Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications

. 2025 Aug 06 ; 30 (15) : . [epub] 20250806

Status In-Process Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40807469

Grantová podpora
IGA/FT/2025/007 Faculty of Technology of Tomas Bata University in Zlín

Red deer fat makes up approximately 7-10% of the animal's weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10-30%) and reaction times (2-6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids.

Zobrazit více v PubMed

Razmaitė V., Pileckas V., Šiukščius A., Juškienė V. Fatty Acid Composition of Meat and Edible Offal from Free-Living Red Deer (Cervus elaphus) Foods. 2020;9:923. doi: 10.3390/foods9070923. PubMed DOI PMC

Demartini E., Vecchiato D., Tempesta T., Gaviglio A., Viganò R. Consumer Preferences for Red Deer Meat: A Discrete Choice Analysis Considering Attitudes towards Wild Game Meat and Hunting. Meat Sci. 2018;146:168–179. doi: 10.1016/j.meatsci.2018.07.031. PubMed DOI

Mattiello S. Welfare Issues of Modern Deer Farming. Ital. J. Anim. Sci. 2016;8:205–217. doi: 10.4081/ijas.2009.s1.205. DOI

Wiklund E., Manley T.R., Littlejohn R.P., Stevenson-Barry J.M. Fatty Acid Composition and Sensory Quality of Musculus longissimus and Carcass Parameters in Red Deer (Cervus elaphus) Grazed on Natural Pasture or Fed a Commercial Feed Mixture. J. Sci. Food Agric. 2003;83:419–424. doi: 10.1002/jsfa.1384. DOI

Polak T., Rajar A., Gašperlin L., Žlender B. Cholesterol Concentration and Fatty Acid Profile of Red Deer (Cervus elaphus) Meat. Meat Sci. 2008;80:864–869. doi: 10.1016/j.meatsci.2008.04.005. PubMed DOI

Prates J.A.M. The Role of Meat Lipids in Nutrition and Health: Balancing Benefits and Risks. Nutrients. 2025;17:350. doi: 10.3390/nu17020350. PubMed DOI PMC

Toldrá F. Lawrie’s Meat Science. 8th ed. Elsevier; Amsterdam, The Netherlands: 2017. [(accessed on 5 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpLMSE0011/lawries-meat-science/lawries-meat-science.

Bartoň L., Bureš D., Kotrba R., Sales J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014;96:346–352. doi: 10.1016/j.meatsci.2013.07.016. PubMed DOI

Triumf E.C., Purchas R.W., Mielnik M., Maehre H.K., Elvevoll E., Slinde E., Egelandsdal B. Composition and Some Quality Characteristics of the Longissimus lumborum Muscle of Reindeer in Norway Compared to Farmed New Zealand Red Deer. Meat Sci. 2012;90:122–129. doi: 10.1016/j.meatsci.2011.06.011. PubMed DOI

Phillip L.E., Oresanya T.F., St. Jacques J. Fatty acid profile, carcass traits and growth rate of red deer fed diets varying in the ratio of concentrate: Dried and pelleted roughage, and raised for venison production. Small Rumin. Res. 2007;71:215–221. doi: 10.1016/j.smallrumres.2006.07.002. DOI

Adenuga B.M., Biltes R., Villa C., Costa J., Spychaj A., Montowska M., Mafra I. Unravelling red deer (Cervus elaphus) meat adulteration in gourmet foods by quantitative real-time PCR. Food Control. 2025;168:110872. doi: 10.1016/j.foodcont.2024.110872. DOI

Atanassova V., Apelt J., Reich F., Klein G. Microbiological quality of freshly shot game in Germany. Meat Sci. 2008;78:414–419. doi: 10.1016/j.meatsci.2007.07.004. PubMed DOI

Shahidi F. Bailey’s Industrial Oil and Fat Products, Volumes 1–6. 6th ed. John Wiley & Sons; Hoboken, NJ, USA: 2005. [(accessed on 8 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpBIOFPVE1/baileys-industrial-oil/baileys-industrial-oil.

Salgado C.A., dos Santos C.I.A., Vanetti M.C.D. Microbial Lipases: Propitious Biocatalysts for the Food Industry. Food Biosci. 2022;45:101509. doi: 10.1016/j.fbio.2021.101509. DOI

Angulo M., Márquez M.C. A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy. Appl. Sci. 2023;13:8763. doi: 10.3390/app13158763. DOI

Talbot G. Reducing Saturated Fats in Foods. Woodhead Publishing; Cambridge, UK: 2011. [(accessed on 10 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpRSFF0003/reducing-saturated-fats/reducing-saturated-fats.

Truong T.L., Bhandari C., Prakash B. ; Sangeeta. Dairy Fat Products and Functionality—Fundamental Science and Technology. Springer Nature; Cham, Switzerland: 2020. [(accessed on 10 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpDFPFFST6/dairy-fat-products-functionality/dairy-fat-products-functionality.

Marangoni A., Wright A. Physical Properties of Fats and Oils. In: Akoh C., editor. Handbook of Functional Lipids. CRC Press; Boca Raton, FL, USA: 2005. [(accessed on 1 January 2005)]. pp. 135–162. Available online: https://www.taylorfrancis.com/reader/download/ad8bce1a-9f93-413d-8bda-325afa5b6a59/chapter/pdf?context=ubx.

Shahidi F., editor. Bailey’s Industrial Oil and Fat Products. Wiley; Hoboken, NJ, USA: 2005. DOI

Bornscheuer U.T. Enzymes in Lipid Modification. Annu. Rev. Food Sci. Technol. 2018;9:85–103. doi: 10.1146/annurev-food-030117-012336. PubMed DOI

Bustos-Baena A.-S., Quintana-Castro R., Sánchez-Otero M.G., Espinosa-Luna G., Mendoza-López M.R., Peña-Montes C., Oliart-Ros R.M. Enantioselectivity Enhancement of a Geobacillus thermoleovorans CCR11 Lipase by Rational Design. Catalysts. 2025;15:20168. doi: 10.3390/catal15020168. DOI

Filho D.G., Silva A.G., Guidini C.Z. Lipases: Sources, Immobilization Methods, and Industrial Applications. Appl. Microbiol. Biotechnol. 2019;103:7399–7423. doi: 10.1007/s00253-019-10027-6. PubMed DOI

Reis P., Holmberg K., Watzke H., Leser M.E., Miller R. Lipases at Interfaces: A Review. Adv. Colloid Interface Sci. 2009;147–148:237–250. doi: 10.1016/j.cis.2008.06.001. PubMed DOI

Kontkanen H., Rokka S., Kemppinen A., Miettinen H., Hellström J., Kruus K., Marnila P., Alatossava T., Korhonen H. Enzymatic and physical modification of milk fat: A review. Int. Dairy J. 2011;21:3–13. doi: 10.1016/j.idairyj.2010.05.003. DOI

Hasan M.Y., Saari N., Ismail A., Ghazali H.M. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oils: Recent Trends. J. Funct. Foods. 2020;71:104025.

Zhou J., Lee Y.-Y., Mao Y., Wang Y., Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods. 2022;11:2400. doi: 10.3390/foods11162400. PubMed DOI PMC

Castejón N., Señoráns F.J. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oil, Algae and Other New Omega-3 Sources: A Review. New Biotechnol. 2020;57:45–54. doi: 10.1016/j.nbt.2020.02.006. PubMed DOI

Mitsou E., Theocharí I., Gad E., Vassiliadi E., Karpenisioti E., Koulis G., Martakos I., Pissaridi K., Thomaidis N.S., Xenakis A., et al. Enzymatic Modification of Triglycerides in Conventional and Surfactant-Free microemulsions and in Olive Oil. Colloids Surf. A Physicochem. Eng. Asp. 2022;647:129170. doi: 10.1016/j.colsurfa.2022.129170. DOI

Meng Z., Geng W., Wang X., Liu Y. Fat Crystal Migration and Aggregation and Polymorphism Evolution during the Formation of Granular Crystals in Beef Tallow and Palm Oil. J. Agric. Food Chem. 2013;61:12676–12682. doi: 10.1021/jf403445h. PubMed DOI

Arita-Merino N., van Valenberg H., Gilbert E.P., Scholten E. Quantitative Phase Analysis of Complex Fats during Crystallization. Cryst. Growth Des. 2020;20:5193–5202. doi: 10.1021/acs.cgd.0c00416. DOI

Macridachis J., Bayés-García L., Calvet T. Polymorphic Crystallization and Transformation Pathways of 1,2-Dipalmitoyl-3-Oleoyl-rac-Glycerol (PPO) during a Liquid–Solid–Liquid Journey. J. Therm. Anal. Calorim. 2025;150:187–199. doi: 10.1007/s10973-024-13844-8. DOI

Smith K.W., Bhaggan K., Talbot G., van Malssen K.F. Crystallization of Fats: Influence of Minor Components and Additives. J. Am. Oil Chem. Soc. 2011;88:1085–1101. doi: 10.1007/s11746-011-1819-7. DOI

Meng Z., Liu Y.-F., Jin Q.-Z., Huang J.-H., Song Z.-H., Wang F.-Y., Wang X.-G. Characterization of Graininess Formed in All Beef Tallow-Based Shortening. J. Agric. Food Chem. 2010;58:11463–11470. doi: 10.1021/jf102496p. PubMed DOI

Liu S., Li D., He X., Li H., Li X., Liao Z., Wang Z. Study on Crystallization Kinetics of Dry Fractionation Products of Beef Tallow. Int. J. Food Eng. 2021;17:945–958. doi: 10.1515/ijfe-2021-0176. DOI

Feiner G. Meat Products Handbook: Practical Science and Technology. CRC Press; Boca Raton, FL, USA: 2006. The Protein and Fat Content of Meat; pp. 3–32.

Guillén M.D., Cabo N. Infrared Spectroscopy in the Study of Edible Oils and Fats. J. Sci. Food Agric. 1997;75:1–11. doi: 10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R. DOI

Rohman A. Application of FTIR spectroscopy and chemometrics for authentication of meat and meat products: A review. J. Adv. Vet. Anim. Res. 2019;6:9–17. doi: 10.5455/javar.2019.f306. PubMed DOI PMC

Yang H., Irudayaraj J., Paradkar M.M. Discriminant Analysis of Edible Oils and Fats by FTIR, FT-NIR and FT-Raman Spectroscopy. Food Chem. 2005;93:25–32. doi: 10.1016/j.foodchem.2004.08.039. DOI

Shenk J.S., Westerhaus M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy. NIRSystems Inc.; Silver Spring, MD, USA: 1995.

Rohman A., Ghazali M.A.B., Windarsih A., Irnawati I., Riyanto S., Yusof F.M., Mustafa S. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in Food Products. Molecules. 2020;25:5485. doi: 10.3390/molecules25225485. PubMed DOI PMC

Guaratini T., Gianeti M.D., Campos P.M.B.G.M. Stability of cosmetic formulations containing esters of Vitamins E and A: Chemical and physical aspects. Int. J. Pharm. 2006;327:12–16. doi: 10.1016/j.ijpharm.2006.07.015. PubMed DOI

Badruddoza A.Z.M., Yeoh T., Shah J.C., Walsh T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J. Pharm. Sci. 2023;112:1772–1793. doi: 10.1016/j.xphs.2023.03.014. PubMed DOI

Ly B.C.K., Dyer E.B., Feig J.L., Chien A.L., Del Bino S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020;140:3–12.e1. doi: 10.1016/j.jid.2019.11.003. PubMed DOI

Brudzyńska P., Kurzawa M., Sionkowska A., Grisel M. Antioxidant Activity of Plant-Derived Colorants for Potential Cosmetic Application. Cosmetics. 2022;9:81. doi: 10.3390/cosmetics9040081. DOI

Zhou S., Zhou J., Du Y., Cheng J., Wang Y., Zhang Z. Texture and Volatile Profiles of Beef Tallow Substitute Produced by a Pilot-Scale Continuous Enzymatic Interesterification. Food Chem. 2023;429:136980. doi: 10.1016/j.foodchem.2023.136980. PubMed DOI

Kowalska M., Woźniak M., Zbikowska A., Ivanišová E., Molik A. Quality of Emulsions Containing Fat Blends Modified by Enzymatic Catalysis. Catalysts. 2021;11:453. doi: 10.3390/catal11040453. DOI

Starčević M., Glamočlija N., Baltić B., Glišić M., Laudanović M., Krstić M., Bošković Cabrol M. Nutritional Value of Wild-Harvested Game Meat of Fallow Deer (Dama dama), Red Deer (Cervus elaphus), and Roe Deer (Capreolus capreolus) Acta Vet. 2025;75:63–81. doi: 10.2478/acve-2025-0006. DOI

Lorenzo J.M., Maggiolino A., Gallego L., Pateiro M., Serrano M.P., Domínguez R., García A., Landete-Castillejos T., De Palo P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2019;99:1561–1567. doi: 10.1002/jsfa.9334. PubMed DOI

Dodds E.D., McCoy M.R., Rea L.D., Kennish J.M. Gas Chromatographic Quantification of Fatty Acid Methyl Esters: Flame Ionization Detection vs. Electron Impact Mass Spectrometry. Lipids. 2005;40:419–428. doi: 10.1007/s11745-006-1399-8. PubMed DOI

Amores G., Virto M. Total and Free Fatty Acids Analysis in Milk and Dairy Fat. Separations. 2019;6:14. doi: 10.3390/separations6010014. DOI

Teng D., Le R., Yuan F., Yang J., He L., Gao Y. Optimization of enzymatic hydrolysis of chicken fat in emulsion by response surface methodology. J. Am. Oil Chem. Soc. 2009;86:485–494. doi: 10.1007/s11746-009-1364-9. DOI

Alahmad K., Noman A., Xia W., Jiang Q., Xu Y. Influence of the Enzymatic Hydrolysis Using Flavourzyme Enzyme on Functional, Secondary Structure, and Antioxidant Characteristics of Protein Hydrolysates Produced from Bighead Carp (Hypophthalmichthys nobilis) Molecules. 2023;28:519. doi: 10.3390/molecules28020519. PubMed DOI PMC

Kapral-Piotrowska J., Strawa J.W., Jakimiuk K., Wiater A., Tomczyk M., Gruszecki W.I., Pawlikowska-Pawlęga B. Investigation of the membrane localization and interaction of selected flavonoids by NMR and FTIR spectroscopy. Int. J. Mol. Sci. 2023;24:15275. doi: 10.3390/ijms242015275. PubMed DOI PMC

Sato E.T., Machado N., Araújo D.R., Paulino L.C., Martinho H. Fourier transform infrared absorption (FTIR) on dry stratum corneum, corneocyte-lipid interfaces: Experimental and vibrational spectroscopy calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021;249:119218. doi: 10.1016/j.saa.2020.119218. PubMed DOI

Monnier G., Frahm E., Luo B., Missal K. Developing FTIR Microspectroscopy for the analysis of animal-tissue residues on stone tools. J. Archaeol. Method Theory. 2018;25:1–44. doi: 10.1007/s10816-017-9325-3. DOI

Novotná T., Mokrejš P., Pavlačková J., Gál R. Study of Processing Conditions during Enzymatic Hydrolysis of Deer By-Product Tallow for Targeted Changes at the Molecular Level and Properties of Modified Fats. Int. J. Mol. Sci. 2024;25:4002. doi: 10.3390/ijms25074002. PubMed DOI PMC

Salimon J., Abdullah B.M., Salih N. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chem. Cent. J. 2011;5:67. doi: 10.1186/1752-153X-5-67. PubMed DOI PMC

Pruchnik H., Włoch A., Gładkowski W., Grudniewska A., Chojnacka A., Krzemiński M., Rudzińska M. Effect of Distigmasterol-Modified Acylglycerols on the Fluidity and Phase Transition of Lipid Model Membranes. Membranes. 2022;12:11054. doi: 10.3390/membranes12111054. PubMed DOI PMC

Nusantoro B.P., Xanthina M., Kadivar S., Yanty N.A.M., Dewettinck K. Enzymatic Interesterification of Lauric Fat Blends Formulated by Grouping Triacylglycerol Melting Points. J. Am. Oil Chem. Soc. 2016;93:1051–1062. doi: 10.1007/s11746-016-2851-4. DOI

Paravina R.D., Ghinea R., Herrera L.J., Bona A.D., Igiel C., Linninger M., Sakai M., Takahashi H., Tashkandi E., del Mar Perez M. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015;27:S1–S9. doi: 10.1111/jerd.12149. PubMed DOI

Meat and Meat Products—Determination of Moisture Content—Reference Method. ISO; Geneva, Switzerland: 2023. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/82664.html.

Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 1: Kjeldahl Method. ISO; Geneva, Switzerland: 2005. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/39145.html.

Meat and Meat Products—Determination of Total Fat Content. ISO; Geneva, Switzerland: 1973.

Animal and Vegetable Fats and Oils—Determination of Ash. ISO; Geneva, Switzerland: 2008. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/51415.html.

Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO; Geneva, Switzerland: 2020. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/75594.html.

Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO; Geneva, Switzerland: 2023. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/85171.html.

Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO; Geneva, Switzerland: 2017. [(accessed on 17 January 2025)]. Available online: https://www.iso.org/standard/71268.html.

Animal and Vegetable Fats and Oils—Determination of Iodine Value. ISO; Geneva, Switzerland: 2018. [(accessed on 17 January 2025)]. Available online: https://www.iso.org/standard/71868.html.

Grömping U. R Package DoE.base for Factorial Experiments. J. Stat. Softw. 2018;85:1–41. doi: 10.18637/jss.v085.i05. DOI

Antony J. Design of Experiments for Engineers and Scientists. 2nd ed. Elsevier; London, UK: 2014. pp. 33–85.

Ma X., Zhan P., Tian H., Wei Z., Wang P. Effects of Different Enzymatic Hydrolyses of Mutton Tallow on the Aroma Characteristics of the Maillard Reaction of Xylose–Cysteine Based on GC-MS, E-Nose, and Statistical Analysis. Eur. J. Lipid Sci. Technol. 2020;122:1900212. doi: 10.1002/ejlt.201900212. DOI

Ye Y., Ye S., Wanyan Z., Ping H., Xu Z., He S., Cao X., Chen X., Hu W., Wei Z. Producing Beef Flavors in Hydrolyzed Soybean Meal-Based Maillard Reaction Products Participated with Beef Tallow Hydrolysates. Food Chem. 2022;378:132119. doi: 10.1016/j.foodchem.2022.132119. PubMed DOI

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. ISO; Geneva, Switzerland: 2014. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/52294.html.

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO; Geneva, Switzerland: 2017. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/72142.html.

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 3: Preparation of Methyl Esters Using Sodium Methoxide. ISO; Geneva, Switzerland: 2016. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/70249.html.

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. ISO; Geneva, Switzerland: 2015. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/63503.html.

AOCS . Official Methods and Recommended Practices of the American Oil Chemists’ Society. AOCS; Champaign, IL, USA: 1998.

Gao Y., Mao J., Meng Z. Tracing Distribution and Interface Behavior of Water Droplets in W/O Emulsions with Fat Crystals. Food Res. Int. 2023;163:112215. doi: 10.1016/j.foodres.2022.112215. PubMed DOI

Animal and Vegetable Fats and Oils—Determination of Melting Point in Open Capillary Tubes (Slip Point) ISO; Geneva, Switzerland: 2021. [(accessed on 2 March 2025)]. Available online: https://www.iso.org/standard/81472.html.

Glibowski P., Zarzycki P., Krzepkowska M. The Rheological and Instrumental Textural Properties of Selected Table Fats. Int. J. Food Prop. 2008;11:678–686. doi: 10.1080/10942910701622599. DOI

Chudy S., Bilska A., Kowalski R., Teichert J. Color of milk and milk products in CIE L*a*b* space. Med. Weter. 2020;76:77–81. doi: 10.21521/mw.6327. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...