Effect of Wine Yeast (Saccharomyces sp.) Strains on the Physicochemical, Sensory, and Antioxidant Properties of Plum, Apple, and Hawthorn Wines

. 2025 Aug 16 ; 14 (16) : . [epub] 20250816

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40870756

Grantová podpora
GAJU 107/2025/Z University of South Bohemia in České Budějovice

Fruit wines have become a popular alternative to grape wines for their variability of sensory properties and unique chemical profiles, offering interesting biological activities. Winemaking also utilizes fruits, which are usually sensitive to biological deterioration, thus reducing post-harvest losses. The quality of wines depends on the fermentation conditions, including the wine yeast selection. In this study, we observed the effect of three common Saccharomyces wine yeast strains on the physicochemical characteristics (color, pH, ethanol content), antioxidant potential (total polyphenol content-TPC, DPPH, and ABTS antioxidant assays), and sensory properties and their relations within plum, apple, and hawthorn wines. Generally, we observed quite-wide ranges in physicochemical properties (pH: 2.8-3.8, ethanol content: 9.0-16.2%) and antioxidant potential parameters (TPC: 0.5-2.4 mg/GAE, DPPH: 0.3-1.4 mg/AAE, 0.5-3.0 mg/AAE), which were affected by the fruit, yeast, and sampling term. The yeast strain significantly affected physicochemical properties and the antioxidant potential on a minor scale. The highest impact of yeast was observed within sensory analyses, where the hawthorn and apple wines fermented by yeast strain Fruit Red exhibited a different sensory profile than those fermented by the Buket and Special strains. A positive correlation between antioxidant potential parameters and their relationship with wine color was confirmed. Moreover, the overall acceptability grew with sweet taste intensity, and panelists preferred wines with lower ethanol content. In general, this study proved the significant impact of wine yeast strain selection on certain qualitative parameters of fruit wines.

Zobrazit více v PubMed

Kojić N., Prodanovic R. By-Products of Wine Production in the Service of the Circular Economy. J. Agron. Technol. Eng. Manag. 2024;7:1245–1251. doi: 10.55817/TPWZ4981. DOI

He L., Yan Y., Wu M., Ke L. Advances in the Quality Improvement of Fruit Wines: A Review. Horticulturae. 2024;10:93. doi: 10.3390/horticulturae10010093. DOI

Radeka S., Rossi S., Bestulić E., Budić-Leto I., Kovačević Ganić K., Horvat I., Lukić I., Orbanić F., Zaninović Jurjević T., Dvornik Š. Bioactive Compounds and Antioxidant Activity of Red and White Wines Produced from Autochthonous Croatian Varieties: Effect of Moderate Consumption on Human Health. Foods. 2022;11:1804. doi: 10.3390/foods11121804. PubMed DOI PMC

Maksimović V., Dragišić Maksimović J. Chapter 4—Composition, Nutritional, and Therapeutic Values of Fruit and Berry Wines. In: Kosseva M.R., Joshi V.K., Panesar P.S., editors. Science and Technology of Fruit Wine Production. Academic Press; San Diego, CA, USA: 2017. pp. 177–226.

Jagtap U.B., Waghmare S.R., Lokhande V.H., Suprasanna P., Bapat V.A. Preparation and evaluation of antioxidant capacity of Jackfruit (Artocarpus heterophyllus Lam.) wine and its protective role against radiation induced DNA damage. Ind. Crops Prod. 2011;34:1595–1601. doi: 10.1016/j.indcrop.2011.05.025. DOI

Jagtap U.B., Bapat V.A. Phenolic Composition and Antioxidant Capacity of Wine Prepared from Custard Apple (Annona squamosa L.) Fruits. J. Food Process. Preserv. 2015;39:175–182. doi: 10.1111/jfpp.12219. DOI

Varakumar S., Kumar Y.S., Reddy O.V.S. Carotenoid composition of mango (Mangifera indica L.) wine and its antioxidant activity. J. Food Biochem. 2011;35:1538–1547. doi: 10.1111/j.1745-4514.2010.00476.x. DOI

Rai A.K., Prakash M., Anu Appaiah K.A. Production of Garcinia wine: Changes in biochemical parameters, organic acids and free sugars during fermentation of Garcinia must. Int. J. Food Sci. Technol. 2010;45:1330–1336. doi: 10.1111/j.1365-2621.2010.02181.x. DOI

Wang Z., Svyantek A., Miller Z., Watrelot A.A., Kapus A. Juice Dilution Affects Haskap (Lonicera caerulea L.) Wine Fermentation Completion and Wine Chemistry. J. Food Process. Preserv. 2025;2025:5257507. doi: 10.1155/jfpp/5257507. DOI

Kim A.Y., Jeong Y.-J., Park Y.B., Lee M.-K., Jeon S.-M., McGregor R.A., Choi M.-S. Dose dependent effects of lycopene enriched tomato-wine on liver and adipose tissue in high-fat diet fed rats. Food Chem. 2012;130:42–48. doi: 10.1016/j.foodchem.2011.06.050. DOI

Matei F. Chapter 14—Technical Guide for Fruit Wine Production. In: Kosseva M.R., Joshi V.K., Panesar P.S., editors. Science and Technology of Fruit Wine Production. Academic Press; San Diego, CA, USA: 2017. pp. 663–703.

Ayub H., Nadeem M., Mohsin M., Ambreen S., Khan F.A., Oranab S., Rahim M.A., Zubair Khalid M., Zongo E., Zarlasht M., et al. A comprehensive review on the availability of bioactive compounds, phytochemicals, and antioxidant potential of plum (Prunus domestica) Int. J. Food Prop. 2023;26:2388–2406. doi: 10.1080/10942912.2023.2249254. DOI

Xiao Q., Ye S., Wang H., Xing S., Zhu W., Zhang H., Zhu J., Pu C., Zhao D., Zhou Q., et al. Soluble sugar, organic acid and phenolic composition and flavor evaluation of plum fruits. Food Chem. X. 2024;24:101790. doi: 10.1016/j.fochx.2024.101790. PubMed DOI PMC

Oyenihi A.B., Belay Z.A., Mditshwa A., Caleb O.J. “An apple a day keeps the doctor away”: The potentials of apple bioactive constituents for chronic disease prevention. J. Food Sci. 2022;87:2291–2309. doi: 10.1111/1750-3841.16155. PubMed DOI PMC

Cebulj A., Vanzo A., Hladnik J., Kastelec D., Vrhovsek U. Apple (Malus domestica Borkh.) Cultivar ‘Majda’, a Naturally Non-Browning Cultivar: An Assessment of Its Qualities. Plants. 2021;10:1402. doi: 10.3390/plants10071402. PubMed DOI PMC

Mignard P., Beguería S., Giménez R., Font i Forcada C., Reig G., Moreno M.Á. Effect of Genetics and Climate on Apple Sugars and Organic Acids Profiles. Agronomy. 2022;12:827. doi: 10.3390/agronomy12040827. DOI

Ma J.-X., Yang W., Ng C.Y.J., Tang X.-D., Wong S., Gan R.-Y., Zhong L. The hawthorn (Crataegus pinnatifida Bge.) fruit as a new dietary source of bioactive ingredients with multiple beneficial functions. Food Front. 2024;5:1534–1558. doi: 10.1002/fft2.413. DOI

Wu J., Peng W., Qin R., Zhou H. Crataegus pinnatifida: Chemical Constituents, Pharmacology, and Potential Applications. Molecules. 2014;19:1685–1712. doi: 10.3390/molecules19021685. PubMed DOI PMC

Hou Y., Bu A., Wang B., Sun M., Wang P., Wang B., Wang A. Sugar and organic acid metabolism and accumulation in different cultivars during fruit development in hawthorn (Crataegus pinnatifida) Food Qual. Saf. 2025;9:fyaf010. doi: 10.1093/fqsafe/fyaf010. DOI

Romano P., Braschi G., Siesto G., Patrignani F., Lanciotti R. Role of Yeasts on the Sensory Component of Wines. Foods. 2022;11:1921. doi: 10.3390/foods11131921. PubMed DOI PMC

Eldarov M.A., Kishkovskaia S.A., Tanaschuk T.N., Mardanov A.V. Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. Biochemistry. 2016;81:1650–1668. doi: 10.1134/S0006297916130046. PubMed DOI

Dimopoulou M., Troianou V., Toumpeki C., Gosselin Y., Dorignac É., Kotseridis Y. Effect of strains from different Saccharomyces species used in different inoculation schemes on chemical composition and sensory characteristics of Sauvignon blanc wine. OENO One. 2020;54:745–759. doi: 10.20870/oeno-one.2020.54.4.3240. DOI

Orlić S., Arroyo-López F.N., Huić-Babić K., Lucilla I., Querol A., Barrio E. A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. J. Appl. Microbiol. 2010;108:73–80. doi: 10.1111/j.1365-2672.2009.04406.x. PubMed DOI

Patrignani F., Siesto G., Gottardi D., Vigentini I., Toffanin A., Englezos V., Blaiotta G., Grieco F., Lanciotti R., Speranza B., et al. Impact of Two Commercial S. cerevisiae Strains on the Aroma Profiles of Different Regional Musts. Beverages. 2022;8:59. doi: 10.3390/beverages8040059. DOI

Bordet F., Roullier-Gall C., Ballester J., Vichi S., Quintanilla-Casas B., Gougeon R.D., Julien-Ortiz A., Kopplin P.S., Alexandre H. Different Wines from Different Yeasts? “Saccharomyces cerevisiae Intraspecies Differentiation by Metabolomic Signature and Sensory Patterns in Wine”. Microorganisms. 2021;9:2327. doi: 10.3390/microorganisms9112327. PubMed DOI PMC

Shi Z., Li W., Chen Z., Peng Z., Ma M., Zhang J., Wu D., Xie G., Lu J. Exploring the Impact of Different Saccharomyces cerevisiae Strains on the Flavor Profile of Greengage Alcoholic Beverage Using GC-E-Nose, HS-GC-IMS, and HS-SPME-GC-MS. Foods. 2024;13:3984. doi: 10.3390/foods13243984. PubMed DOI PMC

Fugelsang K.C., Edwards C.G. Yeasts. In: Fugelsang K.C., Edwards C.G., editors. Wine Microbiology: Practical Applications and Procedures. Springer; Boston, MA, USA: 2007. pp. 3–28.

Milani E.A., Silva F.V.M. Pasteurization of Beer by Non-Thermal Technologies. Front. Food. Sci. Technol. 2022;1:798676. doi: 10.3389/frfst.2021.798676. DOI

AOAC . AOAC Official Methods of Analysis. 17th ed. AOAC International; Gaithersburg, MD, USA: 2000. AOAC Official Method 942.06 Alcohol by Volume in Distilled Liquors.

Bedrníček J., Lorenc F., Jarošová M., Bártová V., Smetana P., Kadlec J., Jirotková D., Kyselka J., Petrášková E., Bjelková M., et al. Milk Thistle Oilseed Cake Flour Fractions: A Source of Silymarin and Macronutrients for Gluten-Free Bread. Antioxidants. 2022;11:2022. doi: 10.3390/antiox11102022. PubMed DOI PMC

Jarošová M., Lorenc F., Bedrníček J., Petrášková E., Bjelková M., Bártová V., Jarošová E., Zdráhal Z., Kyselka J., Smetana P., et al. Comparison of Yield Characteristics, Chemical Composition, Lignans Content and Antioxidant Potential of Experimentally Grown Six Linseed (Linum usitatissimum L.) Cultivars. Plant Foods Hum. Nutr. 2024;79:159–165. doi: 10.1007/s11130-023-01136-9. PubMed DOI

Tan X., Ding M., Wang C., Huang L., Bai J. The Transformation of Pigment in Fruit Wine, Precise Control of Pigment Formation, and Their Effect on Product Quality. Foods. 2025;14:2207. doi: 10.3390/foods14132207. PubMed DOI PMC

Tsuda T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res. 2012;56:159–170. doi: 10.1002/mnfr.201100526. PubMed DOI

Canals R., Llaudy M.C., Valls J., Canals J.M., Zamora F. Influence of Ethanol Concentration on the Extraction of Color and Phenolic Compounds from the Skin and Seeds of Tempranillo Grapes at Different Stages of Ripening. J. Agric. Food Chem. 2005;53:4019–4025. doi: 10.1021/jf047872v. PubMed DOI

Wang D., Cheng B., Yu L., Yuan G., Ma Y., Zhang J., Lin F. Differential Analysis of Anthocyanins in Red and Yellow Hawthorn (Crataegus pinnatifida) Peel Based on Ultra-High Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Molecules. 2025;30:1149. doi: 10.3390/molecules30051149. PubMed DOI PMC

Shi C., Liu L., Wei Z., Liu J., Li M., Yan Z., Gao D. Anthocyanin Accumulation and Molecular Analysis of Correlated Genes by Metabolomics and Transcriptomics in Sister Line Apple Cultivars. Life. 2022;12:1246. doi: 10.3390/life12081246. PubMed DOI PMC

Usenik V., Štampar F., Veberič R. Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chem. 2009;114:529–534. doi: 10.1016/j.foodchem.2008.09.083. DOI

Morata A., Loira I., González C., Escott C. Non-Saccharomyces as Biotools to Control the Production of Off-Flavors in Wines. Molecules. 2021;26:4571. doi: 10.3390/molecules26154571. PubMed DOI PMC

Nguyen G. Effects of pasteurization on the physicochemical, sensory properties and microbiological quality of beetroot (Beta vulgaris L.) wine during storage. Sci. Tech. Dev. J. 2023;26:2950–2958. doi: 10.32508/stdj.v26i3.4089. DOI

Lee J.-H., Choi K., Kim S., Park K., Park S., Kim J., Kang S., Cheong C., Jang K. Physicochemical characteristics and electric conductivity of various fruit wines. Int. Food Res. J. 2013;20:2987.

Choi K.T., Lee S.B., Choi J.S., Park H.D. Influence of different pretreatments and chaptalization types on the physiological characteristics and antioxidant activity of apricot (Prunus armeniaca L.) wine. Ital. J. Food Sci. 2020;32:912–927. doi: 10.14674/IJFS.1877. DOI

Lu Y., Voon M.K.W., Huang D., Lee P.-R., Liu S.-Q. Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2017;101:3005–3014. doi: 10.1007/s00253-016-8043-1. PubMed DOI

Akin H., Brandam C., Meyer X.-M., Strehaiano P. A model for pH determination during alcoholic fermentation of a grape must by Saccharomyces cerevisiae. Chem. Eng. Process. Process Intensif. 2008;47:1986–1993. doi: 10.1016/j.cep.2007.11.014. DOI

Thammasittirong S.N.-R., Thirasaktana T., Thammasittirong A., Srisodsuk M. Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. Springerplus. 2013;2:583. doi: 10.1186/2193-1801-2-583. PubMed DOI PMC

Pereira V., Albuquerque F., Cacho J., Marques J.C. Polyphenols, Antioxidant Potential and Color of Fortified Wines during Accelerated Ageing: The Madeira Wine Case Study. Molecules. 2013;18:2997–3017. doi: 10.3390/molecules18032997. PubMed DOI PMC

Paixão N., Perestrelo R., Marques J.C., Câmara J.S. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem. 2007;105:204–214. doi: 10.1016/j.foodchem.2007.04.017. DOI

Varo M.A., Serratosa M.P., Martín-Gómez J., Moyano L., Mérida J. Influence of Fermentation Time on the Phenolic Compounds, Vitamin C, Color and Antioxidant Activity in the Winemaking Process of Blueberry (Vaccinium corymbosum) Wine Obtained by Maceration. Molecules. 2022;27:7744. doi: 10.3390/molecules27227744. PubMed DOI PMC

Zhang J., Fang L., Huang X., Ding Z., Wang C. Evolution of polyphenolic, anthocyanin, and organic acid components during coinoculation fermentation (simultaneous inoculation of LAB and yeast) and sequential fermentation of blueberry wine. J. Food Sci. 2022;87:4878–4891. doi: 10.1111/1750-3841.16328. PubMed DOI

Hou X., Chen S., Pu Y., Wang T., Xu H., Li H., Ma P., Hou X. Effect of Winemaking on Phenolic Compounds and Antioxidant Activities of Msalais Wine. Molecules. 2023;28:1250. doi: 10.3390/molecules28031250. PubMed DOI PMC

Hensen J.-P., Hoening F., Bogdanovic T., Schieber A., Weber F. Pectin forms polymeric pigments by complexing anthocyanins during red winemaking and ageing. Food Res. Int. 2024;188:114442. doi: 10.1016/j.foodres.2024.114442. PubMed DOI

Weilack I., Mehren L., Schieber A., Weber F. Grape-derived pectic polysaccharides alter the tannin and pigment composition of Cabernet Sauvignon red wines. Curr. Res. Food Sci. 2023;6:100506. doi: 10.1016/j.crfs.2023.100506. PubMed DOI PMC

Hensen J.-P., Hoening F., Weilack I., Damm S., Weber F. Influence of Grape Cell Wall Polysaccharides on the Extraction of Polyphenols during Fermentation in Microvinifications. J. Agric. Food Chem. 2022;70:9117–9131. doi: 10.1021/acs.jafc.2c02697. PubMed DOI

Razmkhab S., Lopez-Toledano A., Ortega J.M., Mayen M., Merida J., Medina M. Adsorption of Phenolic Compounds and Browning Products in White Wines by Yeasts and Their Cell Walls. J. Agric. Food Chem. 2002;50:7432–7437. doi: 10.1021/jf025733c. PubMed DOI

Tarko T., Duda-Chodak A., Soszka A. Changes in Phenolic Compounds and Antioxidant Activity of Fruit Musts and Fruit Wines during Simulated Digestion. Molecules. 2020;25:5574. doi: 10.3390/molecules25235574. PubMed DOI PMC

Rupasinghe H.P.V., Clegg S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Compos. Anal. 2007;20:133–137. doi: 10.1016/j.jfca.2006.06.008. DOI

He G., Sui J., Du J., Lin J. Characteristics and antioxidant capacities of five hawthorn wines fermented by different wine yeasts. J. Inst. Brew. 2013;119:321–327. doi: 10.1002/jib.101. DOI

Liu S., Zhang X., You L., Guo Z., Chang X. Changes in anthocyanin profile, color, and antioxidant capacity of hawthorn wine (Crataegus pinnatifida) during storage by pretreatments. LWT. 2018;95:179–186. doi: 10.1016/j.lwt.2018.04.093. DOI

Liu S., Chang X., Liu X., Shen Z. Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chem. 2016;212:87–95. doi: 10.1016/j.foodchem.2016.05.146. PubMed DOI

Wu Z., Li X., Zeng Y., Cai D., Teng Z., Wu Q., Sun J., Bai W. Color Stability Enhancement and Antioxidation Improvement of Sanhua Plum Wine under Circulating Ultrasound. Foods. 2022;11:2435. doi: 10.3390/foods11162435. PubMed DOI PMC

Liu G., Wei P., Tang Y., Pang Y., Sun J., Li J., Rao C., Wu C., He X., Li L., et al. Evaluation of Bioactive Compounds and Bioactivities in Plum (Prunus salicina Lindl.) Wine. Front. Nutr. 2021;8:766415. doi: 10.3389/fnut.2021.766415. PubMed DOI PMC

Miljić U., Puškaš V., Cvejić Hogervorst J., Torović L. Phenolic compounds, chromatic characteristics and antiradical activity of plum wines. Int. J. Food Prop. 2017;20:2022–2033. doi: 10.1080/10942912.2017.1361971. DOI

Antony A., Farid M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022;12:2107. doi: 10.3390/app12042107. DOI

Ferreira R.M., Costa A.M., Pinto C.A., Silva A.M.S., Saraiva J.A., Cardoso S.M. Impact of Fermentation and Pasteurization on the Physico-Chemical and Phytochemical Composition of Opuntia ficus-indica Juices. Foods. 2023;12:2096. doi: 10.3390/foods12112096. PubMed DOI PMC

Miljić U., Puškaš V., Vučurović V., Muzalevski A. Fermentation Characteristics and Aromatic Profile of Plum Wines Produced with Indigenous Microbiota and Pure Cultures of Selected Yeast. J. Food Sci. 2017;82:1443–1450. doi: 10.1111/1750-3841.13736. PubMed DOI

Coelho E., Vilanova M., Genisheva Z., Oliveira J.M., Teixeira J.A., Domingues L. Systematic approach for the development of fruit wines from industrially processed fruit concentrates, including optimization of fermentation parameters, chemical characterization and sensory evaluation. LWT—Food Sci. Technol. 2015;62:1043–1052. doi: 10.1016/j.lwt.2015.02.020. DOI

Zhang X., Chen Y., Liu J., Lan Y., Qian X., Zhu B. Comprehensive study of chemical and sensory profiles of hawthorn wines from China. Food Chem. X. 2025;26:102277. doi: 10.1016/j.fochx.2025.102277. PubMed DOI PMC

Zhu Y., Su Q., Jiao J., Kelanne N., Kortesniemi M., Xu X., Zhu B., Laaksonen O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods. 2023;12:1844. doi: 10.3390/foods12091844. PubMed DOI PMC

Sena-Esteves M.M., Mota M., Malfeito-Ferreira M. Patterns of sweetness preference in red wine according to consumer characterisation. Food Res. Int. 2018;106:38–44. doi: 10.1016/j.foodres.2017.12.043. PubMed DOI

Ailer Š., Valšíková M., Jedlička J., Mankovecký J., Baroň M. Influence of Sugar and Ethanol Content and Color of Wines On the Sensory Evaluation: From Wine Competition “Nemčiňany Wine Days” in Slovak Republic (2013–2016) Erwerbs-Obstbau. 2020;62:9–16. doi: 10.1007/s10341-020-00486-x. DOI

Scutarașu E.C., Teliban I.V., Zamfir C.I., Luchian C.E., Colibaba L.C., Niculaua M., Cotea V.V. Effect of Different Winemaking Conditions on Organic Acids Compounds of White Wines. Foods. 2021;10:2569. doi: 10.3390/foods10112569. PubMed DOI PMC

Čakar U., Čolović M., Milenković D., Pagnacco M., Maksimović J., Krstić D., Đorđević B. Strawberry and Drupe Fruit Wines Antioxidant Activity and Protective Effect Against Induced Oxidative Stress in Rat Synaptosomes. Antioxidants. 2025;14:155. doi: 10.3390/antiox14020155. PubMed DOI PMC

Ferri M., Gianotti A., Tassoni A. Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components. J. Food Compos. Anal. 2013;30:94–101. doi: 10.1016/j.jfca.2013.02.004. DOI

Kalkan Yildirim H. Evaluation of colour parameters and antioxidant activities of fruit wines. Int. J. Food Sci. Nutr. 2006;57:47–63. doi: 10.1080/09637480600655993. PubMed DOI

Ştefănuţ M.N., Căta A., Pop R., Tănasie C., Boc D., Ienaşcu I., Ordodi V. Anti-hyperglycemic Effect of Bilberry, Blackberry and Mulberry Ultrasonic Extracts on Diabetic Rats. Plant Foods Hum. Nutr. 2013;68:378–384. doi: 10.1007/s11130-013-0380-y. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...