Functional characterization of 16 variants found in the LDL receptor gene
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40769381
PubMed Central
PMC12454892
DOI
10.1016/j.jlr.2025.100873
PII: S0022-2275(25)00135-X
Knihovny.cz E-zdroje
- Klíčová slova
- LDL, LDL/metabolism, dyslipidemias, familial hypercholesterolemia, flow cytometry, functional characterization, lipoproteins, lipoproteins/receptors,
- MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- genetická variace * MeSH
- hyperlipoproteinemie typ II genetika metabolismus MeSH
- křečci praví MeSH
- LDL-receptory * genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- LDL-receptory * MeSH
- LDLR protein, human MeSH Prohlížeč
Familial hypercholesterolemia (FH) is a disorder of cholesterol metabolism characterized by elevated LDL-cholesterol levels. The most common cause of FH is pathogenic variants in the LDL receptor (LDLR) gene. To shed light on the functional impact of selected LDLR variants, we functionally characterized 16 LDLR genetic variants alongside 10 control variants. We performed in vitro assays based on transient expression of WT and mutant LDLRs in LDLR-deficient Chinese hamster ovary cells. We used flow cytometry to analyze the relative amount of LDLRs expressed on the cell surface and the relative amount of internalized LDL. In addition, we analyzed the expression and maturation of LDLR protein by Western blotting. Of the 16 studied variants, two variants (p.(Asn272Thr) and p.(Arg574Leu)) did not exhibit a defect in LDLR function, one variant (p.(Ala540Thr)) exhibited a defect in LDL binding and/or internalization despite normal LDLR cell surface expression, and the remaining 13 variants had a detrimental effect on both LDLR cell surface expression and LDL internalization. The information presented in this study contributes to the clinical classification of LDLR variants and a more precise diagnosis of FH patients, highlighting the type of defect each variant produces.
Central European Institute of Technology Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Musunuru K., Hershberger R.E., Day S.M., Klinedinst N.J., Landstrom A.P., Parikh V.N., et al. Genetic testing for inherited cardiovascular diseases: a scientific statement from the American heart association. Circ. Genom. Precis. Med. 2020;13 PubMed
Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the european atherosclerosis society consensus panel. Eur. Heart J. 2017;38:2459–2472. PubMed PMC
Vuorio A., Docherty K.F., Humphries S.E., Kuoppala J., Kovanen P.T. Statin treatment of children with familial hypercholesterolemia--trying to balance incomplete evidence of long-term safety and clinical accountability: are we approaching a consensus? Atherosclerosis. 2013;226:315–320. PubMed
Futema M., Ramaswami U., Tichy L., Bogsrud M.P., Holven K.B., Roeters van Lennep J., et al. Comparison of the mutation spectrum and association with pre and post treatment lipid measures of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. Atherosclerosis. 2021;319:108–117. PubMed
Südhof T.C., Goldstein J.L., Brown M.S., Russell D.W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228:815–822. PubMed PMC
Yamamoto T., Davis C.G., Brown M.S., Schneider W.J., Casey M.L., Goldstein J.L., et al. The human LDL receptor: a cysteine-rich protein with multiple alu sequences in its mRNA. Cell. 1984;39:27–38. PubMed
Cummings R.D., Kornfeld S., Schneider W.J., Hobgood K.K., Tolleshaug H., Brown M.S., et al. Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J. Biol. Chem. 1983;258:15261–15273. PubMed
He G., Gupta S., Yi M., Michaely P., Hobbs H.H., Cohen J.C. ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J. Biol. Chem. 2002;277:44044–44049. PubMed
Anderson R.G., Goldstein J.L., Brown M.S. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977;270:695–699. PubMed
Maurer M.E., Cooper J.A. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci. 2006;119:4235–4246. PubMed
Strøm T.B., Laerdahl J.K., Leren T.P. Mutations affecting the transmembrane domain of the LDL receptor: impact of charged residues on the membrane insertion. Hum. Mol. Genet. 2017;26:1634–1642. PubMed
Tolleshaug H., Goldstein J.L., Schneider W.J., Brown M.S. Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell. 1982;30:715–724. PubMed
Zou P., Ting A.Y. Imaging LDL receptor oligomerization during endocytosis using a co-internalization assay. ACS Chem. Biol. 2011;6:308–313. PubMed PMC
Brown M.S., Anderson R.G., Goldstein J.L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983;32:663–667. PubMed
Basu S.K., Goldstein J.L., Anderson R.G., Brown M.S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981;24:493–502. PubMed
Leren T.P. Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis. 2014;237:76–81. PubMed
Hobbs H.H., Brown M.S., Goldstein J.L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1992;1:445–466. PubMed
Hobbs H.H., Russell D.W., Brown M.S., Goldstein J.L. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet. 1990;24:133–170. PubMed
Koivisto U.M., Hubbard A.L., Mellman I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell. 2001;105:575–585. PubMed
Strøm T.B., Tveten K., Laerdahl J.K., Leren T.P. Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum. FEBS Open Bio. 2014;4:321–327. PubMed PMC
Strøm T.B., Laerdahl J.K., Leren T.P. Mutation p.L799R in the LDLR, which affects the transmembrane domain of the LDLR, prevents membrane insertion and causes secretion of the mutant LDLR. Hum. Mol. Genet. 2015;24:5836–5844. PubMed
Landrum M.J., Lee J.M., Riley G.R., Jang W., Rubinstein W.S., Church D.M., et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–D985. PubMed PMC
Tichý L., Freiberger T., Zapletalová P., Soška V., Ravčuková B., Fajkusová L. The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations. Atherosclerosis. 2012;223:401–408. PubMed
Tichý L., Fajkusová L., Zapletalová P., Schwarzová L., Vrablík M., Freiberger T. Molecular genetic background of an autosomal dominant hypercholesterolemia in the Czech Republic. Physiol. Res. 2017;66(Suppl 1):S47–S54. PubMed
Chora J.R., Iacocca M.A., Tichý L., Wand H., Kurtz C.L., Zimmermann H., et al. The clinical genome resource (ClinGen) familial hypercholesterolemia variant curation expert panel consensus guidelines for LDLR variant classification. Genet. Med. 2022;24:293–306. PubMed PMC
Ranheim T., Kulseth M.A., Berge K.E., Leren T.P. Model system for phenotypic characterization of sequence variations in the LDL receptor gene. Clin. Chem. 2006;52:1469–1479. PubMed
Dušková L., Nohelová L., Loja T., Fialová J., Zapletalová P., Réblová K., et al. Low density lipoprotein receptor variants in the beta-propeller subdomain and their functional impact. Front Genet. 2020;11:691. PubMed PMC
Gudnason V., Patel D., Sun X.M., Humphries S., Soutar A.K., Knight B.L. Effect of the StuI polymorphism in the LDL receptor gene (Ala 370 to Thr) on lipid levels in healthy individuals. Clin. Genet. 1995;47:68–74. PubMed
Alves A.C., Azevedo S., Benito-Vicente A., Graça R., Galicia-Garcia U., Barros P., et al. LDLR variants functional characterization: contribution to variant classification. Atherosclerosis. 2021;329:14–21. PubMed
Benito-Vicente A., Alves A.C., Etxebarria A., Medeiros A.M., Martin C., Bourbon M. The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia. Genet. Med. 2015;17:980–988. PubMed
Sørensen S., Ranheim T., Bakken K.S., Leren T.P., Kulseth M.A. Retention of mutant low density lipoprotein receptor in endoplasmic reticulum (ER) leads to ER stress. J. Biol. Chem. 2006;281:468–476. PubMed
Etxebarria A., Benito-Vicente A., Palacios L., Stef M., Cenarro A., Civeira F., et al. Functional characterization and classification of frequent low-density lipoprotein receptor variants. Hum. Mutat. 2015;36:129–141. PubMed
Rubinsztein D.C., Jialal I., Leitersdorf E., Coetzee G.A., van der Westhuyzen D.R. Identification of two new LDL-receptor mutations causing homozygous familial hypercholesterolemia in a South African of Indian origin. Biochim. Biophys. Acta. 1993;1182:75–82. PubMed
Chang J.H., Pan J.P., Tai D.Y., Huang A.C., Li P.H., Ho H.L., et al. Identification and characterization of LDL receptor gene mutations in hyperlipidemic Chinese. J. Lipid Res. 2003;44:1850–1858. PubMed
Bertolini S., Cassanelli S., Garuti R., Ghisellini M., Simone M.L., Rolleri M., et al. Analysis of LDL receptor gene mutations in Italian patients with homozygous familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 1999;19:408–418. PubMed
Romano M., Di Taranto M.D., Mirabelli P., D'Agostino M.N., Iannuzzi A., Marotta G., et al. An improved method on stimulated T-lymphocytes to functionally characterize novel and known LDLR mutations. J. Lipid Res. 2011;52:2095–2100. PubMed PMC
Sun X.M., Patel D.D., Knight B.L., Soutar A.K. Comparison of the genetic defect with LDL-receptor activity in cultured cells from patients with a clinical diagnosis of heterozygous familial hypercholesterolemia. The Familial Hypercholesterolaemia Regression Study Group. Arterioscler. Thromb. Vasc. Biol. 1997;17:3092–3101. PubMed
Costantini L.M., Baloban M., Markwardt M.L., Rizzo M.A., Guo F., Verkhusha V.V., et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nat. Commun. 2015;6:7670. PubMed PMC
Krieger M., Martin J., Segal M., Kingsley D. Amphotericin B selection of mutant Chinese hamster cells with defects in the receptor-mediated endocytosis of low density lipoprotein and cholesterol biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 1983;80:5607–5611. PubMed PMC
Emmer B.T., Sherman E.J., Lascuna P.J., Graham S.E., Willer C.J., Ginsburg D. Genome-scale CRISPR screening for modifiers of cellular LDL uptake. PLoS Genet. 2021;17 PubMed PMC
Lucero D., Dikilitas O., Mendelson M.M., Aligabi Z., Islam P., Neufeld E.B., et al. Transgelin: a new gene involved in LDL endocytosis identified by a genome-wide CRISPR-Cas9 screen. J. Lipid Res. 2022;63 PubMed PMC
Reimund M., Dearborn A.D., Graziano G., Lei H., Ciancone A.M., Kumar A., et al. Structure of apolipoprotein B100 bound to the low-density lipoprotein receptor. Nature. 2024;11 doi: 10.1038/s41586-024-08223-0. PubMed DOI
Wurm F.M. CHO Quasispecies—Implications for manufacturing processes. Processes. 2013;1:296–311.
Li C., Zhang J. Stop-codon read-through arises largely from molecular errors and is generally nonadaptive. PLoS Genet. 2019;15 PubMed PMC
van Driel I.R., Goldstein J.L., Südhof T.C., Brown M.S. First cysteine-rich repeat in ligand-binding domain of low density lipoprotein receptor binds Ca2+ and monoclonal antibodies, but not lipoproteins. J. Biol. Chem. 1987;262:17443–17449. PubMed
Jeon H., Blacklow S.C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 2005;74:535–562. PubMed
Pisciotta L., Tarugi P., Borrini C., Bellocchio A., Fresa R., Guerra D., et al. Pseudoxanthoma elasticum and familial hypercholesterolemia: a deleterious combination of cardiovascular risk factors. Atherosclerosis. 2010;210:173–176. PubMed
Thormaehlen A.S., Schuberth C., Won H.H., Blattmann P., Joggerst-Thomalla B., Theiss S., et al. Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet. 2015;11 PubMed PMC
Junna N., Ruotsalainen S., Ripatti P., FinnGen Ripatti S., Widén E. Novel Finnish-enriched variants causing severe hypercholesterolemia and their clinical impact on coronary artery disease. Atherosclerosis. 2023;386 PubMed
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. PubMed
Huang S., Henry L., Ho Y.K., Pownall H.J., Rudenko G. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. J. Lipid Res. 2010;51:297–308. PubMed PMC
Gent J., Braakman I. Low-density lipoprotein receptor structure and folding. Cell Mol. Life Sci. 2004;61:2461–2470. PubMed PMC
Pavloušková J., Réblová K., Tichý L., Freiberger T., Fajkusová L. Functional analysis of the p.(Leu15Pro) and p.(Gly20Arg) sequence changes in the signal sequence of LDL receptor. Atherosclerosis. 2016;250:9–14. PubMed
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. PubMed PMC
Feingold K.R. Lipid and lipoprotein metabolism. Endocrinol. Metab. Clin. North Am. 2022;51:437–458. PubMed
Schmidt H.H., Tietge U.J., Buettner J., Barg-Hock H., Offner G., Schweitzer S., et al. Liver transplantation in a subject with familial hypercholesterolemia carrying the homozygous p.W577R LDL-receptor gene mutation. Clin. Transplant. 2008;22:180–184. PubMed
Benito-Vicente A., Uribe K.B., Jebari S., Galicia-Garcia U., Ostolaza H., Martin C. Validation of LDLr activity as a tool to improve genetic diagnosis of familial hypercholesterolemia: a retrospective on functional characterization of LDLr variants. Int. J. Mol. Sci. 2018;19:1676. PubMed PMC
Lin S., Hu T., Wang K., Wang J., Zhu Y., Chen X. In vitro assessment of the pathogenicity of the LDLR c.2160delC variant in familial hypercholesterolemia. Lipids Health Dis. 2023;22:77. PubMed PMC
Jiang L., Wu W.F., Sun L.Y., Chen P.P., Wang W., Benito-Vicente A., et al. The use of targeted exome sequencing in genetic diagnosis of young patients with severe hypercholesterolemia. Sci. Rep. 2016;6 PubMed PMC
Jiang L., Benito-Vicente A., Tang L., Etxebarria A., Cui W., Uribe K.B., et al. Analysis of LDLR variants from homozygous FH patients carrying multiple mutations in the LDLR gene. Atherosclerosis. 2017;263:163–170. PubMed
Wang H., Xu S., Sun L., Pan X., Yang S., Wang L. Functional characterization of two low-density lipoprotein receptor gene mutations in two Chinese patients with familial hypercholesterolemia. PLoS One. 2014;9 PubMed PMC
Rodríguez-Jiménez C., Pernía O., Mostaza J., Rodríguez-Antolín C., de Dios García-Díaz J., Alonso-Cerezo C., et al. Functional analysis of new variants at the low-density lipoprotein receptor associated with familial hypercholesterolemia. Hum. Mutat. 2019;40:1181–1190. PubMed
Rodríguez-Nóvoa S., Rodríguez-Jiménez C., Alonso C., Rodriguez-Laguna L., Gordo G., Martinez-Glez V., et al. Familial hypercholesterolemia: a single-nucleotide variant (SNV) in mosaic at the low density lipoprotein receptor (LDLR) Atherosclerosis. 2020;311:37–43. PubMed
Costantini L.M., Fossati M., Francolini M., Snapp E.L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic. 2012;13:643–649. PubMed PMC
Snapp E.L., Hegde R.S., Francolini M., Lombardo F., Colombo S., Pedrazzini E., et al. Formation of stacked ER cisternae by low affinity protein interactions. J. Cell Biol. 2003;163:257–269. PubMed PMC