Comparison of Plasma Polymerized Thin Films Deposited from 2-Methyl-2-oxazoline and 2-Ethyl-2-oxazoline: II Analysis of Deposition Process

. 2025 Sep 05 ; 26 (17) : . [epub] 20250905

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40943557

Grantová podpora
APVV-19-0386 Slovak Research and Development Agency
VEGA 1/0553/22 Slovak Grant Agency for Science
RP/CPS/2024-28/002, RP/CPS/2024-28/005 Ministry of Education, Youth and Sports of the Czech Republic
Institutional support for the research organization development Ministry of Defence of the Czech Republic

Poly(2-oxazoline) coatings with antibiofouling properties and good biocompatibility can also be deposited by the plasma polymerization method using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline as monomers. Plasma polymers are formed of various monomer fragments and recombination products. Commonly, plasma polymers are highly crosslinked structures created by many different fragments, preferably of no repeating unit. Thus, chemical analysis of plasma polymers is difficult. To obtain a better description of plasma polymerized poly(2-oxazoline) coatings, the analysis of their plasma deposition process was performed. The electron ionization of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline molecules was studied using the crossed electron-molecular beam technique with mass spectrometric detection of the produced ions. The chemical composition of gaseous compounds at plasma polymerization was determined by gas chromatography-mass spectrometry (GC-MS), ion mobility spectrometry (IMS) and optical emission spectroscopy (OES). Also, the chemical composition and antibacterial activity of the water leachates from previously deposited poly(2-oxazoline) films were tested using FTIR spectroscopy and the disk diffusion method, respectively. It was found that acetonitrile and propionitrile are the main neutral products created in the nitrogen discharge with 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline monomers. The water leachates from deposited films do not exhibit any antibacterial activity. It was concluded that the antibacterial properties of POx films are due to their hydrophility.

Zobrazit více v PubMed

Maan A.M.C., Hofman A.H., de Vos W.M., Kamperman M. Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings. Adv. Funct. Mater. 2020;30:2000936. doi: 10.1002/adfm.202000936. DOI

Branch D.W., Wheeler B.C., Brewer G.J., Leckband D.E. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials. 2001;22:1035–1047. doi: 10.1016/S0142-9612(00)00343-4. PubMed DOI

Bhatt S., Pulpytel J., Mirshahi M., Arefi-Khonsari F. Cell Resistant Peptidomimetic Poly (2-ethyl-2-oxazoline) Coatings Developed by Low Pressure Inductively Excited Pulsed Plasma Polymerization for Biomedical Purpose. Plasma Process. Polym. 2015;12:519–532. doi: 10.1002/ppap.201400169. DOI

Ramiasa M.N., Cavallaro A.A., Mierczynska A., Christo S.N., Gleadle J.M., Hayball J.D., Vasilev K. Plasma polymerised polyoxazoline thin films for biomedical applications. Chem. Commun. 2015;51:4279–4282. doi: 10.1039/C5CC00260E. PubMed DOI

Macgregor-Ramiasa M.N., Cavallaro A.A., Vasilev K. Properties and reactivity of polyoxazoline plasma polymer films. J. Mater. Chem. B. 2015;3:6327–6337. doi: 10.1039/C5TB00901D. PubMed DOI

Cavallaro A.A., Macgregor-Ramiasa M.N., Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Appl. Mater. Interfaces. 2016;8:6354–6362. doi: 10.1021/acsami.6b00330. PubMed DOI

Zanini S., Zoia L., Dell’Orto E.C., Natalello A., Villa A.M., Della Pergola R., Riccardi C. Plasma polymerized 2-ethyl-2-oxazoline: Chemical characterization and study of the reactivity towards different chemical groups. Mater. Des. 2016;108:791–800. doi: 10.1016/j.matdes.2016.07.051. DOI

Stahel P., Mazankova V., Tomeckova K., Matouskova P., Brablec A., Prokes L., Jurmanova J., Bursikova V., Pribyl R., Lehocky M., et al. Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films-Antibacterial Properties and Cytocompatibility Performance. Polymers. 2019;11:2069. doi: 10.3390/polym11122069. PubMed DOI PMC

Mazankova V., Stahel P., Matouskova P., Brablec A., Cech J., Prokes L., Bursikova V., Stupavska M., Lehocky M., Ozaltin K., et al. Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes. Polymers. 2020;12:2679. doi: 10.3390/polym12112679. PubMed DOI PMC

ISO 22196:2011 [(accessed on 13 December 2023)];Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. Available online: https://www.iso.org/standard/54431.html.

Snirer M., Kudrle V., Toman J., Jasek O., Jurmanova J. Structure of microwave plasma-torch discharge during graphene synthesis from ethanol. Plasma Sources Sci. Technol. 2021;30:065020. doi: 10.1088/1361-6595/abfbea. DOI

Borkhari A.F., Moravsky L., Matejcik S. An atmospheric pressure field effect ionisation source for ion mobility spectrometry. Anal. Methods. 2022;14:1406–1413. doi: 10.1039/D2AY00186A. PubMed DOI

Volynets A.V., Lopaev V.D., Rakhimova V.T., Chukalovsky A.A., Mankelevich Y.A., Popov N.A., Zotovich I.A., Rakhimov A.T. N2 dissociation and kinetics of N(4S) atoms in nitrogen DC glow discharge. J. Phys. D Appl. Phys. 2018;51:364002. doi: 10.1088/1361-6463/aad1ca. DOI

Guerra V., Sá P., Loureiro J. Role played by the N2(A DOI

Pintassilgo C.D., Jaoul C., Loureiro J., Belmonte T., Czerwiec T. Kinetic modelling of a N2 flowing microwave discharge with CH4 addition in the post-discharge for nitrocarburizing treatments. J. Phys. D Appl. Phys. 2007;40:3620. doi: 10.1088/0022-3727/40/12/011. DOI

Torokova L., Watson J., Krcma F., Mazankova V., Mason N.J., Horvath G., Matejcik S. Gas Chromatography Analysis of Discharge Products in N2-CH4 Gas Mixture at Atmospheric Pressure: Study of Mimic Titan’s Atmosphere. Contrib. Plasma Phys. 2015;55:470–480. doi: 10.1002/ctpp.201400052. DOI

Jasek O., Toman J., Snirer M., Jurmanova J., Kudrle V., Michalicka J., Vsiansky D., Pavlinak D. Microwave plasma-based high temperature dehydrogenation of hydrocarbons and alcohols as a single route to highly efficient gas phase synthesis of freestanding graphene. Nanotechnology. 2021;32:505608. doi: 10.1088/1361-6528/ac24c3. PubMed DOI

Tsyganov D., Bundaleska N., Tatarova E., Dias A., Henriques J., Rego A., Ferraria A., Abrashev M.V., Dias F.M., Luhrs C.C., et al. On the plasma-based growth of ‘flowing’ graphene sheets at atmospheric pressure conditions. Plasma Sources Sci. Technol. 2015;25:015013. doi: 10.1088/0963-0252/25/1/015013. DOI

Ding K., Wang Y., Liu S., Wang S., Mi J. Preparation of medical hydrophilic and antibacterial silicone rubber via surface modification. RSC Adv. 2021;11:39950–39957. doi: 10.1039/D1RA06260C. PubMed DOI PMC

Stahel P., Mazankova V., Prokes L., Bursikova V., Stupavska M., Lehocky M., Pistekova H., Ozaltin K., Trunec D. Comparison of Plasma-Polymerized Thin Films Deposited from 2-Methyl-2-oxazoline and 2-Ethyl-2-oxazoline: I Film Properties. Int. J. Mol. Sci. 2023;24:17455. doi: 10.3390/ijms242417455. PubMed DOI PMC

Stepankova K., Muellerova M., Zidek S., Pistekova H., Urbanek P., Stahel P., Trunec D., Popelka A., Kallingal N., Mozetic M., et al. Plasma Polymerization of Pentane and Hexane for Antibacterial and Biocompatible Thin Films. Plasma Process. Polym. 2025;22:2400266. doi: 10.1002/ppap.202400266. DOI

Massines F., Gherardi N., Naude N., Segur P. Glow and Townsend dielectric barrier discharge in various atmosphere. Plasma Phys. Control. Fusion. 2005;47:B577. doi: 10.1088/0741-3335/47/12B/S42. DOI

Trunec D., Navratil Z., Tomekova J., Mazankova V., Durcanyova S., Zahoranova A. Chemical composition of gaseous products generated by coplanar barrier discharge in air and N2/O2 mixtures. Plasma Sources Sci. Technol. 2022;31:115011. doi: 10.1088/1361-6595/ac9c8f. DOI

Lerouge S., Major A., Girault-Lauriault P.L., Raymond M.A., Laplante P., Soulez G., Mwale F., Wertheimer M.R., Hebert M.J. Nitrogen-rich coatings for promoting healing around stent-grafts after endovascular aneurysm repair. Biomaterials. 2007;28:1209–1217. doi: 10.1016/j.biomaterials.2006.10.033. PubMed DOI

Stano M., Matejcik S., Skalny J., Mark T. Electron impact ionization of CH4: Ionization energies and temperature effects. J. Phys. B At. Mol. Opt. Phys. 2003;36:261–271. doi: 10.1088/0953-4075/36/2/307. DOI

Papp P., Urban J., Matejčík Š., Stano M., Ingolfsson O. Dissociative electron attachment to gas phase valine: A combined experimental and theoretical study. J. Chem. Phys. 2006;125:204301. doi: 10.1063/1.2400236. PubMed DOI

Milosavljević A.R., Kočišek J., Papp P., Kubala D., Marinković B.P., MacH P., Urban J., Matejčík Š. Electron impact ionization of furanose alcohols. J. Chem. Phys. 2010;132:1–11. doi: 10.1063/1.3352422. PubMed DOI

Papp P., Lacko M., Mészáros D., Stano M., Mach P., Matejčík Š. An experimental and theoretical study of electron impact ionization and dissociative electron attachment to trimethyl borate. Int. J. Mass Spectrom. 2014;365–366:157–162. doi: 10.1016/j.ijms.2014.01.015. DOI

Lacko M., Papp P., Wnorowski K., Matejčík Š. Electron-induced ionization and dissociative ionization of iron pentacarbonyl molecules. Eur. Phys. J. D. 2015;69:84. doi: 10.1140/epjd/e2015-50721-8. DOI

Papp P., Danko M., Matejčík Š. Electron ionization and photoionization of cyclopropylamine. Int. J. Mass Spectrom. 2020;455:116390. doi: 10.1016/j.ijms.2020.116390. DOI

Linstrom P.J., Mallard W.G. SRD 69; Argon. National Institute of Standards and Technology; Gaithersburg, MD, USA: U.S. Department of Commerce; Gaithersburg, MD, USA: Oct 1, 2023. [(accessed on 6 July 2025)]. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C7440371&Units=SI&Mask=20#Ion-Energetics.

Wannier G.H. The threshold law for single ionization of atoms or ions by electrons. Phys. Rev. 1953;90:817–825. doi: 10.1103/PhysRev.90.817. DOI

Read F.H. Extensions of the Wannier theory for near-threshold excitation and ionisation of atoms by electron impact. J. Phys. B At. Mol. Phys. 1984;17:3965–3986. doi: 10.1088/0022-3700/17/19/018. DOI

Gstir B., Denifl S., Hanel G., Rümmele M., Fiegele T., Cicman P., Stano M., Matejcik S., Scheier P., Becker K., et al. Electron impact multiple ionization of neon, argon and xenon atoms close to threshold: Appearance energies and Wannier exponents. J. Phys. B At. Mol. Opt. Phys. 2002;35:2993–3007. doi: 10.1088/0953-4075/35/13/312. DOI

Gstir B., Denifl S., Hanel G., Rümmele M., Fiegele T., Stano M., Feketeova L., Matejcik S., Becker K., Scheier P., et al. High resolution multiple electron impact ionisation of He, Ne, Ar, Kr and Xe atoms close to threshold: Appearance energies and Wannier exponents. Nucl. Instrum. Methods Phys. Res. Sect. B. 2003;205:413–416. doi: 10.1016/S0168-583X(02)02042-6. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT, USA: 2016.

Curtiss L.A., Redfern P.C., Raghavachari K. Gaussian-4 theory. J. Chem. Phys. 2007;126:084108. doi: 10.1063/1.2436888. PubMed DOI

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI

Roothaan C.C.J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951;23:69–89. doi: 10.1103/RevModPhys.23.69. DOI

Berthier G. Extension de la methode du champ moleculaire self-consistent a l’etude des couches incompletes. Comptes Rendus Hebd. Des SéAnces L’AcadéMie Des Sci. 1954;238:91–93.

Pople J.A., Nesbet R.K. Self-Consistent Orbitals for Radicals. J. Chem. Phys. 1954;22:571–572. doi: 10.1063/1.1740120. DOI

Frisch M.J., Head-Gordon M., Pople J.A. A direct MP2 gradient method. Chem. Phys. Lett. 1990;166:275–280. doi: 10.1016/0009-2614(90)80029-D. DOI

Frisch M.J., Head-Gordon M., Pople J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990;166:281–289. doi: 10.1016/0009-2614(90)80030-H. DOI

Head-Gordon M., Pople J.A., Frisch M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988;153:503–506. doi: 10.1016/0009-2614(88)85250-3. DOI

Sæbø S., Almlöf J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 1989;154:83–89. doi: 10.1016/0009-2614(89)87442-1. DOI

Head-Gordon M., Head-Gordon T. Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem. Phys. Lett. 1994;220:122–128. doi: 10.1016/0009-2614(94)00116-2. DOI

Raghavachari K., Pople J.A. Approximate fourth-order perturbation theory of the electron correlation energy. Int. J. Quantum Chem. 1978;14:91–100. doi: 10.1002/qua.560140109. DOI

Raghavachari K., Frisch M.J., Pople J.A. Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J. Chem. Phys. 1980;72:4244–4245. doi: 10.1063/1.439657. DOI

Purvis G.D., Bartlett R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982;76:1910–1918. doi: 10.1063/1.443164. DOI

Pople J.A., Head-Gordon M., Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 1987;87:5968–5975. doi: 10.1063/1.453520. DOI

Montgomery J.A., Frisch M.J., Ochterski J.W., Petersson G.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999;110:2822–2827. doi: 10.1063/1.477924. DOI

Montgomery J.A., Frisch M.J., Ochterski J.W., Petersson G.A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 2000;112:6532–6542. doi: 10.1063/1.481224. DOI

Simmie J.M., Somers K.P. Benchmarking Compound Methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the Active Thermochemical Tables: A Litmus Test for Cost-Effective Molecular Formation Enthalpies. J. Phys. Chem. A. 2015;119:7235–7246. doi: 10.1021/jp511403a. PubMed DOI

Xu S., Wang Q.D., Sun M.M., Yin G., Liang J. Benchmark calculations for bond dissociation energies and enthalpy of formation of chlorinated and brominated polycyclic aromatic hydrocarbons. RSC Adv. 2021;11:29690–29701. doi: 10.1039/D1RA05391D. PubMed DOI PMC

Mardirossian N., Head-Gordon M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI

Crosmer W., Thomas N., Tsang P., Duckett R. Cold Trap Fractionation as an Organic Analysis Technique. Rev. Sci. Instrum. 1973;44:837–843. doi: 10.1063/1.1686260. DOI

Michalczuk B., Moravsky L., Papp P., Mach P., Sabo M., Matejcik S. Isomer and conformer selective atmospheric pressure chemical ionisation of dimethyl phthalate. Phys. Chem. Chem. Phys. 2019;21:13679–13685. doi: 10.1039/C9CP02069A. PubMed DOI

Moravsky L., Borkhari A.F., Adamov A.Y., Sysoev A.A., Papp P., Matejcik S. Negative Atmospheric Pressure Chemical Ionization of Chlorinated Hydrocarbons Studied by Ion Mobility Spectrometry (IMS) and IMS-MS Techniques. J. Am. Soc. Mass Spectrom. 2022;33:1569–1576. doi: 10.1021/jasms.2c00139. PubMed DOI

Moravsky L., Michalczuk B., Hrda J., Hamaguchi S., Matejcik S. Monitoring of nonthermal plasma degradation of phthalates by ion mobility spectrometry. Plasma Process. Polym. 2021;18:e2100032. doi: 10.1002/ppap.202100032. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...