Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
Status In-Process Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2025/007
Faculty of Technology of Tomas Bata University in Zlín
PubMed
40807469
PubMed Central
PMC12348788
DOI
10.3390/molecules30153293
PII: molecules30153293
Knihovny.cz E-zdroje
- Klíčová slova
- color parameters, crystallization temperature, degree of hydrolysis, enzymatic lipid modification, functional groups, melting temperature, red deer fat, sustainability, texture,
- Publikační typ
- časopisecké články MeSH
Red deer fat makes up approximately 7-10% of the animal's weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10-30%) and reaction times (2-6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids.
Zobrazit více v PubMed
Razmaitė V., Pileckas V., Šiukščius A., Juškienė V. Fatty Acid Composition of Meat and Edible Offal from Free-Living Red Deer (Cervus elaphus) Foods. 2020;9:923. doi: 10.3390/foods9070923. PubMed DOI PMC
Demartini E., Vecchiato D., Tempesta T., Gaviglio A., Viganò R. Consumer Preferences for Red Deer Meat: A Discrete Choice Analysis Considering Attitudes towards Wild Game Meat and Hunting. Meat Sci. 2018;146:168–179. doi: 10.1016/j.meatsci.2018.07.031. PubMed DOI
Mattiello S. Welfare Issues of Modern Deer Farming. Ital. J. Anim. Sci. 2016;8:205–217. doi: 10.4081/ijas.2009.s1.205. DOI
Wiklund E., Manley T.R., Littlejohn R.P., Stevenson-Barry J.M. Fatty Acid Composition and Sensory Quality of Musculus longissimus and Carcass Parameters in Red Deer (Cervus elaphus) Grazed on Natural Pasture or Fed a Commercial Feed Mixture. J. Sci. Food Agric. 2003;83:419–424. doi: 10.1002/jsfa.1384. DOI
Polak T., Rajar A., Gašperlin L., Žlender B. Cholesterol Concentration and Fatty Acid Profile of Red Deer (Cervus elaphus) Meat. Meat Sci. 2008;80:864–869. doi: 10.1016/j.meatsci.2008.04.005. PubMed DOI
Prates J.A.M. The Role of Meat Lipids in Nutrition and Health: Balancing Benefits and Risks. Nutrients. 2025;17:350. doi: 10.3390/nu17020350. PubMed DOI PMC
Toldrá F. Lawrie’s Meat Science. 8th ed. Elsevier; Amsterdam, The Netherlands: 2017. [(accessed on 5 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpLMSE0011/lawries-meat-science/lawries-meat-science.
Bartoň L., Bureš D., Kotrba R., Sales J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014;96:346–352. doi: 10.1016/j.meatsci.2013.07.016. PubMed DOI
Triumf E.C., Purchas R.W., Mielnik M., Maehre H.K., Elvevoll E., Slinde E., Egelandsdal B. Composition and Some Quality Characteristics of the Longissimus lumborum Muscle of Reindeer in Norway Compared to Farmed New Zealand Red Deer. Meat Sci. 2012;90:122–129. doi: 10.1016/j.meatsci.2011.06.011. PubMed DOI
Phillip L.E., Oresanya T.F., St. Jacques J. Fatty acid profile, carcass traits and growth rate of red deer fed diets varying in the ratio of concentrate: Dried and pelleted roughage, and raised for venison production. Small Rumin. Res. 2007;71:215–221. doi: 10.1016/j.smallrumres.2006.07.002. DOI
Adenuga B.M., Biltes R., Villa C., Costa J., Spychaj A., Montowska M., Mafra I. Unravelling red deer (Cervus elaphus) meat adulteration in gourmet foods by quantitative real-time PCR. Food Control. 2025;168:110872. doi: 10.1016/j.foodcont.2024.110872. DOI
Atanassova V., Apelt J., Reich F., Klein G. Microbiological quality of freshly shot game in Germany. Meat Sci. 2008;78:414–419. doi: 10.1016/j.meatsci.2007.07.004. PubMed DOI
Shahidi F. Bailey’s Industrial Oil and Fat Products, Volumes 1–6. 6th ed. John Wiley & Sons; Hoboken, NJ, USA: 2005. [(accessed on 8 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpBIOFPVE1/baileys-industrial-oil/baileys-industrial-oil.
Salgado C.A., dos Santos C.I.A., Vanetti M.C.D. Microbial Lipases: Propitious Biocatalysts for the Food Industry. Food Biosci. 2022;45:101509. doi: 10.1016/j.fbio.2021.101509. DOI
Angulo M., Márquez M.C. A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy. Appl. Sci. 2023;13:8763. doi: 10.3390/app13158763. DOI
Talbot G. Reducing Saturated Fats in Foods. Woodhead Publishing; Cambridge, UK: 2011. [(accessed on 10 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpRSFF0003/reducing-saturated-fats/reducing-saturated-fats.
Truong T.L., Bhandari C., Prakash B. ; Sangeeta. Dairy Fat Products and Functionality—Fundamental Science and Technology. Springer Nature; Cham, Switzerland: 2020. [(accessed on 10 February 2025)]. Available online: https://app.knovel.com/hotlink/toc/id:kpDFPFFST6/dairy-fat-products-functionality/dairy-fat-products-functionality.
Marangoni A., Wright A. Physical Properties of Fats and Oils. In: Akoh C., editor. Handbook of Functional Lipids. CRC Press; Boca Raton, FL, USA: 2005. [(accessed on 1 January 2005)]. pp. 135–162. Available online: https://www.taylorfrancis.com/reader/download/ad8bce1a-9f93-413d-8bda-325afa5b6a59/chapter/pdf?context=ubx.
Shahidi F., editor. Bailey’s Industrial Oil and Fat Products. Wiley; Hoboken, NJ, USA: 2005. DOI
Bornscheuer U.T. Enzymes in Lipid Modification. Annu. Rev. Food Sci. Technol. 2018;9:85–103. doi: 10.1146/annurev-food-030117-012336. PubMed DOI
Bustos-Baena A.-S., Quintana-Castro R., Sánchez-Otero M.G., Espinosa-Luna G., Mendoza-López M.R., Peña-Montes C., Oliart-Ros R.M. Enantioselectivity Enhancement of a Geobacillus thermoleovorans CCR11 Lipase by Rational Design. Catalysts. 2025;15:20168. doi: 10.3390/catal15020168. DOI
Filho D.G., Silva A.G., Guidini C.Z. Lipases: Sources, Immobilization Methods, and Industrial Applications. Appl. Microbiol. Biotechnol. 2019;103:7399–7423. doi: 10.1007/s00253-019-10027-6. PubMed DOI
Reis P., Holmberg K., Watzke H., Leser M.E., Miller R. Lipases at Interfaces: A Review. Adv. Colloid Interface Sci. 2009;147–148:237–250. doi: 10.1016/j.cis.2008.06.001. PubMed DOI
Kontkanen H., Rokka S., Kemppinen A., Miettinen H., Hellström J., Kruus K., Marnila P., Alatossava T., Korhonen H. Enzymatic and physical modification of milk fat: A review. Int. Dairy J. 2011;21:3–13. doi: 10.1016/j.idairyj.2010.05.003. DOI
Hasan M.Y., Saari N., Ismail A., Ghazali H.M. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oils: Recent Trends. J. Funct. Foods. 2020;71:104025.
Zhou J., Lee Y.-Y., Mao Y., Wang Y., Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods. 2022;11:2400. doi: 10.3390/foods11162400. PubMed DOI PMC
Castejón N., Señoráns F.J. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oil, Algae and Other New Omega-3 Sources: A Review. New Biotechnol. 2020;57:45–54. doi: 10.1016/j.nbt.2020.02.006. PubMed DOI
Mitsou E., Theocharí I., Gad E., Vassiliadi E., Karpenisioti E., Koulis G., Martakos I., Pissaridi K., Thomaidis N.S., Xenakis A., et al. Enzymatic Modification of Triglycerides in Conventional and Surfactant-Free microemulsions and in Olive Oil. Colloids Surf. A Physicochem. Eng. Asp. 2022;647:129170. doi: 10.1016/j.colsurfa.2022.129170. DOI
Meng Z., Geng W., Wang X., Liu Y. Fat Crystal Migration and Aggregation and Polymorphism Evolution during the Formation of Granular Crystals in Beef Tallow and Palm Oil. J. Agric. Food Chem. 2013;61:12676–12682. doi: 10.1021/jf403445h. PubMed DOI
Arita-Merino N., van Valenberg H., Gilbert E.P., Scholten E. Quantitative Phase Analysis of Complex Fats during Crystallization. Cryst. Growth Des. 2020;20:5193–5202. doi: 10.1021/acs.cgd.0c00416. DOI
Macridachis J., Bayés-García L., Calvet T. Polymorphic Crystallization and Transformation Pathways of 1,2-Dipalmitoyl-3-Oleoyl-rac-Glycerol (PPO) during a Liquid–Solid–Liquid Journey. J. Therm. Anal. Calorim. 2025;150:187–199. doi: 10.1007/s10973-024-13844-8. DOI
Smith K.W., Bhaggan K., Talbot G., van Malssen K.F. Crystallization of Fats: Influence of Minor Components and Additives. J. Am. Oil Chem. Soc. 2011;88:1085–1101. doi: 10.1007/s11746-011-1819-7. DOI
Meng Z., Liu Y.-F., Jin Q.-Z., Huang J.-H., Song Z.-H., Wang F.-Y., Wang X.-G. Characterization of Graininess Formed in All Beef Tallow-Based Shortening. J. Agric. Food Chem. 2010;58:11463–11470. doi: 10.1021/jf102496p. PubMed DOI
Liu S., Li D., He X., Li H., Li X., Liao Z., Wang Z. Study on Crystallization Kinetics of Dry Fractionation Products of Beef Tallow. Int. J. Food Eng. 2021;17:945–958. doi: 10.1515/ijfe-2021-0176. DOI
Feiner G. Meat Products Handbook: Practical Science and Technology. CRC Press; Boca Raton, FL, USA: 2006. The Protein and Fat Content of Meat; pp. 3–32.
Guillén M.D., Cabo N. Infrared Spectroscopy in the Study of Edible Oils and Fats. J. Sci. Food Agric. 1997;75:1–11. doi: 10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R. DOI
Rohman A. Application of FTIR spectroscopy and chemometrics for authentication of meat and meat products: A review. J. Adv. Vet. Anim. Res. 2019;6:9–17. doi: 10.5455/javar.2019.f306. PubMed DOI PMC
Yang H., Irudayaraj J., Paradkar M.M. Discriminant Analysis of Edible Oils and Fats by FTIR, FT-NIR and FT-Raman Spectroscopy. Food Chem. 2005;93:25–32. doi: 10.1016/j.foodchem.2004.08.039. DOI
Shenk J.S., Westerhaus M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy. NIRSystems Inc.; Silver Spring, MD, USA: 1995.
Rohman A., Ghazali M.A.B., Windarsih A., Irnawati I., Riyanto S., Yusof F.M., Mustafa S. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in Food Products. Molecules. 2020;25:5485. doi: 10.3390/molecules25225485. PubMed DOI PMC
Guaratini T., Gianeti M.D., Campos P.M.B.G.M. Stability of cosmetic formulations containing esters of Vitamins E and A: Chemical and physical aspects. Int. J. Pharm. 2006;327:12–16. doi: 10.1016/j.ijpharm.2006.07.015. PubMed DOI
Badruddoza A.Z.M., Yeoh T., Shah J.C., Walsh T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J. Pharm. Sci. 2023;112:1772–1793. doi: 10.1016/j.xphs.2023.03.014. PubMed DOI
Ly B.C.K., Dyer E.B., Feig J.L., Chien A.L., Del Bino S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020;140:3–12.e1. doi: 10.1016/j.jid.2019.11.003. PubMed DOI
Brudzyńska P., Kurzawa M., Sionkowska A., Grisel M. Antioxidant Activity of Plant-Derived Colorants for Potential Cosmetic Application. Cosmetics. 2022;9:81. doi: 10.3390/cosmetics9040081. DOI
Zhou S., Zhou J., Du Y., Cheng J., Wang Y., Zhang Z. Texture and Volatile Profiles of Beef Tallow Substitute Produced by a Pilot-Scale Continuous Enzymatic Interesterification. Food Chem. 2023;429:136980. doi: 10.1016/j.foodchem.2023.136980. PubMed DOI
Kowalska M., Woźniak M., Zbikowska A., Ivanišová E., Molik A. Quality of Emulsions Containing Fat Blends Modified by Enzymatic Catalysis. Catalysts. 2021;11:453. doi: 10.3390/catal11040453. DOI
Starčević M., Glamočlija N., Baltić B., Glišić M., Laudanović M., Krstić M., Bošković Cabrol M. Nutritional Value of Wild-Harvested Game Meat of Fallow Deer (Dama dama), Red Deer (Cervus elaphus), and Roe Deer (Capreolus capreolus) Acta Vet. 2025;75:63–81. doi: 10.2478/acve-2025-0006. DOI
Lorenzo J.M., Maggiolino A., Gallego L., Pateiro M., Serrano M.P., Domínguez R., García A., Landete-Castillejos T., De Palo P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2019;99:1561–1567. doi: 10.1002/jsfa.9334. PubMed DOI
Dodds E.D., McCoy M.R., Rea L.D., Kennish J.M. Gas Chromatographic Quantification of Fatty Acid Methyl Esters: Flame Ionization Detection vs. Electron Impact Mass Spectrometry. Lipids. 2005;40:419–428. doi: 10.1007/s11745-006-1399-8. PubMed DOI
Amores G., Virto M. Total and Free Fatty Acids Analysis in Milk and Dairy Fat. Separations. 2019;6:14. doi: 10.3390/separations6010014. DOI
Teng D., Le R., Yuan F., Yang J., He L., Gao Y. Optimization of enzymatic hydrolysis of chicken fat in emulsion by response surface methodology. J. Am. Oil Chem. Soc. 2009;86:485–494. doi: 10.1007/s11746-009-1364-9. DOI
Alahmad K., Noman A., Xia W., Jiang Q., Xu Y. Influence of the Enzymatic Hydrolysis Using Flavourzyme Enzyme on Functional, Secondary Structure, and Antioxidant Characteristics of Protein Hydrolysates Produced from Bighead Carp (Hypophthalmichthys nobilis) Molecules. 2023;28:519. doi: 10.3390/molecules28020519. PubMed DOI PMC
Kapral-Piotrowska J., Strawa J.W., Jakimiuk K., Wiater A., Tomczyk M., Gruszecki W.I., Pawlikowska-Pawlęga B. Investigation of the membrane localization and interaction of selected flavonoids by NMR and FTIR spectroscopy. Int. J. Mol. Sci. 2023;24:15275. doi: 10.3390/ijms242015275. PubMed DOI PMC
Sato E.T., Machado N., Araújo D.R., Paulino L.C., Martinho H. Fourier transform infrared absorption (FTIR) on dry stratum corneum, corneocyte-lipid interfaces: Experimental and vibrational spectroscopy calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021;249:119218. doi: 10.1016/j.saa.2020.119218. PubMed DOI
Monnier G., Frahm E., Luo B., Missal K. Developing FTIR Microspectroscopy for the analysis of animal-tissue residues on stone tools. J. Archaeol. Method Theory. 2018;25:1–44. doi: 10.1007/s10816-017-9325-3. DOI
Novotná T., Mokrejš P., Pavlačková J., Gál R. Study of Processing Conditions during Enzymatic Hydrolysis of Deer By-Product Tallow for Targeted Changes at the Molecular Level and Properties of Modified Fats. Int. J. Mol. Sci. 2024;25:4002. doi: 10.3390/ijms25074002. PubMed DOI PMC
Salimon J., Abdullah B.M., Salih N. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chem. Cent. J. 2011;5:67. doi: 10.1186/1752-153X-5-67. PubMed DOI PMC
Pruchnik H., Włoch A., Gładkowski W., Grudniewska A., Chojnacka A., Krzemiński M., Rudzińska M. Effect of Distigmasterol-Modified Acylglycerols on the Fluidity and Phase Transition of Lipid Model Membranes. Membranes. 2022;12:11054. doi: 10.3390/membranes12111054. PubMed DOI PMC
Nusantoro B.P., Xanthina M., Kadivar S., Yanty N.A.M., Dewettinck K. Enzymatic Interesterification of Lauric Fat Blends Formulated by Grouping Triacylglycerol Melting Points. J. Am. Oil Chem. Soc. 2016;93:1051–1062. doi: 10.1007/s11746-016-2851-4. DOI
Paravina R.D., Ghinea R., Herrera L.J., Bona A.D., Igiel C., Linninger M., Sakai M., Takahashi H., Tashkandi E., del Mar Perez M. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015;27:S1–S9. doi: 10.1111/jerd.12149. PubMed DOI
Meat and Meat Products—Determination of Moisture Content—Reference Method. ISO; Geneva, Switzerland: 2023. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/82664.html.
Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 1: Kjeldahl Method. ISO; Geneva, Switzerland: 2005. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/39145.html.
Meat and Meat Products—Determination of Total Fat Content. ISO; Geneva, Switzerland: 1973.
Animal and Vegetable Fats and Oils—Determination of Ash. ISO; Geneva, Switzerland: 2008. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/51415.html.
Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO; Geneva, Switzerland: 2020. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/75594.html.
Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO; Geneva, Switzerland: 2023. [(accessed on 15 January 2025)]. Available online: https://www.iso.org/standard/85171.html.
Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO; Geneva, Switzerland: 2017. [(accessed on 17 January 2025)]. Available online: https://www.iso.org/standard/71268.html.
Animal and Vegetable Fats and Oils—Determination of Iodine Value. ISO; Geneva, Switzerland: 2018. [(accessed on 17 January 2025)]. Available online: https://www.iso.org/standard/71868.html.
Grömping U. R Package DoE.base for Factorial Experiments. J. Stat. Softw. 2018;85:1–41. doi: 10.18637/jss.v085.i05. DOI
Antony J. Design of Experiments for Engineers and Scientists. 2nd ed. Elsevier; London, UK: 2014. pp. 33–85.
Ma X., Zhan P., Tian H., Wei Z., Wang P. Effects of Different Enzymatic Hydrolyses of Mutton Tallow on the Aroma Characteristics of the Maillard Reaction of Xylose–Cysteine Based on GC-MS, E-Nose, and Statistical Analysis. Eur. J. Lipid Sci. Technol. 2020;122:1900212. doi: 10.1002/ejlt.201900212. DOI
Ye Y., Ye S., Wanyan Z., Ping H., Xu Z., He S., Cao X., Chen X., Hu W., Wei Z. Producing Beef Flavors in Hydrolyzed Soybean Meal-Based Maillard Reaction Products Participated with Beef Tallow Hydrolysates. Food Chem. 2022;378:132119. doi: 10.1016/j.foodchem.2022.132119. PubMed DOI
Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. ISO; Geneva, Switzerland: 2014. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/52294.html.
Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO; Geneva, Switzerland: 2017. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/72142.html.
Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 3: Preparation of Methyl Esters Using Sodium Methoxide. ISO; Geneva, Switzerland: 2016. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/70249.html.
Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. ISO; Geneva, Switzerland: 2015. [(accessed on 20 May 2025)]. Available online: https://www.iso.org/standard/63503.html.
AOCS . Official Methods and Recommended Practices of the American Oil Chemists’ Society. AOCS; Champaign, IL, USA: 1998.
Gao Y., Mao J., Meng Z. Tracing Distribution and Interface Behavior of Water Droplets in W/O Emulsions with Fat Crystals. Food Res. Int. 2023;163:112215. doi: 10.1016/j.foodres.2022.112215. PubMed DOI
Animal and Vegetable Fats and Oils—Determination of Melting Point in Open Capillary Tubes (Slip Point) ISO; Geneva, Switzerland: 2021. [(accessed on 2 March 2025)]. Available online: https://www.iso.org/standard/81472.html.
Glibowski P., Zarzycki P., Krzepkowska M. The Rheological and Instrumental Textural Properties of Selected Table Fats. Int. J. Food Prop. 2008;11:678–686. doi: 10.1080/10942910701622599. DOI
Chudy S., Bilska A., Kowalski R., Teichert J. Color of milk and milk products in CIE L*a*b* space. Med. Weter. 2020;76:77–81. doi: 10.21521/mw.6327. DOI