, p. 7, 2015, doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Bellenguez C. et al. , ‘New insights into the genetic etiology of Alzheimer’s disease and related dementias.’, Nat Genet, vol. 54, no. 4, pp. 412–436, Apr. 2022, doi: 10.1038/s41588-022-01024-z. PubMed DOI PMC
Witoelar A. et al. , ‘Meta-analysis of Alzheimer’s disease on 9,751 samples from Norway and IGAP study identifies four risk loci’, Scientific Reports, vol. 8, no. 1, p. 18088, Dec. 2018, doi: 10.1038/s41598-018-36429-6. PubMed DOI PMC
Fladby T. et al. , ‘Detecting At-Risk Alzheimer’s Disease Cases.’, J Alzheimers Dis, vol. 60, no. 1, pp. 97–105, 2017, doi: 10.3233/JAD-170231. PubMed DOI PMC
Lambert J.-C. et al. , ‘Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease’, Nature Genetics, vol. 45, no. 12, pp. 1452–1458, Dec. 2013, doi: 10.1038/ng.2802. PubMed DOI PMC
Kurki M. I. et al. , ‘FinnGen provides genetic insights from a well-phenotyped isolated population’, Nature, vol. 613, no. 7944, pp. 508–518, Jan. 2023, doi: 10.1038/s41586-022-05473-8. PubMed DOI PMC
Gadin J. R., Zetterberg R., Meijsen J., and Schork A. J., Cleansumstats: Converting GWAS sumstats to a common format to facilitate downstream applications. (Jan. 2023). Zenodo. doi: 10.5281/zenodo.7540572. DOI
Tibshirani R., ‘The lasso method for variable selection in the Cox model.’, Stat Med, vol. 16, no. 4, pp. 385–395, Feb. 1997, doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3. PubMed DOI
Simon N., Friedman J., Hastie T., and Tibshirani R., ‘Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent.’, J Stat Softw, vol. 39, no. 5, pp. 1–13, Mar. 2011, doi: 10.18637/jss.v039.i05. PubMed DOI PMC
Harrell Frank E. J., Califf R. M., Pryor D. B., Lee K. L., and Rosati R. A., ‘Evaluating the Yield of Medical Tests’, JAMA, vol. 247, no. 18, pp. 2543–2546, May 1982, doi: 10.1001/jama.1982.03320430047030. PubMed DOI
Tsun A., Probability & Statistics with Applications to Computing.
Xu Q., Liang Z., and Huang Y., ‘APOE4 homozygosity is a new genetic form of Alzheimer’s disease’, Nature Medicine, vol. 30, no. 5, pp. 1241–1242, May 2024, doi: 10.1038/s41591-024-02923-w. PubMed DOI
Fan C. C. et al. , ‘Sex-dependent autosomal effects on clinical progression of Alzheimer’s disease.’, Brain, vol. 143, no. 7, pp. 2272–2280, Jul. 2020, doi: 10.1093/brain/awaa164. PubMed DOI PMC
Leonenko G. et al. , ‘Polygenic risk and hazard scores for Alzheimer’s disease prediction.’, Ann Clin Transl Neurol, vol. 6, no. 3, pp. 456–465, Mar. 2019, doi: 10.1002/acn3.716. PubMed DOI PMC
Cummings J., Zhou Y., Lee G., Zhong K., Fonseca J., and Cheng F., ‘[Not Available].’, Alzheimers Dement (N Y), vol. 10, no. 2, p. e12465, Jun. 2024, doi: 10.1002/trc2.12465. PubMed DOI PMC
Chen T.-H., Chatterjee N., Landi M. T., and Shi J., ‘A penalized regression framework for building polygenic risk models based on summary statistics from genome-wide association studies and incorporating external information.’, J Am Stat Assoc, vol. 116, no. 533, pp. 133–143, 2021, doi: 10.1080/01621459.2020.1764849. PubMed DOI PMC
Mavaddat N. et al. , ‘Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.’, Am J Hum Genet, vol. 104, no. 1, pp. 21–34, Jan. 2019, doi: 10.1016/j.ajhg.2018.11.002. PubMed DOI PMC
Koenig Z. et al. , ‘A harmonized public resource of deeply sequenced diverse human genomes.’, Feb. 28, 2024, United States. doi: 10.1101/2023.01.23.525248. PubMed DOI PMC