Substrate-Controlled Response Coefficients in Thin Films
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000069
Technology Agency of the Czech Republic
22-10832S
Grantová Agentura České Republiky
739508
Horizon 2020 Framework Programme
PubMed
40831230
DOI
10.1002/advs.202505761
Knihovny.cz E-zdroje
- Klíčová slova
- computational methods, condensed matter physics, ferroelectrics, physics & engineering,
- Publikační typ
- časopisecké články MeSH
To obtain materials with desired properties, material compositions are primarily altered, whereas thin films offer additional unique avenues. By combining state-of-the-art first-principles calculations and experimental investigations of thin films of strontium titanate as an exemplary representative of a broad class of perovskite oxides and the extensive family of ferroelectrics, a novel approach is presented to achieving superior material responses to external stimuli. The findings reveal that substrate-imposed deformations, or strains, significantly alter the frequencies and magnitudes of atomic vibrations in thin films. Consequently, material-specific response-stimulus coefficients can become strain-dependent. The strain-dependent Curie constant, which characterizes the dielectric response to thermal stimuli, is theoretically justified and experimentally validated. Given that atomic vibrations fundamentally govern various response coefficients in a wide range of materials, and that thin films are typically deformed by substrates, it is anticipated that unprecedented responses can be generally attained through substrate-induced control of atomic vibrations in thin films.
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 Prague 18221 Czech Republic
Institute of Solid State Physics University of Latvia Kengaraga Str 8 Riga LV 1063 Latvia
Max Planck Institute for Solid State Research Heisenberg Str 1 D 70569 Stuttgart Germany
Zobrazit více v PubMed
M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Classic Texts in the Physical Sciences, Oxford University Press, Oxford 2001.
K. Uchino, Ferroelectric Devices (2nd ed.), CRC Press, Boca Raton, 2009.
P. Ferraro, S. Grilli, P. De Natale, Eds., Ferroelectric Crystals for Photonic Applications, Springer Berlin, Heidelberg 2014.
H. Huang, J. F. Scott, Eds: Ferroelectric Materials for Energy Applications, Wiley‐VCH Verlag, Weinheim 2018.
D. Maurya, A. Pramanick, D. Viehland, Eds: Ferroelectric Materials for Energy Harvesting and Storage, Woodhead Publishing, Cambridge 2021.
X.‐K. Wei, N. Domingo, Y. Sun, N. Balke, R. E. Dunin‐Borkowski, J. Mayer, Adv. Energy Mater. 2022, 12, 2201199.
M. A. Boda, R. L. Withers, Y. Liu, J. Ye, Z. Yi, J. Mater. Chem. A 2022, 10, 22977.
G. H. Haertling, J. Vac. Sci. Tech. A 1991, 9, 414.
W. Wersing, R. Bruchhaus, Proc. SPIE 1994, 2364, 12.
D. Dimos, Annu. Rev. Mater. Sci. 1995, 25, 273.
P. Muralt, J. Micromech. Microeng. 2000, 10, 136.
N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 2006, 100, 051606.
B. W. Wessels, Annu. Rev. Mater. Res. 2007, 37, 659.
L. W. Martin, A. M. Rappe, Nat. Rev. Mater. 2017, 2, 16087.
I. Kanno, Piezoelectric M. E. M. S., Jap. J. Appl. Phys. 2018, 57, 040101.
A. Karvounis, F. Timpu, V. V. Vogler‐Neuling, R. Savo, R. Grange, Adv. Optical Mater. 2020, 8, 2001249.
C. A. F. Vaz, Y. J. Shin, M. Bibes, K. M. Rabe, F. J. Walker, C. H. Ahn, E. devices, Appl. Phys. Rev. 2021, 8, 041308.
M. Spreitzer, D. Klement, T. P. Potocnik, U. Trstenjak, Z. Jovanovic, M. D. Nguyen, H. Yuan, J. E. ten Elshof, E. Houwman, G. Koster, G. Rijnders, J. Fompeyrine, L. Kornblum, D. P. Fenning, Y. Liang, W.‐Y. Tong, P. Ghosez, APL Mater. 2021, 9, 040701.
F. M. Chiabrera, S. Yun, Y. Li, R. T. Dahm, H. Zhang, C. K. R. Kirchert, D. V. Christensen, F. Trier, T. S. Jespersen, N. Pryds, Ann. Phys. 2022, 534, 2200084.
Y. Jiang, E. Parsonnet, A. Qualls, W. Zhao, S. Susarla, D. Pesquera, A. Dasgupta, M. Acharya, H. Zhang, T. Gosavi, C.‐C. Lin, D. E. Nikonov, H. Li, I. A. Young, R. Ramesh, L. W. Martin, Nat. Mater. 2022, 21, 779.
M. Müller, I. Efe, M. F. Sarott, E. Gradauskaite, M. Trassin, ACS Appl. Electron. Mater. 2023, 5, 1314.
T. Mikolajick, M. H. Park, L. Begon‐Lours, S. Slesazeck, Adv. Mater. 2023, 35, 2206042.
A. Yadav, C. Nelson, S. Hsu, Z. Hong, J. Clarkson, C. Schleputz, A. Damodaran, P. Shafer, E. Arenholz, L. Dedon, D. Chen, A. Vishwanath, A. Minor, L. Chen, J. Scott, L. Martin, R. Ramesh, Nature 2016, 530, 198.
A. Fernandez, M. Acharya, H.‐G. Lee, J. Schimpf, Y. Jiang, D. Lou, Z. Tian, L. W. Martin, T. F. Ferroelectrics, Adv. Mater. 2022, 34, 2108841.
N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev, Phys. Rev. Lett. 1988, 1998, 80.
N. A. Pertsev, A. K. Tagantsev, N. Setter, Phys. Rev. B 2000, 61, R825.
N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, R. Waser, Phys. Rev. B 2003, 67, 054107.
J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom, Nature 2004, 430, 758.
K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.‐Q. Chen, D. G. Schlom, C. B. Eom, Science 2004, 306, 1005.
D. G. Schlom, L.‐Q. Chen, C.‐B. Eom, K. M. Rabe, S.t. K. Streiffer, J.‐M. Triscone, Annu. Rev. Mater. Res. 2007, 37, 589.
D. G. Schlom, L.‐Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, R. Uecker, MRS Bull. 2014, 39, 118.
D. Pesquera, E. Parsonnet, A. Qualls, R. Xu, A. J. Gubser, J. Kim, Y. Jiang, G. Velarde, Y.‐L. Huang, H. Y. Hwang, R. Ramesh, L. W. Martin, Adv. Mater. 2020, 32, 2003780.
T. Yamada, B. Wylie‐van Eerd, O. Sakata, A. K. Tagantsev, H. Morioka, Y. Ehara, S. Yasui, H. Funakubo, T. Nagasaki, H. J. Trodahl, Phys. Rev. B 2015, 91, 214101.
G. Rupprecht, R. O. Bell, Phys. Rev. 1964, 135, A748.
W. Cochran, Phys. Rev. Lett. 1959, 3, 412.
R. A. Cowley, Phys. Rev. 1964, 134, A981.
A. W. Hewat, J. Phys. C: Solid State Phys. 1973, 6, 1074.
R. A. Cowley, Philos. Mag. 1965, 11, 673.
M. Tyunina, O. Pacherova, N. Nepomniashchaia, V. Vetokhina, S. Cichon, T. Kocourek, A. Dejneka, Phys. Chem. Chem. Phys. 2020, 22, 24796.
M. Tyunina, L. L. Rusevich, E. A. Kotomin, O. Pacherova, T. Kocourek, A. Dejneka, J. Mater. Chem. C 2021, 9, 1693.
M. Tyunina, N. Nepomniashchaia, V. Vetokhina, A. Dejneka, APL Mater. 2021, 9, 121108.
H. M. Christen, J. Mannhart, E. J. Williams, C.h. Gerber, Phys. Rev. B 1994, 49, 12095.
D. Fuchs, C. W. Schneider, R. Schneider, H. Rietschel, J. Appl. Phys. 1999, 85, 7362.
S. Schmidt, J. Lu, S. P. Keane, L. D. Bregante, D. O. Klenov, S. Stemmer, J. Am. Ceram. Soc. 2005, 88, 789.
S. P. Keane, S. Schmidt, J. Lu, A. E. Romanov, S. Stemmer, J. Appl. Phys. 2006, 99, 033521.
R. Wördenweber, E. Hollmann, R. Kutzner, J. Schubert, J. Appl. Phys. 2007, 102, 044119.
A. Verma, S. Raghavan, S. Stemmer, D. Jena, Appl. Phys. Lett. 2015, 107, 192908.
A. Tkach, O. Okhay, I. M. Reaney, P. M. Vilarinho, J. Mater. Chem. C 2018, 6, 2467.
R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich‐Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, WIREs Comput. Mol. Sci. 2018, 8, 1360.
R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich‐Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, D. Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa, CRYSTAL17 User's Manual, University of Torino, Torino, 2017
S. Piskunov, E. Heifets, R. I. Eglitis, G. Borstel, Comput. Mater. Sci. 2004, 29, 165.
L. L. Rusevich, G. Zvejnieks, E. A. Kotomin, Solid State Ionics 2019, 337, 76.
G. Zvejnieks, L. L. Rusevich, D. Gryaznov, E. A. Kotomin, Phys. Chem. Chem. Phys. 2019, 21, 23541.
L. L. Rusevich, E. A. Kotomin, G. Zvejnieks, M. Maček Kržmanc, S. Gupta, N. Daneu, J. C. S. Wu, Y.‐G. Lee, W.‐Y. Yu, J. Phys. Chem. C 2022, 126, 21223.