The MEK-ERK-MST1 Axis Potentiates the Activation of the Extrinsic Apoptotic Pathway during GDC-0941 Treatment in Jurkat T Cells

. 2019 Feb 21 ; 8 (2) : . [epub] 20190221

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30795621

The discrete activation of individual caspases is essential during T-cell development, activation, and apoptosis. Humans carrying nonfunctional caspase-8 and caspase-8 conditional knockout mice exhibit several defects in the progression of naive CD4⁺ T cells to the effector stage. MST1, a key kinase of the Hippo signaling pathway, is often presented as a substrate of caspases, and its cleavage by caspases potentiates its activity. Several studies have focused on the involvement of MST1 in caspase activation and also reported several defects in the immune system function caused by MST1 deficiency. Here, we show the rapid activation of the MEK-ERK-MST1 axis together with the cleavage and activation of caspase-3, -6, -7, -8, and -9 after PI3K signaling blockade by the selective inhibitor GDC-0941 in Jurkat T cells. We determined the phosphorylation pattern of MST1 using a phosphoproteomic approach and identified two amino acid residues phosphorylated in an ERK-dependent manner after GDC-0941 treatment together with a novel phosphorylation site at S21 residue, which was extensively phosphorylated in an ERK-independent manner during PI3K signaling blockade. Using caspase inhibitors and the inhibition of MST1 expression using siRNA, we identified an exclusive role of the MEK-ERK-MST1 axis in the activation of initiator caspase-8, which in turn activates executive caspase-3/-7 that finally potentiate MST1 proteolytic cleavage. This mechanism forms a positive feed-back loop that amplifies the activation of MST1 together with apoptotic response in Jurkat T cells during PI3K inhibition. Altogether, we propose a novel MEK-ERK-MST1-CASP8-CASP3/7 apoptotic pathway in Jurkat T cells and believe that the regulation of this pathway can open novel possibilities in systemic and cancer therapies.

Zobrazit více v PubMed

Nagata S., Tanaka M. Programmed cell death and the immune system. Nat. Rev. Immunol. 2017;17:333–340. doi: 10.1038/nri.2016.153. PubMed DOI

Sharon A., Finkelstein A., Shlezinger N., Hatam I. Fungal apoptosis: Function, genes and gene function. FEMS Microbiol. Rev. 2009;33:833–854. doi: 10.1111/j.1574-6976.2009.00180.x. PubMed DOI

Li J., Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008;27:6194–6206. doi: 10.1038/onc.2008.297. PubMed DOI

Pfeffer C.M., Singh A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018;19:448. doi: 10.3390/ijms19020448. PubMed DOI PMC

Salvesen G.S., Walsh C.M. Functions of caspase 8: The identified and the mysterious. Semin. Immunol. 2014;26:246–252. doi: 10.1016/j.smim.2014.03.005. PubMed DOI PMC

Buckley C.D., Pilling D., Henriquez N.V., Parsonage G., Threlfall K., Scheel-Toellner D., Simmons D.L., Akbar A.N., Lord J.M., Salmon M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature. 1999;397:534–539. doi: 10.1038/17409. PubMed DOI

Harvey K.F., Zhang X., Thomas D.M. The Hippo pathway and human cancer. Nat. Rev. Cancer. 2013;13:246–257. doi: 10.1038/nrc3458. PubMed DOI

Gnimassou O., Francaux M., Deldicque L. Hippo Pathway and Skeletal Muscle Mass Regulation in Mammals: A Controversial Relationship. Front. Physiol. 2017;8:190. doi: 10.3389/fphys.2017.00190. PubMed DOI PMC

Valis K., Prochazka L., Boura E., Chladova J., Obsil T., Rohlena J., Truksa J., Dong L.F., Ralph S.J., Neuzil J. Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner. Cancer Res. 2011;71:946–954. doi: 10.1158/0008-5472.CAN-10-2203. PubMed DOI

Ronnebaum S.M., Patterson C. The FoxO family in cardiac function and dysfunction. Annu. Rev. Physiol. 2010;72:81–94. doi: 10.1146/annurev-physiol-021909-135931. PubMed DOI PMC

Ura S., Masuyama N., Graves J.D., Gotoh Y. Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc. Natl. Acad Sci. USA. 2001;98:10148–10153. doi: 10.1073/pnas.181161698. PubMed DOI PMC

Cinar B., Fang P.K., Lutchman M., Di Vizio D., Adam R.M., Pavlova N., Rubin M.A., Yelick P.C., Freeman M.R. The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J. 2007;26:4523–4534. doi: 10.1038/sj.emboj.7601872. PubMed DOI PMC

Graves J.D., Draves K.E., Gotoh Y., Krebs E.G., Clark E.A. Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J. Biol. Chem. 2001;276:14909–14915. doi: 10.1074/jbc.M010905200. PubMed DOI

Ardestani A., Paroni F., Azizi Z., Kaur S., Khobragade V., Yuan T., Frogne T., Tao W., Oberholzer J., Pattou F., et al. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat. Med. 2014;20:385–397. doi: 10.1038/nm.3482. PubMed DOI PMC

Del Re D.P., Matsuda T., Zhai P., Maejima Y., Jain M.R., Liu T., Li H., Hsu C.P., Sadoshima J. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol. Cell. 2014;54:639–650. doi: 10.1016/j.molcel.2014.04.007. PubMed DOI PMC

Lee J.K., Shin J.H., Hwang S.G., Gwag B.J., McKee A.C., Lee J., Kowall N.W., Ryu H., Lim D.S., Choi E.J. MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc. Natl. Acad Sci. USA. 2013;110:12066–12071. doi: 10.1073/pnas.1300894110. PubMed DOI PMC

Cinar B., Collak F.K., Lopez D., Akgul S., Mukhopadhyay N.K., Kilicarslan M., Gioeli D.G., Freeman M.R. MST1 is a multifunctional caspase-independent inhibitor of androgenic signaling. Cancer Res. 2011;71:4303–4313. doi: 10.1158/0008-5472.CAN-10-4532. PubMed DOI PMC

Arthur E., Kittur F.S., Lin Y., Hung C.Y., Sane D.C., Xie J. Plant-Produced Asialo-Erythropoietin Restores Pancreatic Beta-Cell Function by Suppressing Mammalian Sterile-20-like Kinase (MST1) and Caspase-3 Activation. Front. Pharmacol. 2017;8:208. doi: 10.3389/fphar.2017.00208. PubMed DOI PMC

Sciarretta S., Zhai P., Maejima Y., Del Re D.P., Nagarajan N., Yee D., Liu T., Magnuson M.A., Volpe M., Frati G., et al. mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep. 2015;11:125–136. doi: 10.1016/j.celrep.2015.03.010. PubMed DOI PMC

Santinon G., Pocaterra A., Dupont S. Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends Cell Biol. 2016;26:289–299. doi: 10.1016/j.tcb.2015.11.004. PubMed DOI

Valis K., Talacko P., Grobarova V., Cerny J., Novak P. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis. Exp. Cell Res. 2016;349:273–281. doi: 10.1016/j.yexcr.2016.10.018. PubMed DOI

Du X., Wen J., Wang Y., Karmaus P.W.F., Khatamian A., Tan H., Li Y., Guy C., Nguyen T.M., Dhungana Y., et al. Hippo/Mst signalling couples metabolic state and immune function of CD8alpha(+) dendritic cells. Nature. 2018;558:141–145. doi: 10.1038/s41586-018-0177-0. PubMed DOI PMC

Cheng J., Jing Y., Kang D., Yang L., Li J., Yu Z., Peng Z., Li X., Wei Y., Gong Q., et al. The Role of Mst1 in Lymphocyte Homeostasis and Function. Front. Immunol. 2018;9:149. doi: 10.3389/fimmu.2018.00149. PubMed DOI PMC

Taha Z., Janse van Rensburg H.J., Yang X. The Hippo Pathway: Immunity and Cancer. Cancers. 2018;10:94. doi: 10.3390/cancers10040094. PubMed DOI PMC

Fruman D.A., Chiu H., Hopkins B.D., Bagrodia S., Cantley L.C., Abraham R.T. The PI3K Pathway in Human Disease. Cell. 2017;170:605–635. doi: 10.1016/j.cell.2017.07.029. PubMed DOI PMC

McCubrey J.A., Lee J.T., Steelman L.S., Blalock W.L., Moye P.W., Chang F., Pearce M., Shelton J.G., White M.K., Franklin R.A., et al. Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect. Prev. 2001;25:375–393. PubMed

Valis K., Grobarova V., Hernychova L., Buganova M., Kavan D., Kalous M., Cerny J., Stodulkova E., Kuzma M., Flieger M., et al. Reprogramming of leukemic cell metabolism through the naphthoquinonic compound Quambalarine B. Oncotarget. 2017;8:103137–103153. doi: 10.18632/oncotarget.21663. PubMed DOI PMC

Mabuchi S., Ohmichi M., Kimura A., Hisamoto K., Hayakawa J., Nishio Y., Adachi K., Takahashi K., Arimoto-Ishida E., Nakatsuji Y., et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J. Biol. Chem. 2002;277:33490–33500. doi: 10.1074/jbc.M204042200. PubMed DOI

Kitamura Y., Koide M., Akakabe Y., Matsuo K., Shimoda Y., Soma Y., Ogata T., Ueyama T., Matoba S., Yamada H., et al. Manipulation of cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling by apoptosis regulator through modulating IAP expression (ARIA) regulates cardiomyocyte death during doxorubicin-induced cardiomyopathy. J. Biol. Chem. 2014;289:2788–2800. doi: 10.1074/jbc.M113.508143. PubMed DOI PMC

Jang S.W., Yang S.J., Srinivasan S., Ye K. Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J. Biol. Chem. 2007;282:30836–30844. doi: 10.1074/jbc.M704542200. PubMed DOI

Hermida M.A., Dinesh Kumar J., Leslie N.R. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv. Biol. Regul. 2017;65:5–15. doi: 10.1016/j.jbior.2017.06.003. PubMed DOI

Fujita E., Jinbo A., Matuzaki H., Konishi H., Kikkawa U., Momoi T. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem. Biophys. Res. Commun. 1999;264:550–555. doi: 10.1006/bbrc.1999.1387. PubMed DOI

Shaul Y.D., Seger R. The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim. Biophys. Acta. 2007;1773:1213–1226. doi: 10.1016/j.bbamcr.2006.10.005. PubMed DOI

Glantschnig H., Rodan G.A., Reszka A.A. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J. Biol. Chem. 2002;277:42987–42996. doi: 10.1074/jbc.M208538200. PubMed DOI

Gouw M., Michael S., Samano-Sanchez H., Kumar M., Zeke A., Lang B., Bely B., Chemes L.B., Davey N.E., Deng Z., et al. The eukaryotic linear motif resource-2018 update. Nucleic Acids Res. 2018;46:D428–D434. doi: 10.1093/nar/gkx1077. PubMed DOI PMC

Couzens A.L., Xiong S., Knight J.D.R., Mao D.Y., Guettler S., Picaud S., Kurinov I., Filippakopoulos P., Sicheri F., Gingras A.C. MOB1 Mediated Phospho-recognition in the Core Mammalian Hippo Pathway. Mol. Cell. Proteom. 2017;16:1098–1110. doi: 10.1074/mcp.M116.065490. PubMed DOI PMC

Hwang E., Cheong H.K., Ul Mushtaq A., Kim H.Y., Yeo K.J., Kim E., Lee W.C., Hwang K.Y., Cheong C., Jeon Y.H. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway. Acta Crystallogr. D Biol. Crystallogr. 2014;70:1944–1953. doi: 10.1107/S139900471400947X. PubMed DOI PMC

Ji J.H., Hwang H.I., Lee H.J., Hyun S.Y., Kang H.J., Jang Y.J. Purification and proteomic identification of putative upstream regulators of polo-like kinase-1 from mitotic cell extracts. FEBS Lett. 2010;584:4299–4305. doi: 10.1016/j.febslet.2010.09.025. PubMed DOI

Mardin B.R., Lange C., Baxter J.E., Hardy T., Scholz S.R., Fry A.M., Schiebel E. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat. Cell. Biol. 2010;12:1166–1176. doi: 10.1038/ncb2120. PubMed DOI PMC

Wu J., Ivanov A.I., Fisher P.B., Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. Elife. 2016;5:e10734. doi: 10.7554/eLife.10734. PubMed DOI PMC

Moniz L.S., Stambolic V. Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol. Cell. Biol. 2011;31:30–42. doi: 10.1128/MCB.00648-10. PubMed DOI PMC

Basken J., Stuart S.A., Kavran A.J., Lee T., Ebmeier C.C., Old W.M., Ahn N.G. Specificity of Phosphorylation Responses to Mitogen Activated Protein (MAP) Kinase Pathway Inhibitors in Melanoma Cells. Mol. Cell. Proteom. 2018;17:550–564. doi: 10.1074/mcp.RA117.000335. PubMed DOI PMC

Torres M.A., Eldar-Finkelman H., Krebs E.G., Moon R.T. Regulation of ribosomal S6 protein kinase-p90(rsk), glycogen synthase kinase 3, and beta-catenin in early Xenopus development. Mol. Cell. Biol. 1999;19:1427–1437. doi: 10.1128/MCB.19.2.1427. PubMed DOI PMC

Huang W., Lv X., Liu C., Zha Z., Zhang H., Jiang Y., Xiong Y., Lei Q.Y., Guan K.L. The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbeta-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J. Biol. Chem. 2012;287:26245–26253. doi: 10.1074/jbc.M112.382036. PubMed DOI PMC

Bressanin D., Evangelisti C., Ricci F., Tabellini G., Chiarini F., Tazzari P.L., Melchionda F., Buontempo F., Pagliaro P., Pession A., et al. Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: Eliminating activity by targeting at different levels. Oncotarget. 2012;3:811–823. doi: 10.18632/oncotarget.579. PubMed DOI PMC

Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Cox J., Mann M. 1D and 2D annotation enrichment: A statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinform. 2012;13:S12. doi: 10.1186/1471-2105-13-S16-S12. PubMed DOI PMC

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Targeting ERK-Hippo Interplay in Cancer Therapy

. 2020 May 03 ; 21 (9) : . [epub] 20200503

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace