Association of DTI-ALPS Glymphatic Index With Differential Phenoconversion in Isolated REM Sleep Behavior Disorder: A Multi-Cohort MRI Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie
PubMed
40956987
PubMed Central
PMC12456434
DOI
10.1212/wnl.0000000000214042
Knihovny.cz E-zdroje
- MeSH
- demence s Lewyho tělísky diagnostické zobrazování MeSH
- glymfatický systém * diagnostické zobrazování MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie MeSH
- mozek * diagnostické zobrazování MeSH
- Parkinsonova nemoc diagnostické zobrazování MeSH
- polysomnografie MeSH
- porucha chování v REM spánku * diagnostické zobrazování MeSH
- prodromální symptomy MeSH
- progrese nemoci MeSH
- senioři MeSH
- synukleinopatie diagnostické zobrazování MeSH
- zobrazování difuzních tenzorů * metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
BACKGROUND AND OBJECTIVES: Isolated REM sleep behavior disorder (iRBD) is the strongest prodromal marker of synucleinopathies, including Parkinson disease (PD) and dementia with Lewy bodies (DLB). Identifying brain biomarkers that predict progression and distinguish phenoconversion trajectories remains a challenge. The glymphatic system is involved in interstitial waste clearance, and its dysfunction has been associated with pathologic protein accumulation and neurodegeneration. Diffusion tensor imaging along the perivascular space (DTI-ALPS) has been proposed as a noninvasive proxy for glymphatic function. The aim of this study was to determine whether patients with iRBD show a reduced DTI-ALPS index compared with controls and whether a lower DTI-ALPS index predicts future phenoconversion to PD or DLB. METHODS: We conducted a longitudinal, multicenter cohort study using brain MRI scans from patients with polysomnography-confirmed iRBD and healthy controls recruited across 5 international centers. All participants underwent T1-weighted and diffusion-weighted MRI. DTI-ALPS indices were computed from diffusivity along projection and associative fibers adjacent to the lateral ventricles. The primary outcome was time to phenoconversion to synucleinopathy. Linear models assessed baseline group differences and clinical correlates, and Cox proportional hazard models assessed the predictive value of DTI-ALPS for time to phenoconversion. RESULTS: A total of 250 patients with iRBD (mean age: 66.5 ± 6.8 years; 87% male) and 178 controls (65.7 ± 6.8 years; 81% male) were included. Patients with iRBD showed a lower left DTI-ALPS index compared with controls (mean difference = -0.034, 95% CI -0.067 to -0.001; p = 0.043). Of 224 patients with iRBD followed for a mean of 6.1 ± 3.5 years, 65 phenoconverted to a synucleinopathy. Converters had a lower left DTI-ALPS index than nonconverters (mean difference = -0.050, 95% CI -0.098 to -0.003; p = 0.038). Lower left DTI-ALPS index was associated with an increased risk of conversion to PD over time (hazard ratio = 2.43, 95% CI 1.13-5.25; p = 0.012). Other diffusion metrics inside periventricular masks, namely fractional anisotropy, diffusivity metrics, and free water, did not differ between groups. DISCUSSION: Patients with iRBD exhibit a reduced DTI-ALPS index, suggesting altered glymphatic function. This reduction was associated with future phenoconversion to PD, supporting the DTI-ALPS index as a potential prognostic MRI biomarker of progression in prodromal synucleinopathies.
Department of Medicine University of Montreal Quebec Canada
Department of Neurology Montreal General Hospital Quebec Canada
Department of Neuroscience University of Montreal Quebec Canada
Department of Psychology Université du Québec à Montréal Quebec Canada
Department of Psychology University of Montreal Quebec Canada
Research Centre Institut Universitaire de Gériatrie de Montréal Quebec Canada
Zobrazit více v PubMed
Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration: an update. Nat Rev Neurol. 2018;14(1):40-55. doi: 10.1038/nrneurol.2017.157 PubMed DOI
Galbiati A, Verga L, Giora E, Zucconi M, Ferini-Strambi L. The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta-analysis of longitudinal studies. Sleep Med Rev. 2019;43:37-46. doi: 10.1016/j.smrv.2018.09.008 PubMed DOI
Rahayel S, Tremblay C, Vo A, et al. Mitochondrial function-associated genes underlie cortical atrophy in prodromal synucleinopathies. Brain. 2023;146(8):3301-3318. doi: 10.1093/brain/awad044 PubMed DOI PMC
Rahayel S, Postuma R, Baril AA, et al. PubMed DOI PMC
Marecek S, Rottova V, Nepozitek J, et al. Exploring glymphatic system alterations in iRBD and Parkinson's disease using automated DTI-ALPS analysis. NPJ Parkinsons Dis. 2025;11(1):76. doi: 10.1038/s41531-025-00921-4 PubMed DOI PMC
Peng C, Gathagan RJ, Lee VMY. Distinct α-synuclein strains and implications for heterogeneity among α-synucleinopathies. Neurobiol Dis. 2018;109(pt B):209-218. doi: 10.1016/j.nbd.2017.07.018 PubMed DOI PMC
Brás IC, Outeiro TF. Alpha-synuclein: mechanisms of release and pathology progression in synucleinopathies. Cells. 2021;10(2):375. doi: 10.3390/cells10020375 PubMed DOI PMC
Braun M, Iliff JJ. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases. Int Rev Neurobiol. 2020;154:413-436. doi: 10.1016/bs.irn.2020.02.006 PubMed DOI
Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50-56. doi: 10.1126/science.abb8739 PubMed DOI PMC
Hablitz LM, Nedergaard M. The glymphatic system: a novel component of fundamental neurobiology. J Neurosci. 2021;41(37):7698-7711. doi: 10.1523/JNEUROSCI.0619-21.2021 PubMed DOI PMC
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-1024. doi: 10.1016/S1474-4422(18)30318-1 PubMed DOI PMC
Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic system pathology and neuroinflammation as two risk factors of neurodegeneration. Cells. 2024;13(3):286. doi: 10.3390/cells13030286 PubMed DOI PMC
Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol. 2017;35(4):172-178. doi: 10.1007/s11604-017-0617-z PubMed DOI
Liu S, Sun X, Ren Q, et al. Glymphatic dysfunction in patients with early-stage amyotrophic lateral sclerosis. Brain. 2024;147(1):100-108. doi: 10.1093/brain/awad274 PubMed DOI
Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol Dis. 2016;93:215-225. doi: 10.1016/j.nbd.2016.05.015 PubMed DOI PMC
Ma X, Li S, Li C, et al. Diffusion tensor imaging along the perivascular space index in different stages of Parkinson's disease. Front Aging Neurosci. 2021;13:773951. doi: 10.3389/fnagi.2021.773951 PubMed DOI PMC
Shen T, Yue Y, Ba F, et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson's disease. NPJ Parkinsons Dis. 2022;8(1):174. doi: 10.1038/s41531-022-00437-1 PubMed DOI PMC
Ota M, Maki H, Takahashi Y, et al. Relationships between neuroimaging biomarkers and glymphatic-system activity in dementia with Lewy bodies. Neurosci Lett. 2024;842:137995. doi: 10.1016/j.neulet.2024.137995 PubMed DOI
Si X, Guo T, Wang Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis. 2022;8(1):54. doi: 10.1038/s41531-022-00316-9 PubMed DOI PMC
Lee DA, Lee H, Park KM. Glymphatic dysfunction in isolated REM sleep behavior disorder. Acta Neurol Scand. 2022;145(4):464-470. doi: 10.1111/ane.13573 PubMed DOI
Bae YJ, Kim JM, Choi BS, et al. Altered brain glymphatic flow at diffusion-tensor MRI in rapid eye movement sleep behavior disorder. Radiology. 2023;307(5):e221848. doi: 10.1148/radiol.221848 PubMed DOI
Roura I, Pardo J, Martín-Barceló C, et al. Clinical and brain volumetric correlates of decreased DTI-ALPS, suggestive of local glymphatic dysfunction, in iRBD. NPJ Parkinsons Dis. 2025;11(1):87. doi: 10.1038/s41531-025-00942-z PubMed DOI PMC
Miglis MG, Adler CH, Antelmi E, et al. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol. 2021;20(8):671-684. doi: 10.1016/S1474-4422(21)00176-9 PubMed DOI PMC
Marek K, Chowdhury S, Siderowf A, et al. The Parkinson's Progression Markers Initiative (PPMI): establishing a PD biomarker cohort. Ann Clin Transl Neurol. 2018;5(12):1460-1477. doi: 10.1002/acn3.644 PubMed DOI PMC
American Academy of Sleep Medicine. The International Classification of Sleep Disorders, Third Edition (ICSD-3). American Academy of Sleep Medicine; 2014.
Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord. 2015;30(12):1591-1601. doi: 10.1002/mds.26424 PubMed DOI
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88-100. doi: 10.1212/WNL.0000000000004058 PubMed DOI PMC
Wenning GK, Stankovic I, Vignatelli L, et al. The Movement Disorder Society criteria for the diagnosis of multiple system atrophy. Mov Disord. 2022;37(6):1131-1148. doi: 10.1002/mds.29005 PubMed DOI PMC
Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695-699. doi: 10.1111/j.1532-5415.2005.53221.x PubMed DOI
Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129-2170. doi: 10.1002/mds.22340 PubMed DOI
Rahayel S, Tremblay C, Vo A, et al. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain. 2022;145(9):3162-3178. doi: 10.1093/brain/awac187 PubMed DOI
Joza S, Delva A, Tremblay C, et al. Distinct brain atrophy progression subtypes underlie phenoconversion in isolated REM sleep behaviour disorder. EBioMedicine. 2025;117:105753. doi: 10.1016/j.ebiom.2025.105753 PubMed DOI PMC
Theaud G, Houde JC, Boré A, Rheault F, Morency F, Descoteaux M. TractoFlow: a robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity. Neuroimage. 2020;218:116889. doi: 10.1016/j.neuroimage.2020.116889 PubMed DOI
Mori S, Oishi K, Jiang H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40(2):570-582. doi: 10.1016/j.neuroimage.2007.12.035 PubMed DOI PMC
Wood KH, Nenert R, Miften AM, et al. Diffusion tensor imaging-along the perivascular-space index is associated with disease progression in Parkinson's disease. Mov Disord. 2024;39(9):1504-1513. doi: 10.1002/mds.29908 PubMed DOI PMC
Fortin JP, Cullen N, Sheline YI, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104-120. doi: 10.1016/j.neuroimage.2017.11.024 PubMed DOI PMC
Orlhac F, Eertink JJ, Cottereau AS, et al. A guide to ComBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63(2):172-179. doi: 10.2967/jnumed.121.262464 PubMed DOI PMC
Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62(3):717-730. doi: 10.1002/mrm.22055 PubMed DOI
Steward CE, Venkatraman VK, Lui E, et al. Assessment of the DTI-ALPS parameter along the perivascular space in older adults at risk of dementia. J Neuroimaging. 2021;31(3):569-578. doi: 10.1111/jon.12837 PubMed DOI
Stefani A, Serradell M, Holzknecht E, et al. Low specificity of rapid eye movement sleep behavior disorder questionnaires: need for better screening methods. Mov Disord. 2023;38(6):1000-1007. doi: 10.1002/mds.29407 PubMed DOI
Zhao X, Zhou Y, Li Y, et al. The asymmetry of glymphatic system dysfunction in patients with temporal lobe epilepsy: a DTI-ALPS study. J Neuroradiol. 2023;50(6):562-567. doi: 10.1016/j.neurad.2023.05.009 PubMed DOI
Toh CH, Siow TY. Glymphatic dysfunction in patients with ischemic stroke. Front Aging Neurosci. 2021;13:756249. doi: 10.3389/fnagi.2021.756249 PubMed DOI PMC
Zhang C, Sha J, Cai L, et al. Evaluation of the glymphatic system using the DTI-ALPS index in patients with spontaneous intracerebral haemorrhage. Oxid Med Cell Longev. 2022;2022:2694316. doi: 10.1155/2022/2694316 PubMed DOI PMC
Djaldetti R, Ziv I, Melamed E. The mystery of motor asymmetry in Parkinson's disease. Lancet Neurol. 2006;5(9):796-802. doi: 10.1016/S1474-4422(06)70549-X PubMed DOI
Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142(3):744-759. doi: 10.1093/brain/awz030 PubMed DOI PMC
Zheng YQ, Zhang Y, Yau Y, et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol. 2019;17(11):e3000495. doi: 10.1371/journal.pbio.3000495 PubMed DOI PMC
Rahayel S, Mišić B, Zheng YQ, et al. Differentially targeted seeding reveals unique pathological alpha-synuclein propagation patterns. Brain. 2022;145(5):1743-1756. doi: 10.1093/brain/awab440 PubMed DOI PMC
Rahayel S, Postuma RB, Montplaisir J, et al. A prodromal brain-clinical pattern of cognition in synucleinopathies. Annals of Neurology. 2021;89(2):341-357. doi: 10.1002/ana.25962 PubMed DOI
Clark O, Delgado-Sanchez A, Cullell N, Correa SAL, Krupinski J, Ray N. Diffusion tensor imaging analysis along the perivascular space in the UK Biobank. Sleep Med. 2024;119:399-405. doi: 10.1016/j.sleep.2024.05.007 PubMed DOI
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion tensor image analysis along the perivascular space (DTI-ALPS): revisiting the meaning and significance of the method. Magn Reson Med Sci. 2024;23(3):268-290. doi: 10.2463/mrms.rev.2023-0175 PubMed DOI PMC