Substrate-Controlled Response Coefficients in Thin Films

. 2025 Aug 19 ; () : e05761. [epub] 20250819

Status Publisher Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40831230

Grantová podpora
TN02000069 Technology Agency of the Czech Republic
22-10832S Grantová Agentura České Republiky
739508 Horizon 2020 Framework Programme

To obtain materials with desired properties, material compositions are primarily altered, whereas thin films offer additional unique avenues. By combining state-of-the-art first-principles calculations and experimental investigations of thin films of strontium titanate as an exemplary representative of a broad class of perovskite oxides and the extensive family of ferroelectrics, a novel approach is presented to achieving superior material responses to external stimuli. The findings reveal that substrate-imposed deformations, or strains, significantly alter the frequencies and magnitudes of atomic vibrations in thin films. Consequently, material-specific response-stimulus coefficients can become strain-dependent. The strain-dependent Curie constant, which characterizes the dielectric response to thermal stimuli, is theoretically justified and experimentally validated. Given that atomic vibrations fundamentally govern various response coefficients in a wide range of materials, and that thin films are typically deformed by substrates, it is anticipated that unprecedented responses can be generally attained through substrate-induced control of atomic vibrations in thin films.

Zobrazit více v PubMed

M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Classic Texts in the Physical Sciences, Oxford University Press, Oxford 2001.

K. Uchino, Ferroelectric Devices (2nd ed.), CRC Press, Boca Raton, 2009.

P. Ferraro, S. Grilli, P. De Natale, Eds., Ferroelectric Crystals for Photonic Applications, Springer Berlin, Heidelberg 2014.

H. Huang, J. F. Scott, Eds: Ferroelectric Materials for Energy Applications, Wiley‐VCH Verlag, Weinheim 2018.

D. Maurya, A. Pramanick, D. Viehland, Eds: Ferroelectric Materials for Energy Harvesting and Storage, Woodhead Publishing, Cambridge 2021.

X.‐K. Wei, N. Domingo, Y. Sun, N. Balke, R. E. Dunin‐Borkowski, J. Mayer, Adv. Energy Mater. 2022, 12, 2201199.

M. A. Boda, R. L. Withers, Y. Liu, J. Ye, Z. Yi, J. Mater. Chem. A 2022, 10, 22977.

G. H. Haertling, J. Vac. Sci. Tech. A 1991, 9, 414.

W. Wersing, R. Bruchhaus, Proc. SPIE 1994, 2364, 12.

D. Dimos, Annu. Rev. Mater. Sci. 1995, 25, 273.

P. Muralt, J. Micromech. Microeng. 2000, 10, 136.

N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 2006, 100, 051606.

B. W. Wessels, Annu. Rev. Mater. Res. 2007, 37, 659.

L. W. Martin, A. M. Rappe, Nat. Rev. Mater. 2017, 2, 16087.

I. Kanno, Piezoelectric M. E. M. S., Jap. J. Appl. Phys. 2018, 57, 040101.

A. Karvounis, F. Timpu, V. V. Vogler‐Neuling, R. Savo, R. Grange, Adv. Optical Mater. 2020, 8, 2001249.

C. A. F. Vaz, Y. J. Shin, M. Bibes, K. M. Rabe, F. J. Walker, C. H. Ahn, E. devices, Appl. Phys. Rev. 2021, 8, 041308.

M. Spreitzer, D. Klement, T. P. Potocnik, U. Trstenjak, Z. Jovanovic, M. D. Nguyen, H. Yuan, J. E. ten Elshof, E. Houwman, G. Koster, G. Rijnders, J. Fompeyrine, L. Kornblum, D. P. Fenning, Y. Liang, W.‐Y. Tong, P. Ghosez, APL Mater. 2021, 9, 040701.

F. M. Chiabrera, S. Yun, Y. Li, R. T. Dahm, H. Zhang, C. K. R. Kirchert, D. V. Christensen, F. Trier, T. S. Jespersen, N. Pryds, Ann. Phys. 2022, 534, 2200084.

Y. Jiang, E. Parsonnet, A. Qualls, W. Zhao, S. Susarla, D. Pesquera, A. Dasgupta, M. Acharya, H. Zhang, T. Gosavi, C.‐C. Lin, D. E. Nikonov, H. Li, I. A. Young, R. Ramesh, L. W. Martin, Nat. Mater. 2022, 21, 779.

M. Müller, I. Efe, M. F. Sarott, E. Gradauskaite, M. Trassin, ACS Appl. Electron. Mater. 2023, 5, 1314.

T. Mikolajick, M. H. Park, L. Begon‐Lours, S. Slesazeck, Adv. Mater. 2023, 35, 2206042.

A. Yadav, C. Nelson, S. Hsu, Z. Hong, J. Clarkson, C. Schleputz, A. Damodaran, P. Shafer, E. Arenholz, L. Dedon, D. Chen, A. Vishwanath, A. Minor, L. Chen, J. Scott, L. Martin, R. Ramesh, Nature 2016, 530, 198.

A. Fernandez, M. Acharya, H.‐G. Lee, J. Schimpf, Y. Jiang, D. Lou, Z. Tian, L. W. Martin, T. F. Ferroelectrics, Adv. Mater. 2022, 34, 2108841.

N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev, Phys. Rev. Lett. 1988, 1998, 80.

N. A. Pertsev, A. K. Tagantsev, N. Setter, Phys. Rev. B 2000, 61, R825.

N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, R. Waser, Phys. Rev. B 2003, 67, 054107.

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom, Nature 2004, 430, 758.

K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.‐Q. Chen, D. G. Schlom, C. B. Eom, Science 2004, 306, 1005.

D. G. Schlom, L.‐Q. Chen, C.‐B. Eom, K. M. Rabe, S.t. K. Streiffer, J.‐M. Triscone, Annu. Rev. Mater. Res. 2007, 37, 589.

D. G. Schlom, L.‐Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, R. Uecker, MRS Bull. 2014, 39, 118.

D. Pesquera, E. Parsonnet, A. Qualls, R. Xu, A. J. Gubser, J. Kim, Y. Jiang, G. Velarde, Y.‐L. Huang, H. Y. Hwang, R. Ramesh, L. W. Martin, Adv. Mater. 2020, 32, 2003780.

T. Yamada, B. Wylie‐van Eerd, O. Sakata, A. K. Tagantsev, H. Morioka, Y. Ehara, S. Yasui, H. Funakubo, T. Nagasaki, H. J. Trodahl, Phys. Rev. B 2015, 91, 214101.

G. Rupprecht, R. O. Bell, Phys. Rev. 1964, 135, A748.

W. Cochran, Phys. Rev. Lett. 1959, 3, 412.

R. A. Cowley, Phys. Rev. 1964, 134, A981.

A. W. Hewat, J. Phys. C: Solid State Phys. 1973, 6, 1074.

R. A. Cowley, Philos. Mag. 1965, 11, 673.

M. Tyunina, O. Pacherova, N. Nepomniashchaia, V. Vetokhina, S. Cichon, T. Kocourek, A. Dejneka, Phys. Chem. Chem. Phys. 2020, 22, 24796.

M. Tyunina, L. L. Rusevich, E. A. Kotomin, O. Pacherova, T. Kocourek, A. Dejneka, J. Mater. Chem. C 2021, 9, 1693.

M. Tyunina, N. Nepomniashchaia, V. Vetokhina, A. Dejneka, APL Mater. 2021, 9, 121108.

H. M. Christen, J. Mannhart, E. J. Williams, C.h. Gerber, Phys. Rev. B 1994, 49, 12095.

D. Fuchs, C. W. Schneider, R. Schneider, H. Rietschel, J. Appl. Phys. 1999, 85, 7362.

S. Schmidt, J. Lu, S. P. Keane, L. D. Bregante, D. O. Klenov, S. Stemmer, J. Am. Ceram. Soc. 2005, 88, 789.

S. P. Keane, S. Schmidt, J. Lu, A. E. Romanov, S. Stemmer, J. Appl. Phys. 2006, 99, 033521.

R. Wördenweber, E. Hollmann, R. Kutzner, J. Schubert, J. Appl. Phys. 2007, 102, 044119.

A. Verma, S. Raghavan, S. Stemmer, D. Jena, Appl. Phys. Lett. 2015, 107, 192908.

A. Tkach, O. Okhay, I. M. Reaney, P. M. Vilarinho, J. Mater. Chem. C 2018, 6, 2467.

R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich‐Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, WIREs Comput. Mol. Sci. 2018, 8, 1360.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich‐Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, D. Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa, CRYSTAL17 User's Manual, University of Torino, Torino, 2017

S. Piskunov, E. Heifets, R. I. Eglitis, G. Borstel, Comput. Mater. Sci. 2004, 29, 165.

L. L. Rusevich, G. Zvejnieks, E. A. Kotomin, Solid State Ionics 2019, 337, 76.

G. Zvejnieks, L. L. Rusevich, D. Gryaznov, E. A. Kotomin, Phys. Chem. Chem. Phys. 2019, 21, 23541.

L. L. Rusevich, E. A. Kotomin, G. Zvejnieks, M. Maček Kržmanc, S. Gupta, N. Daneu, J. C. S. Wu, Y.‐G. Lee, W.‐Y. Yu, J. Phys. Chem. C 2022, 126, 21223.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...