Functional and Phylogenetic Structure of Forest Bird Assemblages Along an Afrotropical Elevational Gradient
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40896106
PubMed Central
PMC12391590
DOI
10.1002/ece3.72065
PII: ECE372065
Knihovny.cz E-zdroje
- Klíčová slova
- Africa, community assembly, competition, elevational gradient, environmental filtering, functional diversity, guild assembly rule, phylogenetic diversity, tropical forest,
- Publikační typ
- časopisecké články MeSH
Elevational gradients offer valuable opportunities to investigate biodiversity patterns and the ecological and evolutionary processes that shape them. Although tropical mountains are recognized as biodiversity hotspots, the various dimensions of biodiversity in these systems, particularly in equatorial Africa, remain poorly understood. In this study, we examined the functional (FD) and phylogenetic diversity (PD) of bird assemblages along a primary forest elevational gradient in Cameroon, West-Central Africa, spanning from lowland forests to the treeline (~2300 m a.s.l.). We analyzed how FD and PD vary with elevation and tested the roles of abiotic filtering and biotic interactions, such as competition, in community assembly. Additionally, we assessed whether taxonomic diversity (TD) increases through niche packing or expansion, based on morphological and resource-use traits. Using null models and bird occurrence data, we inferred the drivers of FD and PD patterns and evaluated whether species in more diverse assemblages occupied novel functional space compared to less diverse assemblages. Our results showed that both functional richness and TD declined with elevation, whereas functional nearest neighbor distance, functional evenness, and mean nearest taxon distance increased. Traits related to resource use suggested that bird species at higher elevations were functionally less similar than expected by chance, partially supporting the influence of competition consistent with the guild assembly rule. Phylogenetic clustering observed at both low and high elevations pointed to independent species radiations, likely shaped by historical forest dynamics. In species-rich lowland assemblages, we found evidence of niche packing, suggesting increased specialization or niche overlap. In contrast, niche expansion appeared to contribute to higher TD at elevated sites. Overall, our findings indicate that while abiotic filters along forested elevational gradients and competition in lowland forests play roles in shaping avian diversity, they are not the sole or dominant mechanisms. Nonetheless, partial support for competition aligns with theoretical expectations under the guild assembly framework.
Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
Department of Ecology Faculty of Science Charles University of Prague Czech Republic
Department of Zoology Faculty of Science Charles University of Prague Czech Republic
Faculty of Science Laboratory of Applied Biology and Ecology University Dschang Dschang Cameroon
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Abrams, P. 1983. “The Theory of Limiting Similarity.” Annual Review of Ecology and Systematics 14, no. 1: 359–376.
Adam, T. C. , Kelley M., Ruttenberg B. I., and Burkepile D. E.. 2015. “Resource Partitioning Along Multiple Niche Axes Drives Functional Diversity in Parrotfishes on Caribbean Coral Reefs.” Oecologia 179, no. 4: 1173–1185. 10.1007/s00442-015-3406-3. PubMed DOI
Aguirre, L. F. , Montaño‐Centellas F. A., Gavilanez M. M., and Stevens R. D.. 2016. “Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages.” PLoS One 11, no. 7: e0158170. 10.1371/journal.pone.0158170. PubMed DOI PMC
Albert, C. H. , de Bello F., Boulangeat I., Pellet G., Lavorel S., and Thuiller W.. 2012. “On the Importance of Intraspecific Variability for the Quantification of Functional Diversity.” Oikos 121, no. 1: 116–126.
Ao, S. , Ye L., Liu X., Cai Q., and He F.. 2022. “Elevational Patterns of Trait Composition and Functional Diversity of Stream Macroinvertebrates in the Hengduan Mountains Region, Southwest China.” Ecological Indicators 144: 109558. 10.1016/j.ecolind.2022.109558. DOI
Aros‐Mualin, D. , Noben S., Karger D. N., et al. 2021. “Functional Diversity in Ferns Is Driven by Species Richness Rather Than by Environmental Constraints.” Frontiers in Plant Science 11: 615723. PubMed PMC
Baraloto, C. , Hardy O. J., Paine C. E. T., et al. 2012. “Using Functional Traits and Phylogenetic Trees to Examine the Assembly of Tropical Tree Communities.” Journal of Ecology 100, no. 3: 690–701. 10.1111/j.1365-2745.2012.01966.x. DOI
Barnagaud, J.‐Y. , Daniel Kissling W., Sandel B., et al. 2014. “Ecological Traits Influence the Phylogenetic Structure of Bird Species Co‐Occurrences Worldwide.” Ecology Letters 17, no. 7: 811–820. 10.1111/ele.12285. PubMed DOI
Barrio, I. C. , Hik D. S., Bueno C. G., and Cahill J. F.. 2013. “Extending the Stress‐Gradient Hypothesis – Is Competition Among Animals Less Common in Harsh Environments?” Oikos 122, no. 4: 516–523. 10.1111/j.1600-0706.2012.00355.x. DOI
Bibby, C. J. , Burgess N. D., Hillis D. M., Hill D. A., and Mustoe S.. 2000. Bird Census Techniques. Elsevier.
Blake, J. G. , and Loiselle B. A.. 2000. “Diversity of Birds Along an Elevational Gradient in the Cordillera Central, Costa Rica.” Auk 117, no. 3: 663–686. 10.1093/auk/117.3.663. DOI
Blake, J. G. , and Loiselle B. A.. 2001. “Bird Assemblages in Second‐Growth and Old‐Growth Forests, Costa Rica: Perspectives From Mist Nets and Point Counts.” Auk 118, no. 2: 304–326. 10.1093/auk/118.2.304. DOI
Blomberg, S. P. , Garland T. Jr., and Ives A. R.. 2003. “Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile.” Evolution 57, no. 4: 717–745. PubMed
Boyce, A. J. , Shakya S., Sheldon F. H., Moyle R. G., and Martin T. E.. 2019. “Biotic Interactions Are the Dominant Drivers of Phylogenetic and Functional Structure in Bird Communities Along a Tropical Elevational Gradient.” Auk 136, no. 4: ukz054. 10.1093/auk/ukz054. DOI
Brehm, G. , Colwell R. K., and Kluge J.. 2007. “The Role of Environment and Mid‐Domain Effect on Moth Species Richness Along a Tropical Elevational Gradient.” Global Ecology and Biogeography 16, no. 2: 205–219.
Brian, J. I. , and Aldridge D. C.. 2021. “Abundance Data Applied to a Novel Model Invertebrate Host Shed New Light on Parasite Community Assembly in Nature.” Journal of Animal Ecology 90, no. 5: 1096–1108. 10.1111/1365-2656.13436. PubMed DOI
Bricca, A. , Conti L., Tardella M. F., et al. 2019. “Community Assembly Processes Along a Sub‐Mediterranean Elevation Gradient: Analyzing the Interdependence of Trait Community Weighted Mean and Functional Diversity.” Plant Ecology 220, no. 12: 1139–1151. 10.1007/s11258-019-00985-2. DOI
Brown, J. H. , Fox B. J., and Kelt D. A.. 2000. “Assembly Rules: Desert Rodent Communities Are Structured at Scales From Local to Continental.” American Naturalist 156, no. 3: 314–321. 10.1086/303385. PubMed DOI
Brown, L. , Urban E. K., and Newman K. B.. 2020. The Birds of Africa: Volume I. Bloomsbury Publishing.
Burin, G. , Kissling W. D., Guimarães P. R., Şekercioğlu Ç. H., and Quental T. B.. 2016. “Omnivory in Birds Is a Macroevolutionary Sink.” Nature Communications 7, no. 1: 11250. 10.1038/ncomms11250. PubMed DOI PMC
Byamungu, R. M. , Schleuning M., Ferger S. W., et al. 2021. “Abiotic and Biotic Drivers of Functional Diversity and Functional Composition of Bird and Bat Assemblages Along a Tropical Elevation Gradient.” Diversity and Distributions 27, no. 12: 2344–2356.
Cadotte, M. , Albert C. H., and Walker S. C.. 2013. “The Ecology of Differences: Assessing Community Assembly With Trait and Evolutionary Distances.” Ecology Letters 16, no. 10: 1234–1244. PubMed
Cadotte, M. W. , Carboni M., Si X., and Tatsumi S.. 2019. “Do Traits and Phylogeny Support Congruent Community Diversity Patterns and Assembly Inferences?” Journal of Ecology 107, no. 5: 2065–2077. 10.1111/1365-2745.13247. DOI
Cardillo, M. , Gittleman J. L., and Purvis A.. 2008. “Global Patterns in the Phylogenetic Structure of Island Mammal Assemblages.” Proceedings of the Royal Society B: Biological Sciences 275, no. 1642: 1549–1556. PubMed PMC
Castiglione, S. , Serio C., Piccolo M., et al. 2021. “The Influence of Domestication, Insularity and Sociality on the Tempo and Mode of Brain Size Evolution in Mammals.” Biological Journal of the Linnean Society 132, no. 1: 221–231. 10.1093/biolinnean/blaa186. DOI
Cavender‐Bares, J. , Kozak K. H., Fine P. V. A., and Kembel S. W.. 2009. “The Merging of Community Ecology and Phylogenetic Biology.” Ecology Letters 12, no. 7: 693–715. 10.1111/j.1461-0248.2009.01314.x. PubMed DOI
Chakravarty, R. , Radchuk V., Managave S., and Voigt C. C.. 2023. “Increasing Species Richness Along Elevational Gradients Is Associated With Niche Packing in Bat Assemblages.” Journal of Animal Ecology 92, no. 4: 863–874. 10.1111/1365-2656.13897. PubMed DOI
Chase, J. M. , and Myers J. A.. 2011. “Disentangling the Importance of Ecological Niches From Stochastic Processes Across Scales.” Philosophical Transactions of the Royal Society, B: Biological Sciences 366, no. 1576: 2351–2363. 10.1098/rstb.2011.0063. PubMed DOI PMC
Chmel, K. , Kamga S. M., Awa T., et al. 2021. “Vertical Stratification and Seasonal Changes of the Avian Community in Mount Cameroon Lowland Rainforest.” African Journal of Ecology 59, no. 3: 655–666.
Cody, M. L. , MacArthur R. H., and Diamond J. M.. 1975. Ecology and Evolution of Communities. Harvard University Press.
Cooper, E. B. , Bonnet T., Osmond H. L., Cockburn A., and Kruuk L. E. B.. 2021. “Aging and Senescence Across Reproductive Traits and Survival in Superb Fairy‐Wrens ( PubMed DOI
Cornwell, W. K. , Schwilk D. W., and Ackerly D. D.. 2006. “A Trait‐Based Test for Habitat Filtering: Convex Hull Volume.” Ecology 87, no. 6: 1465–1471. PubMed
Coyle, J. R. , Halliday F. W., Lopez B. E., Palmquist K. A., Wilfahrt P. A., and Hurlbert A. H.. 2014. “Using Trait and Phylogenetic Diversity to Evaluate the Generality of the Stress‐Dominance Hypothesis in Eastern North American Tree Communities.” Ecography 37, no. 9: 814–826. 10.1111/ecog.00473. DOI
Davies, R. B. 2002. “Hypothesis Testing When a Nuisance Parameter Is Present Only Under the Alternative: Linear Model Case.” Biometrika 89: 484–489.
de Bello, F. , Botta‐Dukat Z., Leps J., Fibich P., and Fibich M. P.. 2021. “Package ‘gawdis’.”
de Bello, F. , Botta‐Dukát Z., Lepš J., and Fibich P.. 2021. “Towards a More Balanced Combination of Multiple Traits When Computing Functional Differences Between Species.” Methods in Ecology and Evolution 12, no. 3: 443–448. 10.1111/2041-210X.13537. DOI
Dehling, D. M. , Fritz S. A., Töpfer T., et al. 2014. “Functional and Phylogenetic Diversity and Assemblage Structure of Frugivorous Birds Along an Elevational Gradient in the Tropical Andes.” Ecography 37, no. 11: 1047–1055.
Dehling, D. M. , and Stouffer D. B.. 2018. “Bringing the Eltonian Niche Into Functional Diversity.” Oikos 127, no. 12: 1711–1723. 10.1111/oik.05415. DOI
Ding, Y. , Zang R., Lu X., Huang J., and Xu Y.. 2019. “The Effect of Environmental Filtering on Variation in Functional Diversity Along a Tropical Elevational Gradient.” Journal of Vegetation Science 30, no. 5: 973–983.
Ding, Z. , Hu H., Cadotte M. W., Liang J., Hu Y., and Si X.. 2021. “Elevational Patterns of Bird Functional and Phylogenetic Structure in the Central Himalaya.” Ecography 44, no. 9: 1403–1417. 10.1111/ecog.05660. DOI
Elenga, H. , Peyron O., Bonnefille R., et al. 2000. “Pollen‐Based Biome Reconstruction for Southern Europe and Africa 18,000 Yr BP.” Journal of Biogeography 27, no. 3: 621–634.
E‐Vojtkó, A. , de Bello F., Lososová Z., and Götzenberger L.. 2023. “Phylogenetic Diversity Is a Weak Proxy for Functional Diversity but They Are Complementary in Explaining Community Assembly Patterns in Temperate Vegetation.” Journal of Ecology 111, no. 10: 2218–2230. 10.1111/1365-2745.14171. DOI
Feeley, K. 2003. “Analysis of Avian Communities in Lake Guri, Venezuela, Using Multiple Assembly Rule Models.” Oecologia 137, no. 1: 104–113. 10.1007/s00442-003-1321-5. PubMed DOI
Ferenc, M. , Fjeldså J., Sedláček O., et al. 2016. “Abundance‐Area Relationships in Bird Assemblages Along an Afrotropical Elevational Gradient: Space Limitation in Montane Forest Selects for Higher Population Densities.” Oecologia 181, no. 1: 225–233. 10.1007/s00442-016-3554-0. PubMed DOI
Ferenc, M. , Sedláček O., Tropek R., et al. 2018. “Something Is Missing at the Bottom: Importance of Coastal Rainforests for Conservation of Trees, Birds and Butterflies in the Mount Cameroon Area.” African Journal of Ecology 56, no. 3: 679–683.
Ferger, S. W. , Schleuning M., Hemp A., Howell K. M., and Böhning‐Gaese K.. 2014. “Food Resources and Vegetation Structure Mediate Climatic Effects on Species Richness of Birds.” Global Ecology and Biogeography 23, no. 5: 541–549. 10.1111/geb.12151. DOI
Fjeldsaå, J. , and Lovett J. C.. 1997. “Biodiversity and Environmental Stability.” Biodiversity and Conservation 6: 315–323.
Fleming, T. H. 1979. “Do Tropical Frugivores Compete for Food?” American Zoologist 19, no. 4: 1157–1172.
Fonge, B. A. , Yinda G. S., Focho D. A., Fongod A. G. N., and Bussmann R. W.. 2005. “Vegetation and Soil Status on an 80 Year Old Lava Flow of Mt. Cameroon, West Africa.” Lyonia 8, no. 1: 17–39.
Fox, B. J. 1987. “Species Assembly and the Evolution of Community Structure.” Evolutionary Ecology 1: 201–213.
Fraser, P. J. , Hall J. B., and Healing J. R.. 1998. “
Freilich, M. A. , and Connolly S. R.. 2015. “Phylogenetic Community Structure When Competition and Environmental Filtering Determine Abundances.” Global Ecology and Biogeography 24, no. 12: 1390–1400. 10.1111/geb.12367. DOI
Fry, C. H. , and Keith S.. 2020. The Birds of Africa: Volume VI. Bloomsbury Publishing.
Gálvez‐Reyes, N. , Arribas P., Andújar C., Emerson B. C., Piñero D., and Mastretta‐Yanes A.. 2021. “Dispersal Limitations and Long‐Term Persistence Drive Differentiation From Haplotypes to Communities Within a Tropical Sky‐Island: Evidence From Community Metabarcoding.” Molecular Ecology 30, no. 24: 6611–6626. 10.1111/mec.16195. PubMed DOI
Gotelli, N. J. , and Graves G. R.. 1996. “
Gower, J. C. 1971. “A General Coefficient of Similarity and Some of Its Properties.” Biometrics 27, no. 4: 857–871. 10.2307/2528823. DOI
Graham, C. H. , Carnaval A. C., Cadena C. D., et al. 2014. “The Origin and Maintenance of Montane Diversity: Integrating Evolutionary and Ecological Processes.” Ecography 37, no. 8: 711–719.
Graham, C. H. , Parra J. L., Rahbek C., and McGuire J. A.. 2009. “Phylogenetic Structure in Tropical Hummingbird Communities.” Proceedings of the National Academy of Sciences 106, no. Suppl 2: 19673–19678. 10.1073/pnas.0901649106. PubMed DOI PMC
Graham, C. H. , Smith T. B., and Languy M.. 2005. “Current and Historical Factors Influencing Patterns of Species Richness and Turnover of Birds in the Gulf of Guinea Highlands.” Journal of Biogeography 32, no. 8: 1371–1384.
Guo, Q. , Kelt D. A., Sun Z., et al. 2013. “Global Variation in Elevational Diversity Patterns.” Scientific Reports 3, no. 1: 1–7. PubMed PMC
Gutiérrez, D. , Harcourt J., Díez S. B., Gutiérrez Illán J., and Wilson R. J.. 2013. “Models of Presence–Absence Estimate Abundance as Well as (Or Even Better Than) Models of Abundance: The Case of the Butterfly Parnassius Apollo.” Landscape Ecology 28, no. 3: 401–413. 10.1007/s10980-013-9847-3. DOI
Hackett, S. J. , Kimball R. T., Reddy S., et al. 2008. “A Phylogenomic Study of Birds Reveals Their Evolutionary History.” Science 320, no. 5884: 1763–1768. 10.1126/science.1157704. PubMed DOI
Hall, J. B. 1973. “Vegetational Zones on the Southern Slopes of Mount Cameroon.” Vegetatio 27, no. 1: 49–69. 10.1007/BF02389340. DOI
Hanz, D. M. , Böhning‐Gaese K., Ferger S. W., et al. 2019. “Functional and Phylogenetic Diversity of Bird Assemblages Are Filtered by Different Biotic Factors on Tropical Mountains.” Journal of Biogeography 46, no. 2: 291–303. 10.1111/jbi.13489. DOI
He, X. , DuBay S., Zhangshang M., et al. 2022. “Seasonal Elevational Patterns and the Underlying Mechanisms of Avian Diversity and Community Structure on the Eastern Slope of mt. Gongga.” Diversity and Distributions 28, no. 12: 2459–2474. 10.1111/ddi.13475. DOI
Herzog, S. K. , Kessler M., and Bach K.. 2005. “The Elevational Gradient in Andean Bird Species Richness at the Local Scale: A Foothill Peak and a High‐Elevation Plateau.” Ecography 28, no. 2: 209–222.
HilleRisLambers, J. , Adler P. B., Harpole W. S., Levine J. M., and Mayfield M. M.. 2012. “Rethinking Community Assembly Through the Lens of Coexistence Theory.” Annual Review of Ecology, Evolution, and Systematics 43, no. 1: 227–248. 10.1146/annurev-ecolsys-110411-160411. DOI
Holder, M. T. , Sukumaran J., and Lewis P. O.. 2008. “A Justification for Reporting the Majority‐Rule Consensus Tree in Bayesian Phylogenetics.” Systematic Biology 57, no. 5: 814–821. 10.1080/10635150802422308. PubMed DOI
Hořák, D. , Clark V. R., Njabo K. Y., and Fjeldså J.. 2023. “Editorial: Biodiversity Across Afromontane Environments.” Frontiers in Ecology and Evolution 10: 1080119. https://www.frontiersin.org/articles/10.3389/fevo.2022.1080119. DOI
Hořák, D. , Ferenc M., Sedláček O., et al. 2019. “Forest Structure Determines Spatial Changes in Avian Communities Along an Elevational Gradient in Tropical Africa.” Journal of Biogeography 46, no. 11: 2466–2478.
Hubbell, S. P. 2011. “The Unified Neutral Theory of Biodiversity and Biogeography (MPB‐32).” In The Unified Neutral Theory of Biodiversity and Biogeography (MPB‐32). Princeton University Press. PubMed
Jacob, M. , Annys S., Frankl A., et al. 2015. “Tree Line Dynamics in the Tropical African Highlands – Identifying Drivers and Dynamics.” Journal of Vegetation Science 26, no. 1: 9–20. 10.1111/jvs.12215. DOI
Jankowski, J. E. , Merkord C. L., Rios W. F., Cabrera K. G., Revilla N. S., and Silman M. R.. 2013. “The Relationship of Tropical Bird Communities to Tree Species Composition and Vegetation Structure Along an Andean Elevational Gradient.” Journal of Biogeography 40, no. 5: 950–962.
Jarzyna, M. A. , Quintero I., and Jetz W.. 2021. “Global Functional and Phylogenetic Structure of Avian Assemblages Across Elevation and Latitude.” Ecology Letters 24, no. 2: 196–207. PubMed
Jetz, W. , Thomas G. H., Joy J. B., Hartmann K., and Mooers A. O.. 2012. “The Global Diversity of Birds in Space and Time.” Nature 491, no. 7424: 444–448. PubMed
Kamga, S. M. , Tamungang S. A., Awa T., et al. 2022. “The Importance of Forest Elephants for Vegetation Structure Modification and Its Influence on the Bird Community of a Mid‐Elevation Forest on Mount Cameroon, West‐Central Africa.” Diversity 14, no. 3: 227.
Keith, S. 2020. The Birds of Africa: Volume VII. Bloomsbury Publishing.
Kembel, S. W. , Cowan P. D., Helmus M. R., et al. 2010. “Picante: R Tools for Integrating Phylogenies and Ecology.” Bioinformatics 26, no. 11: 1463–1464. PubMed
Kissling, W. D. , Sekercioglu C. H., and Jetz W.. 2012. “Bird Dietary Guild Richness Across Latitudes, Environments and Biogeographic Regions.” Global Ecology and Biogeography 21, no. 3: 328–340.
Klopfer, P. H. , and MacArthur R. H.. 1961. “On the Causes of Tropical Species Diversity: Niche Overlap.” American Naturalist 95, no. 883: 223–226.
Kohli, B. A. , Stevens R. D., Rickart E. A., and Rowe R. J.. 2021. “Mammals on Mountainsides Revisited: Trait‐Based Tests of Assembly Reveal the Importance of Abiotic Filters.” Journal of Biogeography 48, no. 7: 1606–1621.
Kraft, N. J. , Adler P. B., Godoy O., James E. C., Fuller S., and Levine J. M.. 2015. “Community Assembly, Coexistence and the Environmental Filtering Metaphor.” Functional Ecology 29, no. 5: 592–599.
Kraft, N. J. B. , Valencia R., and Ackerly D. D.. 2008. “Functional Traits and Niche‐Based Tree Community Assembly in an Amazonian Forest.” Science 322, no. 5901: 580–582. PubMed
Lamanna, C. , Blonder B., Violle C., et al. 2014. “Functional Trait Space and the Latitudinal Diversity Gradient.” Proceedings of the National Academy of Sciences of the United States of America 111, no. 38: 13745–13750. PubMed PMC
Li, C. , Zhang Y., Zha D., Yang S., Huang Z. Y., and de Boer W. F.. 2019. “Assembly Processes of Waterbird Communities Across Subsidence Wetlands in China: A Functional and Phylogenetic Approach.” Diversity and Distributions 25, no. 7: 1118–1129.
Lin, H. , Wang X., Zhong M., et al. 2024. “Elevational Patterns and Assembly Processes of Multifaceted Bird Diversity in a Subtropical Mountain System.” Journal of Biogeography 51, no. 7: 1276–1289. 10.1111/jbi.14827. DOI
Liu, J.‐M. , de Vos J. M., Körner C., and Yang Y.. 2023. “Phylogeny and Phenotypic Adjustments Drive Functional Traits in Rhododendron Across Elevations in Its Diversity Hot‐Spot in W‐China.” Alpine Botany 133, no. 2: 69–84. 10.1007/s00035-023-00294-5. DOI
Londoño, G. A. , Chappell M. A., Jankowski J. E., and Robinson S. K.. 2017. “Do Thermoregulatory Costs Limit Altitude Distributions of Andean Forest Birds?” Functional Ecology 31, no. 1: 204–215.
MacArthur, R. , and Levins R.. 1967. “The Limiting Similarity, Convergence, and Divergence of Coexisting Species.” American Naturalist 101, no. 921: 377–385.
MacArthur, R. H. 1965. “Patterns of Species Diversity.” Biological Reviews 40, no. 4: 510–533.
MacArthur, R. H. 1984. Geographical Ecology: Patterns in the Distribution of Species. Princeton University Press.
Maddison, W. , and Maddison D.. 2019. “Mesquite: A Modular System for Evolutionary Analysis, v. 3.61.” http://mesquiteproject.org.
Maglianesi, M. A. , Blüthgen N., Böhning‐Gaese K., and Schleuning M.. 2015. “Functional Structure and Specialization in Three Tropical Plant–Hummingbird Interaction Networks Across an Elevational Gradient in Costa Rica.” Ecography 38, no. 11: 1119–1128. 10.1111/ecog.01538. DOI
Magneville, C. , Loiseau N., Albouy C., et al. 2022. “mFD: An R Package to Compute and Illustrate the Multiple Facets of Functional Diversity.” Ecography 2022, no. 1. 10.1111/ecog.05904. DOI
Maicher, V. , Sáfián S., Murkwe M., et al. 2020. “Seasonal Shifts of Biodiversity Patterns and Species' Elevation Ranges of Butterflies and Moths Along a Complete Rainforest Elevational Gradient on Mount Cameroon.” Journal of Biogeography 47, no. 2: 342–354.
Maire, E. , Grenouillet G., Brosse S., and Villéger S.. 2015. “How Many Dimensions Are Needed to Accurately Assess Functional Diversity? A Pragmatic Approach for Assessing the Quality of Functional Spaces.” Global Ecology and Biogeography 24, no. 6: 728–740. 10.1111/geb.12299. DOI
Maley, J. 1996. “The African Rain Forest – Main Characteristics of Changes in Vegetation and Climate From the Upper Cretaceous to the Quaternary.” Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 104: 31–73. 10.1017/S0269727000006114. DOI
Mason, N. W. H. , and Pavoine S.. 2013. “Does Trait Conservatism Guarantee That Indicators of Phylogenetic Community Structure Will Reveal Niche‐Based Assembly Processes Along Stress Gradients?” Journal of Vegetation Science 24, no. 5: 820–833. 10.1111/jvs.12033. DOI
Mayfield, M. M. , Boni M. F., Daily G. C., and Ackerly D.. 2005. “Species and Functional Diversity of Native and Human‐Dominated Plant Communities.” Ecology 86, no. 9: 2365–2372.
Mayfield, M. M. , and Levine J. M.. 2010. “Opposing Effects of Competitive Exclusion on the Phylogenetic Structure of Communities.” Ecology Letters 13, no. 9: 1085–1093. 10.1111/j.1461-0248.2010.01509.x. PubMed DOI
Mazel, F. , Davies T. J., Gallien L., et al. 2016. “Influence of Tree Shape and Evolutionary Time‐Scale on Phylogenetic Diversity Metrics.” Ecography 39, no. 10: 913–920. PubMed PMC
Mazel, F. , Mooers A. O., Riva G. V. D., and Pennell M. W.. 2017. “Conserving Phylogenetic Diversity Can Be a Poor Strategy for Conserving Functional Diversity.” Systematic Biology 66, no. 6: 1019–1027. PubMed
Mazel, F. , Pennell M. W., Cadotte M. W., et al. 2018. “Prioritizing Phylogenetic Diversity Captures Functional Diversity Unreliably.” Nature Communications 9, no. 1: 2888. PubMed PMC
McCain, C. M. 2009. “Global Analysis of Bird Elevational Diversity.” Global Ecology and Biogeography 18, no. 3: 346–360.
McClain, C. R. , Nunnally C., Chapman A. S. A., and Barry J. P.. 2018. “Energetic Increases Lead to Niche Packing in Deep‐Sea Wood Falls.” Biology Letters 14, no. 9: 20180294. 10.1098/rsbl.2018.0294. PubMed DOI PMC
Miles, D. B. , and Ricklefs R. E.. 1984. “The Correlation Between Ecology and Morphology in Deciduous Forest Passerine Birds.” Ecology 65, no. 5: 1629–1640.
Molina‐Venegas, R. , Fischer M., and Hemp A.. 2020. “Plant Evolutionary Assembly Along Elevational Belts at mt. Kilimanjaro: Using Phylogenetics to Asses Biodiversity Threats Under Climate Change.” Environmental and Experimental Botany 170: 103853. 10.1016/j.envexpbot.2019.103853. DOI
Montaño‐Centellas, F. , Baiser B., McGrew A., Trotta L., and Li D.. 2023. “Global Patterns and Drivers of Raptor Phylogenetic and Functional Diversity.” Global Ecology and Biogeography 32, no. 2: 281–294. 10.1111/geb.13619. DOI
Montaño‐Centellas, F. A. , Loiselle B. A., and Tingley M. W.. 2021. “Ecological Drivers of Avian Community Assembly Along a Tropical Elevation Gradient.” Ecography 44, no. 4: 574–588. 10.1111/ecog.05379. DOI
Montaño‐Centellas, F. A. , McCain C., and Loiselle B. A.. 2020. “Using Functional and Phylogenetic Diversity to Infer Avian Community Assembly Along Elevational Gradients.” Global Ecology and Biogeography 29, no. 2: 232–245.
Muggeo, V. M. 2008. “Segmented: An R Package to Fit Regression Models With Broken‐Line Relationships.” R News 8, no. 1: 20–25.
Nana, E. D. , Sedláček O., Bayly N., et al. 2014. “Comparison of Avian Assemblage Structures in Two Upper Montane Forests of the Cameroon Volcanic Line: Lessons for Bird Conservation.” Biodiversity and Conservation 23, no. 6: 1469–1484.
Newton, I. 2003. Speciation and Biogeography of Birds. Academic Press.
Onditi, K. O. , Song W.‐Y., Li X.‐Y., et al. 2022. “Patterns and Predictors of Small Mammal Phylogenetic and Functional Diversity in Contrasting Elevational Gradients in Kenya.” Frontiers in Ecology and Evolution 9: 742524. https://www.frontiersin.org/articles/10.3389/fevo.2021.742524. DOI
O'Reilly, J. E. , and Donoghue P. C. J.. 2018. “The Efficacy of Consensus Tree Methods for Summarizing Phylogenetic Relationships From a Posterior Sample of Trees Estimated From Morphological Data.” Systematic Biology 67, no. 2: 354–362. 10.1093/sysbio/syx086. PubMed DOI PMC
Parmentier, I. , Malhi Y., Senterre B., et al. 2007. “The Odd Man Out? Might Climate Explain the Lower Tree α‐Diversity of African Rain Forests Relative to Amazonian Rain Forests?” Journal of Ecology 95, no. 5: 1058–1071. 10.1111/j.1365-2745.2007.01273.x. DOI
Patterson, B. D. , Stotz D. F., Solari S., Fitzpatrick J. W., and Pacheco V.. 1998. “Contrasting Patterns of Elevational Zonation for Birds and Mammals in the Andes of Southeastern Peru.” Journal of Biogeography 25, no. 3: 593–607.
Pavoine, S. , and Bonsall M. B.. 2011. “Measuring Biodiversity to Explain Community Assembly: A Unified Approach.” Biological Reviews 86, no. 4: 792–812. PubMed
Pellissier, V. , Barnagaud J., Kissling W. D., Şekercioğlu Ç., and Svenning J.. 2018. “Niche Packing and Expansion Account for Species Richness–Productivity Relationships in Global Bird Assemblages.” Global Ecology and Biogeography 27, no. 5: 604–615.
Perronne, R. , Munoz F., Borgy B., Reboud X., and Gaba S.. 2017. “How to Design Trait‐Based Analyses of Community Assembly Mechanisms: Insights and Guidelines From a Literature Review.” Perspectives in Plant Ecology, Evolution and Systematics 25: 29–44. 10.1016/j.ppees.2017.01.004. DOI
Petchey, O. L. , and Gaston K. J.. 2006. “Functional Diversity: Back to Basics and Looking Forward.” Ecology Letters 9, no. 6: 741–758. PubMed
Peters, M. K. , Hemp A., Appelhans T., et al. 2016. “Predictors of Elevational Biodiversity Gradients Change From Single Taxa to the Multi‐Taxa Community Level.” Nature Communications 7, no. 1: 13736. 10.1038/ncomms13736. PubMed DOI PMC
Pigot, A. L. , Trisos C. H., and Tobias J. A.. 2016. “Functional Traits Reveal the Expansion and Packing of Ecological Niche Space Underlying an Elevational Diversity Gradient in Passerine Birds.” Proceedings of the Royal Society B: Biological Sciences 283, no. 1822: 20152013. PubMed PMC
Prinzing, A. , Reiffers R., Braakhekke W. G., et al. 2008. “Less Lineages – More Trait Variation: Phylogenetically Clustered Plant Communities Are Functionally More Diverse.” Ecology Letters 11, no. 8: 809–819. 10.1111/j.1461-0248.2008.01189.x. PubMed DOI
Proctor, J. , Edwards I. D., Payton R. W., and Nagy L.. 2007. “Zonation of Forest Vegetation and Soils of Mount Cameroon, West Africa.” Plant Ecology 192, no. 2: 251–269.
Quimbayo, J. P. , Murphy S. J., and Jarzyna M. A.. 2024. “Functional Reorganization of North American Wintering Avifauna.” Ecology Letters 27, no. 5: e14430. 10.1111/ele.14430. PubMed DOI
Quintero, I. , and Jetz W.. 2018. “Global Elevational Diversity and Diversification of Birds.” Nature 555, no. 7695: 246–250. PubMed
Rahbek, C. 1997. “The Relationship Among Area, Elevation, and Regional Species Richness in Neotropical Birds.” American Naturalist 149, no. 5: 875–902. PubMed
Rahbek, C. , Borregaard M. K., Colwell R. K., et al. 2019. “Humboldt's Enigma: What Causes Global Patterns of Mountain Biodiversity?” Science 365, no. 6458: 1108–1113. PubMed
Reif, J. , Hořák D., Sedláček O., et al. 2006. “Unusual Abundance–Range Size Relationship in an Afromontane Bird Community: The Effect of Geographical Isolation?” Journal of Biogeography 33, no. 11: 1959–1968.
Sam, K. , Koane B., Jeppy S., Sykorova J., and Novotny V.. 2017. “Diet of Land Birds Along an Elevational Gradient in Papua New Guinea.” Scientific Reports 7, no. 1: 44018. 10.1038/srep44018. PubMed DOI PMC
Schumm, M. , White A. E., Supriya K., and Price T. D.. 2020. “Ecological Limits as the Driver of Bird Species Richness Patterns Along the East Himalayan Elevational Gradient.” American Naturalist 195, no. 5: 802–817. 10.1086/707665. PubMed DOI
Sedláček, O. , Pernice R., Ferenc M., et al. 2023. “Abundance Variations Within Feeding Guilds Reveal Ecological Mechanisms Behind Avian Species Richness Pattern Along the Elevational Gradient of Mount Cameroon.” Biotropica 55, no. 3: 706–718.
Sedláček, O. , Vokurková J., Ferenc M., Djomo E. N., Albrecht T., and Hořák D.. 2015. “A Comparison of Point Counts With a New Acoustic Sampling Method: A Case Study of a Bird Community From the Montane Forests of Mount Cameroon.” Ostrich 86, no. 3: 213–220. 10.2989/00306525.2015.1049669. DOI
Sekercioglu, C. H. 2006. “Increasing Awareness of Avian Ecological Function.” Trends in Ecology & Evolution 21, no. 8: 464–471. PubMed
Si, X. , Cadotte M. W., Zeng D., et al. 2017. “Functional and Phylogenetic Structure of Island Bird Communities.” Journal of Animal Ecology 86, no. 3: 532–542. 10.1111/1365-2656.12650. PubMed DOI
Spasojevic, M. J. , and Suding K. N.. 2012. “Inferring Community Assembly Mechanisms From Functional Diversity Patterns: The Importance of Multiple Assembly Processes.” Journal of Ecology 100, no. 3: 652–661.
Stegen, J. C. , and Hurlbert A. H.. 2011. “Inferring Ecological Processes From Taxonomic, Phylogenetic and Functional Trait β‐Diversity.” PLoS One 6, no. 6: e20906. 10.1371/journal.pone.0020906. PubMed DOI PMC
Stevens, R. D. , and Gavilanez M. M.. 2015. “Dimensionality of Community Structure: Phylogenetic, Morphological and Functional Perspectives Along Biodiversity and Environmental Gradients.” Ecography 38, no. 9: 861–875. 10.1111/ecog.00847. DOI
Stevens, R. D. , Gavilanez M. M., Tello J. S., and Ray D. A.. 2012. “Phylogenetic Structure Illuminates the Mechanistic Role of Environmental Heterogeneity in Community Organization.” Journal of Animal Ecology 81, no. 2: 455–462. 10.1111/j.1365-2656.2011.01900.x. PubMed DOI
Stevens, R. D. , Tello J. S., and Gavilanez M. M.. 2013. “Stronger Tests of Mechanisms Underlying Geographic Gradients of Biodiversity: Insights From the Dimensionality of Biodiversity.” PLoS One 8, no. 2: e56853. PubMed PMC
Sun, Z. , Su S., Feng J., et al. 2023. “Functional and Phylogenetic Analyses of Tadpole Community Assembly in Temperate Montane Streams.” Ecological Indicators 146: 109822. 10.1016/j.ecolind.2022.109822. DOI
Swenson, N. G. 2014. Functional and Phylogenetic Ecology in R. Springer Science & Business Media.
Swenson, N. G. , and Enquist B. J.. 2007. “Ecological and Evolutionary Determinants of a Key Plant Functional Trait: Wood Density and Its Community‐Wide Variation Across Latitude and Elevation.” American Journal of Botany 94, no. 3: 451–459. 10.3732/ajb.94.3.451. PubMed DOI
Team . 2022. “R: A Language and Environment for Statistical Computing.” R Foundation for Statistical Computing. https://cir.nii.ac.jp/crid/1370298755636824325.
Terborgh, J. 1977. “Bird Species Diversity on an Andean Elevational Gradient.” Ecology 58, no. 5: 1007–1019.
Terborgh, J. , Robinson S. K., Parker T. A. III, Munn C. A., and Pierpont N.. 1990. “Structure and Organization of an Amazonian Forest Bird Community.” Ecological Monographs 60, no. 2: 213–238. 10.2307/1943045. DOI
Tobias, J. A. , Sheard C., Pigot A. L., et al. 2022. “AVONET: Morphological, Ecological and Geographical Data for All Birds.” Ecology Letters 25, no. 3: 581–597. 10.1111/ele.13898. PubMed DOI
Tucker, C. M. , Davies T. J., Cadotte M. W., and Pearse W. D.. 2018. “On the Relationship Between Phylogenetic Diversity and Trait Diversity.” Ecology 99, no. 6: 1473–1479. PubMed
Urban, E. K. , Fry C. H., and Keith S.. 2020. The Birds of Africa: Volume V. Bloomsbury Publishing.
Vellend, M. , Srivastava D. S., Anderson K. M., et al. 2014. “Assessing the Relative Importance of Neutral Stochasticity in Ecological Communities.” Oikos 123, no. 12: 1420–1430. 10.1111/oik.01493. DOI
Vernygora, O. V. , Simões T. R., and Campbell E. O.. 2020. “Evaluating the Performance of Probabilistic Algorithms for Phylogenetic Analysis of Big Morphological Datasets: A Simulation Study.” Systematic Biology 69, no. 6: 1088–1105. 10.1093/sysbio/syaa020. PubMed DOI
Vetaas, O. R. , Paudel K. P., and Christensen M.. 2019. “Principal Factors Controlling Biodiversity Along an Elevation Gradient: Water, Energy and Their Interaction.” Journal of Biogeography 46, no. 8: 1652–1663. 10.1111/jbi.13564. DOI
Villéger, S. , Mason N. W. H., and Mouillot D.. 2008. “New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology.” Ecology 89, no. 8: 2290–2301. PubMed
Violle, C. , Nemergut D. R., Pu Z., and Jiang L.. 2011. “Phylogenetic Limiting Similarity and Competitive Exclusion.” Ecology Letters 14, no. 8: 782–787. 10.1111/j.1461-0248.2011.01644.x. PubMed DOI
Voelker, G. , Outlaw R. K., and Bowie R. C. K.. 2010. “Pliocene Forest Dynamics as a Primary Driver of African Bird Speciation.” Global Ecology and Biogeography 19, no. 1: 111–121. 10.1111/j.1466-8238.2009.00500.x. DOI
Walsh, G. , Pease A. A., Woodford D. J., Stiassny M. L. J., Gaugris J. Y., and South J.. 2022. “Functional Diversity of Afrotropical Fish Communities Across River Gradients in the Republic of Congo, West Central Africa.” Frontiers in Environmental Science 10. 10.3389/fenvs.2022.981960. DOI
Webb, C. O. , Ackerly D. D., McPeek M. A., and Donoghue M. J.. 2002. “Phylogenies and Community Ecology.” Annual Review of Ecology and Systematics 33, no. 1: 475–505.
Weiher, E. , Clarke G. P., and Keddy P. A.. 1998. “Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species.” Oikos 81: 309–322.
Williams, S. E. , Williams Y. M., VanDerWal J., Isaac J. L., Shoo L. P., and Johnson C. N.. 2009. “Ecological Specialization and Population Size in a Biodiversity Hotspot: How Rare Species Avoid Extinction.” Proceedings of the National Academy of Sciences 106, no. Suppl 2: 19737–19741. 10.1073/pnas.0901640106. PubMed DOI PMC
Wu, Y. , Colwell R. K., Rahbek C., et al. 2013. “Explaining the Species Richness of Birds Along a Subtropical Elevational Gradient in the Hengduan Mountains.” Journal of Biogeography 40, no. 12: 2310–2323. 10.1111/jbi.12177. DOI
Xu, J. , Chen Y., Zhang L., et al. 2017. “Using Phylogeny and Functional Traits for Assessing Community Assembly Along Environmental Gradients: A Deterministic Process Driven by Elevation.” Ecology and Evolution 7, no. 14: 5056–5069. PubMed PMC
Zhang, Q. , Holyoak M., Chen C., et al. 2020. “Trait‐Mediated Filtering Drives Contrasting Patterns of Species Richness and Functional Diversity Across Montane Bird Assemblages.” Journal of Biogeography 47, no. 1: 301–312. 10.1111/jbi.13738. DOI
Dryad
10.5061/dryad.tdz08kq79