Glial Activation Enhances Spinal TRPV1 Receptor Sensitivity in a Paclitaxel Model of Neuropathic Pain
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
40886376
PubMed Central
PMC12440382
DOI
10.33549/physiolres.935599
PII: 935599
Knihovny.cz E-zdroje
- MeSH
- fytogenní protinádorové látky toxicita MeSH
- kationtové kanály TRPV * metabolismus MeSH
- krysa rodu Rattus MeSH
- mícha * metabolismus účinky léků MeSH
- modely nemocí na zvířatech MeSH
- neuralgie * chemicky indukované metabolismus MeSH
- neuroglie * metabolismus účinky léků MeSH
- paclitaxel * toxicita MeSH
- potkani Sprague-Dawley MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fytogenní protinádorové látky MeSH
- kationtové kanály TRPV * MeSH
- paclitaxel * MeSH
- Trpv1 protein, rat MeSH Prohlížeč
- TRPV1 receptor MeSH Prohlížeč
Paclitaxel (PTX), a commonly used chemotherapeutic, frequently leads to chemotherapy-induced peripheral neuropathy (CIPN), characterized by persistent pain and neuronal hypersensitivity. While its effects on peripheral nerves are well-documented, paclitaxel also influences central nervous system pathways, particularly spinal synaptic transmission, through Toll-like receptor 4 (TLR4) activation and subsequent sensitization of transient receptor potential vanilloid 1 (TRPV1) receptors. In this study, we used an in vitro model of paclitaxel-induced neuropathic pain to investigate the role of glial activation in TRPV1 receptor function. Using whole-cell patch-clamp recordings from superficial dorsal horn neurons in acute spinal cord slices, we evaluated the effects of minocycline (MX), a glial cell inhibitor, and ISO-1, a macrophage migration inhibitory factor (MIF) antagonist, on paclitaxel-induced synaptic changes. Our results demonstrate that acute paclitaxel application enhances nociceptive signaling and impairs capsaicin-induced TRPV1 receptor tachyphylaxis, leading to sustained hyperactivity. Minocycline preincubation effectively mitigated paclitaxel-induced sensitization, restoring normal nociceptive signaling, whereas acute minocycline treatment failed to prevent these changes. ISO-1 in vitro co-incubation with paclitaxel did not affect the paclitaxel-induced changes. These findings offer novel insight into the intricate interactions among neuroinflammatory mediators, glial cell activation, and TRPV1 receptor sensitization in paclitaxel-induced neuropathic pain. The differential effects of acute versus prolonged pre-incubation minocycline application suggest the importance of sustained glial inhibition for effective outcomes and neuropathic pain management.
Zobrazit více v PubMed
Adamek P, Heles M, Bhattacharyya A, Pontearso M, Slepicka J, Palecek J. Dual PI3Kδ/γ inhibitor duvelisib prevents development of neuropathic pain in model of paclitaxel-induced peripheral neuropathy. J Neurosci. 2022;42:1864–1881. doi: 10.1523/JNEUROSCI.1324-21.2021. PubMed DOI PMC
Adamek P, Heles M, Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology. 2019;146:163–174. doi: 10.1016/j.neuropharm.2018.11.027. PubMed DOI
Al-Abed Y, Dabideen D, Aljabari B, Valster A, Messmer D, Ochani M, Tanovic M, Ochani K, Bacher M, Nicoletti F, Metz C, Pavlov VA, Miller EJ, Tracey KJ. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem. 2005;280:36541–36544. doi: 10.1074/jbc.C500243200. PubMed DOI
Alexander JK, Cox GM, Bin Tian J, Zha AM, Wei P, Kigerl KA, Reddy MK, Dagia NM, Sielecki T, Zhu MX, Satoskar AR, McTigue DM, Whitacre CC, Popovich PG. Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp Neurol. 2012;236:351–362. doi: 10.1016/j.expneurol.2012.04.018. PubMed DOI PMC
Bavencoffe A, Spence EA, Zhu MY, Garza-Carbajal A, Chu KE, Bloom OE, Dessauer CW, Walters ET. Macrophage Migration Inhibitory Factor (MIF) Makes Complex Contributions to Pain-Related Hyperactivity of Nociceptors after Spinal Cord Injury. J Neurosci. 2022;42:5463. doi: 10.1523/JNEUROSCI.1133-21.2022. PubMed DOI PMC
Behranvand N, Nasri F, Zolfaghari Emameh R, Khani P, Hosseini A, Garssen J, Falak R. Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol, Immunotherapy. 2022:71,527. doi: 10.1007/s00262-021-03034-y. DOI
Benedict AL, Mountney A, Hurtado A, Bryan KE, Schnaar RL, Dinkova-Kostova AT, Talalay P. Neuroprotective Effects of Sulforaphane after Contusive Spinal Cord Injury. J Neurotrauma. 2012;29:2576. doi: 10.1089/neu.2012.2474. PubMed DOI PMC
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. Front Pain Res. 2021;2:698157. doi: 10.3389/fpain.2021.698157. DOI
Byrd-Leifer CA, Block EF, Takeda K, Akira S, Ding A. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol. 2001;31:2448–2457. doi: 10.1002/1521-4141(200108)31:8<2448::AID-IMMU2448>3.0.CO;2-N. PubMed DOI
Caterina MJ, Julius D. The Vanilloid Receptor: A Molecular Gateway to the Pain Pathway. Annu Rev Neurosci. 2001;24:487–517. doi: 10.1146/annurev.neuro.24.1.487. PubMed DOI
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi: 10.1038/39807. PubMed DOI
Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D’Incalci M, Zucchetti M, Marmiroli P, Tredici G. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology. 2000;6:61. doi: 10.1046/j.1529-8027.2001.01008-5.x. DOI
Chen L, Zheng L, Chen P, Liang G. Myeloid differentiation primary response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. J Med Chem. 2020;63:13316–13329. doi: 10.1021/acs.jmedchem.0c00884. PubMed DOI
Cox GM, Kithcart AP, Pitt D, Guan Z, Alexander J, Williams JL, Shawler T, Dagia NM, Popovich PG, Satoskar AR, Whitacre CC. Macrophage migration inhibitory factor potentiates autoimmune-mediated neuroinflammation. J Immunol. 2013;191:1043–1054. doi: 10.4049/jimmunol.1200485. PubMed DOI
Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K, Al-Abed Y, Bramati P, Nicoletti F. Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: In silico and in vivo evidences. J Neuroimmunol. 2018;322:46–56. doi: 10.1016/j.jneuroim.2018.06.009. PubMed DOI
Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhänel M, Spruß T, Bernhardt G, Graeff C, Färber L, Gschaidmeier H, Buschauer A, Fricker G. Transport of paclitaxel (taxol) across the blood-brain barrier in vitro and in vivo. Journal of Clinical Investigation. 2002;110:1309–1318. doi: 10.1172/JCI0215451. PubMed DOI PMC
Gao Y-J, Ji R-R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010;126:56–68. doi: 10.1016/j.pharmthera.2010.01.002. PubMed DOI PMC
Hara T, Chiba T, Abe K, Makabe A, Ikeno S, Kawakami K, Utsunomiya I, Hama T, Taguchi K. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain. 2013;154:882–889. doi: 10.1016/j.pain.2013.02.023. PubMed DOI
Huang SL, Chang TC, Chao CCK, Sun NK. TLR4/IL-6/IRF1 signaling regulates androgen receptor expression: A potential therapeutic target to overcome taxol resistance in ovarian cancer. Biochem Pharmacol. 2021;186:114456. doi: 10.1016/j.bcp.2021.114456. PubMed DOI
Inoue K. Microglial activation by purines and pyrimidines. Glia. 2002;40:156–163. doi: 10.1002/glia.10150. PubMed DOI
Julius D. TRP Channels and Pain. Annu Rev Cell Dev Biol. 2013;29:355–384. doi: 10.1146/annurev-cellbio-101011-155833. PubMed DOI
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Pharmacological regulation of neuropathic pain driven by inflammatory macrophages. Int J Mol Sci. 2017;18:2296. doi: 10.3390/ijms18112296. PubMed DOI PMC
Korf H, Breser L, Van Hoeck J, Godoy J, Cook DP, Stijlemans B, De Smidt E, Moyson C, Cunha JPMCM, Rivero V, Gysemans C, Mathieu C. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset. PLoS One. 2017;12:e0187455. doi: 10.1371/journal.pone.0187455. PubMed DOI PMC
Li WW, Zhao Y, Liu HC, Liu J, Chan SO, Zhong YF, Zhang TY, Liu Y, Zhang W, Xia YQ, Chi XC, Xu J, Wang Y, Wang J. Roles of Thermosensitive Transient Receptor Channels TRPV1 and TRPM8 in Paclitaxel-Induced Peripheral Neuropathic Pain. Int J Mol Sci. 2024;25:5813. doi: 10.3390/ijms25115813. PubMed DOI PMC
Li X, Tupper JC, Bannerman DD, Winn RK, Rhodes CJ, Harlan JM. Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-κB in endothelial cells. Infect Immun. 2003;71:4414–4420. doi: 10.1128/IAI.71.8.4414-4420.2003. PubMed DOI PMC
Li Y, Adamek P, Zhang H, Tatsui CE, Rhines LD, Mrozkova P, Li Q, Kosturakis aK, Cassidy RM, Harrison DS, Cata JP, Sapire K, Zhang H, Kennamer-Chapman RM, Jawad AB, Ghetti A, Yan J, Palecek J, Dougherty PM. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci. 2015;35:13487–13500. doi: 10.1523/JNEUROSCI.1956-15.2015. PubMed DOI PMC
Li Y, Zhang HH, Zhang HH, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J Pain. 2014;15:712–725. doi: 10.1016/j.jpain.2014.04.001. PubMed DOI PMC
Lin S, Zhang Y, Dodel R, Farlow MR, Paul SM, Du Y. Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci Lett. 2001;315:61–64. doi: 10.1016/S0304-3940(01)02324-2. PubMed DOI
Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R. The Ankyrin Repeats of TRPV1 Bind Multiple Ligands and Modulate Channel Sensitivity. Neuron. 2007;54:905–918. doi: 10.1016/j.neuron.2007.05.027. PubMed DOI
Liu CC, Lu N, Cui Y, Yang T, Zhao ZQ, Xin W-J, Liu X-G. Prevention of Paclitaxel-induced allodynia by Minocycline: Effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain. 2010;6:76. doi: 10.1186/1744-8069-6-76. PubMed DOI PMC
Luo XG, DiChen S. The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener. 2012:1. doi: 10.1186/2047-9158-1-9. PubMed DOI PMC
Morand EF. New therapeutic target in inflammatory disease: macrophage migration inhibitory factor. Intern Med J. 2005;35:419–426. doi: 10.1111/j.1445-5994.2005.00853.x. PubMed DOI
Nasiri E, Sankowski R, Dietrich H, Oikonomidi A, Huerta PT, Popp J, Al-Abed Y, Bacher M. Key role of MIF-related neuroinflammation in neurodegeneration and cognitive impairment in Alzheimer’s disease. Molecular Medicine. 2020;26:1–12. doi: 10.1186/s10020-020-00163-5. DOI
Newell-Rogers MK, Rogers SK, Tobin RP, Mukherjee S, Shapiro LA. Antagonism of macrophage migration inhibitory factory (MIF) after traumatic brain injury ameliorates astrocytosis and peripheral lymphocyte activation and expansion. Int J Mol Sci. 2020;21:748. doi: 10.3390/ijms21207448. PubMed DOI PMC
Padi SSV, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: Possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 2008;601:79–87. doi: 10.1016/j.ejphar.2008.10.018. PubMed DOI
Park H, Kam TI, Peng H, Chou SC, Mehrabani-Tabari AA, Song JJ, Yin X, Karuppagounder SS, Umanah GK, Rao AVS, Choi YR, Aggarwal A, Chang S, Kim H, Byun J, Liu JO, Dawson TM, Dawson VL. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson’s disease. Cell. 2022;185:1943–1959.e21. doi: 10.1016/j.cell.2022.04.020. PubMed DOI PMC
Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, Koltzenburg M, Kiernan MC. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J Clin. 2013:63. doi: 10.3322/caac.21204. PubMed DOI
Raghavendra V, Tanga F, Deleo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Therapeutics. 2003:306. doi: 10.1124/jpet.103.052407. DOI
Rahman MM, Jo YY, Kim YH, Park CK. [Review] Current insights and therapeutic strategies for targeting TRPV1 in neuropathic pain management. Life Sci. 2024;355:122954. doi: 10.1016/j.lfs.2024.122954. PubMed DOI
Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, Kamal A, Le-Lindqwister NA, Soori GS, Jaslowski AJ, Kelaghan J, Novotny PJ, Lachance DH, Loprinzi CL. Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer. 2012:118. doi: 10.1002/cncr.27489. DOI
Rijvers L, Melief MJ, van der Vuurst de Vries RM, Stéphant M, van Langelaar J, Wierenga-Wolf AF, Hogervorst JM, Geurts-Moespot AJ, Sweep FCGJ, Hintzen RQ, van Luijn MM. The macrophage migration inhibitory factor pathway in human B cells is tightly controlled and dysregulated in multiple sclerosis. Eur J Immunol. 2018;48:1861–1871. doi: 10.1002/eji.201847623. PubMed DOI PMC
Rivat C, Sar C, Mechaly I, Leyris JP, Diouloufet L, Sonrier C, Philipson Y, Lucas O, Mallié S, Jouvenel A, Tassou A, Haton H, Venteo S, Pin JP, Trinquet E, Charrier-Savournin F, Mezghrani A, Joly W, Mion J, Schmitt M, Pattyn A, Marmigère F, Sokoloff P, Carroll P, Rognan D, Valmier J. Inhibition of neuronal FLT3 receptor tyrosine kinase alleviates peripheral neuropathic pain in mice. Nature Communications. 2018;9:1042. doi: 10.1038/s41467-018-03496-2. DOI
Spicarova D, Adamek P, Kalynovska N, Mrozkova P, Palecek J. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia. Neuropharmacology. 2014;81:75–84. doi: 10.1016/j.neuropharm.2014.01.041. PubMed DOI
Spicarova D, Nerandzic V, Palecek J. Update on the role of spinal cord TRPV1 receptors in pain modulation. Physiol Res. 2014;63:S225–S236. doi: 10.33549/physiolres.932713. PubMed DOI
Spicarova D, Palecek J. The role of spinal cord vanilloid (TRPV1) receptors in pain modulation. Physiol Res. 2008;2008;57:S69–S77. doi: 10.33549/physiolres.931601. PubMed DOI
Spicarova D, Palecek J. Anandamide-mediated modulation of nociceptive transmission at the spinal cord level. Physiol Res. 2024:S435–S448. doi: 10.33549/physiolres.935371. PubMed DOI PMC
Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther. 2022;233:108024. doi: 10.1016/j.pharmthera.2021.108024. PubMed DOI
Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, Al-Mulla F, Al-Temaimi R, Brown DG, Colacci AM, Mondello C, Raju J, Ryan EP, Woodrick J, Ivana Scovassi A, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Lowe L, Guarnieri T, Bisson WH. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;36:S232–S253. doi: 10.1093/carcin/bgv038. PubMed DOI PMC
Tikka TM, Koistinaho JE. Minocycline Provides Neuroprotection Against N -Methyl- d -aspartate Neurotoxicity by Inhibiting Microglia. J Immunol. 2001:166. doi: 10.4049/jimmunol.166.12.7527. DOI
Touska F, Marsakova L, Teisinger J, Vlachova V. A “cute” desensitization of TRPV1. Curr Pharm Biotechnol. 2011;12:122–129. doi: 10.2174/138920111793937826. PubMed DOI
Uchytilova E, Spicarova D, Palecek J. TRPV1 antagonist attenuates postoperative hypersensitivity by central and peripheral mechanisms. Mol Pain. 2014;10:67. doi: 10.1186/1744-8069-10-67. PubMed DOI PMC
Wang B, Zhao K, Hu W, Ding Y, Wang W. Protective Mechanism of MIF Inhibitor ISO-1 on Intrahepatic Bile Duct Cells in Rats with Severe Acute Pancreatitis. Dig Dis Sci. 2021;66:3415–3426. doi: 10.1007/s10620-020-06674-9. PubMed DOI
Wang SH, Huang SH, Hsieh MC, Lu IC, Chou PR, Tai MH, Wu SH. Hyperbaric Oxygen Therapy Alleviates Paclitaxel-Induced Peripheral Neuropathy Involving Suppressing TLR4-MyD88-NF-κB Signaling Pathway. Int J Mol Sci. 2023:24. doi: 10.3390/ijms24065379. PubMed DOI PMC
Whitaker EE, Mecum NE, Cott RC, Goode DJ. Expression of MHC II in DRG neurons attenuates paclitaxel-induced cold hypersensitivity in male and female mice. PLoS One. 2024:19. doi: 10.1371/journal.pone.0298396. DOI
Xie JD, Chen SR, Chen H, Zeng WA, Pan HL. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain. J Biol Chem. 2016;291:19364. doi: 10.1074/jbc.M116.732347. PubMed DOI PMC
Xie JD, Chen SR, Pan HL. Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain. J Biol Chem. 2014;292:20644. doi: 10.1074/jbc.M117.818476. DOI
Xu Y, Jiang Z, Chen X. Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur J Pharmacol. 2022;933:175288. doi: 10.1016/j.ejphar.2022.175288. PubMed DOI
Xuan W, Xie W, Li F, Huang D, Zhu Z, Lin Y, Lu B, Yu W, Li Y, Li P. Dualistic roles and mechanistic insights of macrophage migration inhibitory factor in brain injury and neurodegenerative diseases. Journal of Cerebral Blood Flow and Metabolism. 2023:43. doi: 10.1177/0271678X221138412. DOI
Yan X, Li F, Maixner DW, Yadav R, Gao M, Ali MW, Hooks SB, Weng HR. Interleukin-1beta released by microglia initiates the enhanced glutamatergic activity in the spinal dorsal horn during paclitaxel-associated acute pain syndrome. Glia. 2019;67:482–497. doi: 10.1002/glia.23557. PubMed DOI
Yan X, Maixner DW, Yadav R, Gao M, Li P, Bartlett MG, Weng H-R. Paclitaxel induces acute pain via directly activating toll like receptor 4. Mol Pain. 2015;11:10. doi: 10.1186/s12990-015-0005-6. PubMed DOI PMC
Zarei M, Sabetkasaei M, Moini-Zanjani T. Paradoxical effect of minocycline on established neuropathic pain in rat. EXCLI J. 2017;16:229–235. PubMed PMC
Zhang Y, Huang F, Xu Y, Xiang W, Xie C. TRPV1 is involved in the antinociceptive effects of resveratrol in paclitaxel-induced neuropathic pain. All Life. 2021;14:66–74. doi: 10.1080/26895293.2020.1861111. DOI
Zhao Y, Wei X, Li W, Shan C, Song J, Zhang M. Inhibition of macrophage migration inhibitory factor protects against inflammation through a toll-like receptor-related pathway after diffuse axonal injury in rats. Biomed Res Int. 2020 doi: 10.1155/2020/5946205. DOI