Association of DTI-ALPS Glymphatic Index With Differential Phenoconversion in Isolated REM Sleep Behavior Disorder: A Multi-Cohort MRI Study

. 2025 Oct 07 ; 105 (7) : e214042. [epub] 20250916

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40956987

BACKGROUND AND OBJECTIVES: Isolated REM sleep behavior disorder (iRBD) is the strongest prodromal marker of synucleinopathies, including Parkinson disease (PD) and dementia with Lewy bodies (DLB). Identifying brain biomarkers that predict progression and distinguish phenoconversion trajectories remains a challenge. The glymphatic system is involved in interstitial waste clearance, and its dysfunction has been associated with pathologic protein accumulation and neurodegeneration. Diffusion tensor imaging along the perivascular space (DTI-ALPS) has been proposed as a noninvasive proxy for glymphatic function. The aim of this study was to determine whether patients with iRBD show a reduced DTI-ALPS index compared with controls and whether a lower DTI-ALPS index predicts future phenoconversion to PD or DLB. METHODS: We conducted a longitudinal, multicenter cohort study using brain MRI scans from patients with polysomnography-confirmed iRBD and healthy controls recruited across 5 international centers. All participants underwent T1-weighted and diffusion-weighted MRI. DTI-ALPS indices were computed from diffusivity along projection and associative fibers adjacent to the lateral ventricles. The primary outcome was time to phenoconversion to synucleinopathy. Linear models assessed baseline group differences and clinical correlates, and Cox proportional hazard models assessed the predictive value of DTI-ALPS for time to phenoconversion. RESULTS: A total of 250 patients with iRBD (mean age: 66.5 ± 6.8 years; 87% male) and 178 controls (65.7 ± 6.8 years; 81% male) were included. Patients with iRBD showed a lower left DTI-ALPS index compared with controls (mean difference = -0.034, 95% CI -0.067 to -0.001; p = 0.043). Of 224 patients with iRBD followed for a mean of 6.1 ± 3.5 years, 65 phenoconverted to a synucleinopathy. Converters had a lower left DTI-ALPS index than nonconverters (mean difference = -0.050, 95% CI -0.098 to -0.003; p = 0.038). Lower left DTI-ALPS index was associated with an increased risk of conversion to PD over time (hazard ratio = 2.43, 95% CI 1.13-5.25; p = 0.012). Other diffusion metrics inside periventricular masks, namely fractional anisotropy, diffusivity metrics, and free water, did not differ between groups. DISCUSSION: Patients with iRBD exhibit a reduced DTI-ALPS index, suggesting altered glymphatic function. This reduction was associated with future phenoconversion to PD, supporting the DTI-ALPS index as a potential prognostic MRI biomarker of progression in prodromal synucleinopathies.

Komentář v

doi: 10.1212/WNL.0000000000214130 PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration: an update. Nat Rev Neurol. 2018;14(1):40-55. doi: 10.1038/nrneurol.2017.157 PubMed DOI

Galbiati A, Verga L, Giora E, Zucconi M, Ferini-Strambi L. The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta-analysis of longitudinal studies. Sleep Med Rev. 2019;43:37-46. doi: 10.1016/j.smrv.2018.09.008 PubMed DOI

Rahayel S, Tremblay C, Vo A, et al. Mitochondrial function-associated genes underlie cortical atrophy in prodromal synucleinopathies. Brain. 2023;146(8):3301-3318. doi: 10.1093/brain/awad044 PubMed DOI PMC

Rahayel S, Postuma R, Baril AA, et al. PubMed DOI PMC

Marecek S, Rottova V, Nepozitek J, et al. Exploring glymphatic system alterations in iRBD and Parkinson's disease using automated DTI-ALPS analysis. NPJ Parkinsons Dis. 2025;11(1):76. doi: 10.1038/s41531-025-00921-4 PubMed DOI PMC

Peng C, Gathagan RJ, Lee VMY. Distinct α-synuclein strains and implications for heterogeneity among α-synucleinopathies. Neurobiol Dis. 2018;109(pt B):209-218. doi: 10.1016/j.nbd.2017.07.018 PubMed DOI PMC

Brás IC, Outeiro TF. Alpha-synuclein: mechanisms of release and pathology progression in synucleinopathies. Cells. 2021;10(2):375. doi: 10.3390/cells10020375 PubMed DOI PMC

Braun M, Iliff JJ. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases. Int Rev Neurobiol. 2020;154:413-436. doi: 10.1016/bs.irn.2020.02.006 PubMed DOI

Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50-56. doi: 10.1126/science.abb8739 PubMed DOI PMC

Hablitz LM, Nedergaard M. The glymphatic system: a novel component of fundamental neurobiology. J Neurosci. 2021;41(37):7698-7711. doi: 10.1523/JNEUROSCI.0619-21.2021 PubMed DOI PMC

Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-1024. doi: 10.1016/S1474-4422(18)30318-1 PubMed DOI PMC

Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic system pathology and neuroinflammation as two risk factors of neurodegeneration. Cells. 2024;13(3):286. doi: 10.3390/cells13030286 PubMed DOI PMC

Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol. 2017;35(4):172-178. doi: 10.1007/s11604-017-0617-z PubMed DOI

Liu S, Sun X, Ren Q, et al. Glymphatic dysfunction in patients with early-stage amyotrophic lateral sclerosis. Brain. 2024;147(1):100-108. doi: 10.1093/brain/awad274 PubMed DOI

Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol Dis. 2016;93:215-225. doi: 10.1016/j.nbd.2016.05.015 PubMed DOI PMC

Ma X, Li S, Li C, et al. Diffusion tensor imaging along the perivascular space index in different stages of Parkinson's disease. Front Aging Neurosci. 2021;13:773951. doi: 10.3389/fnagi.2021.773951 PubMed DOI PMC

Shen T, Yue Y, Ba F, et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson's disease. NPJ Parkinsons Dis. 2022;8(1):174. doi: 10.1038/s41531-022-00437-1 PubMed DOI PMC

Ota M, Maki H, Takahashi Y, et al. Relationships between neuroimaging biomarkers and glymphatic-system activity in dementia with Lewy bodies. Neurosci Lett. 2024;842:137995. doi: 10.1016/j.neulet.2024.137995 PubMed DOI

Si X, Guo T, Wang Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis. 2022;8(1):54. doi: 10.1038/s41531-022-00316-9 PubMed DOI PMC

Lee DA, Lee H, Park KM. Glymphatic dysfunction in isolated REM sleep behavior disorder. Acta Neurol Scand. 2022;145(4):464-470. doi: 10.1111/ane.13573 PubMed DOI

Bae YJ, Kim JM, Choi BS, et al. Altered brain glymphatic flow at diffusion-tensor MRI in rapid eye movement sleep behavior disorder. Radiology. 2023;307(5):e221848. doi: 10.1148/radiol.221848 PubMed DOI

Roura I, Pardo J, Martín-Barceló C, et al. Clinical and brain volumetric correlates of decreased DTI-ALPS, suggestive of local glymphatic dysfunction, in iRBD. NPJ Parkinsons Dis. 2025;11(1):87. doi: 10.1038/s41531-025-00942-z PubMed DOI PMC

Miglis MG, Adler CH, Antelmi E, et al. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol. 2021;20(8):671-684. doi: 10.1016/S1474-4422(21)00176-9 PubMed DOI PMC

Marek K, Chowdhury S, Siderowf A, et al. The Parkinson's Progression Markers Initiative (PPMI): establishing a PD biomarker cohort. Ann Clin Transl Neurol. 2018;5(12):1460-1477. doi: 10.1002/acn3.644 PubMed DOI PMC

American Academy of Sleep Medicine. The International Classification of Sleep Disorders, Third Edition (ICSD-3). American Academy of Sleep Medicine; 2014.

Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord. 2015;30(12):1591-1601. doi: 10.1002/mds.26424 PubMed DOI

McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88-100. doi: 10.1212/WNL.0000000000004058 PubMed DOI PMC

Wenning GK, Stankovic I, Vignatelli L, et al. The Movement Disorder Society criteria for the diagnosis of multiple system atrophy. Mov Disord. 2022;37(6):1131-1148. doi: 10.1002/mds.29005 PubMed DOI PMC

Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695-699. doi: 10.1111/j.1532-5415.2005.53221.x PubMed DOI

Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129-2170. doi: 10.1002/mds.22340 PubMed DOI

Rahayel S, Tremblay C, Vo A, et al. Brain atrophy in prodromal synucleinopathy is shaped by structural connectivity and gene expression. Brain. 2022;145(9):3162-3178. doi: 10.1093/brain/awac187 PubMed DOI

Joza S, Delva A, Tremblay C, et al. Distinct brain atrophy progression subtypes underlie phenoconversion in isolated REM sleep behaviour disorder. EBioMedicine. 2025;117:105753. doi: 10.1016/j.ebiom.2025.105753 PubMed DOI PMC

Theaud G, Houde JC, Boré A, Rheault F, Morency F, Descoteaux M. TractoFlow: a robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity. Neuroimage. 2020;218:116889. doi: 10.1016/j.neuroimage.2020.116889 PubMed DOI

Mori S, Oishi K, Jiang H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40(2):570-582. doi: 10.1016/j.neuroimage.2007.12.035 PubMed DOI PMC

Wood KH, Nenert R, Miften AM, et al. Diffusion tensor imaging-along the perivascular-space index is associated with disease progression in Parkinson's disease. Mov Disord. 2024;39(9):1504-1513. doi: 10.1002/mds.29908 PubMed DOI PMC

Fortin JP, Cullen N, Sheline YI, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104-120. doi: 10.1016/j.neuroimage.2017.11.024 PubMed DOI PMC

Orlhac F, Eertink JJ, Cottereau AS, et al. A guide to ComBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63(2):172-179. doi: 10.2967/jnumed.121.262464 PubMed DOI PMC

Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62(3):717-730. doi: 10.1002/mrm.22055 PubMed DOI

Steward CE, Venkatraman VK, Lui E, et al. Assessment of the DTI-ALPS parameter along the perivascular space in older adults at risk of dementia. J Neuroimaging. 2021;31(3):569-578. doi: 10.1111/jon.12837 PubMed DOI

Stefani A, Serradell M, Holzknecht E, et al. Low specificity of rapid eye movement sleep behavior disorder questionnaires: need for better screening methods. Mov Disord. 2023;38(6):1000-1007. doi: 10.1002/mds.29407 PubMed DOI

Zhao X, Zhou Y, Li Y, et al. The asymmetry of glymphatic system dysfunction in patients with temporal lobe epilepsy: a DTI-ALPS study. J Neuroradiol. 2023;50(6):562-567. doi: 10.1016/j.neurad.2023.05.009 PubMed DOI

Toh CH, Siow TY. Glymphatic dysfunction in patients with ischemic stroke. Front Aging Neurosci. 2021;13:756249. doi: 10.3389/fnagi.2021.756249 PubMed DOI PMC

Zhang C, Sha J, Cai L, et al. Evaluation of the glymphatic system using the DTI-ALPS index in patients with spontaneous intracerebral haemorrhage. Oxid Med Cell Longev. 2022;2022:2694316. doi: 10.1155/2022/2694316 PubMed DOI PMC

Djaldetti R, Ziv I, Melamed E. The mystery of motor asymmetry in Parkinson's disease. Lancet Neurol. 2006;5(9):796-802. doi: 10.1016/S1474-4422(06)70549-X PubMed DOI

Postuma RB, Iranzo A, Hu M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142(3):744-759. doi: 10.1093/brain/awz030 PubMed DOI PMC

Zheng YQ, Zhang Y, Yau Y, et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol. 2019;17(11):e3000495. doi: 10.1371/journal.pbio.3000495 PubMed DOI PMC

Rahayel S, Mišić B, Zheng YQ, et al. Differentially targeted seeding reveals unique pathological alpha-synuclein propagation patterns. Brain. 2022;145(5):1743-1756. doi: 10.1093/brain/awab440 PubMed DOI PMC

Rahayel S, Postuma RB, Montplaisir J, et al. A prodromal brain-clinical pattern of cognition in synucleinopathies. Annals of Neurology. 2021;89(2):341-357. doi: 10.1002/ana.25962 PubMed DOI

Clark O, Delgado-Sanchez A, Cullell N, Correa SAL, Krupinski J, Ray N. Diffusion tensor imaging analysis along the perivascular space in the UK Biobank. Sleep Med. 2024;119:399-405. doi: 10.1016/j.sleep.2024.05.007 PubMed DOI

Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion tensor image analysis along the perivascular space (DTI-ALPS): revisiting the meaning and significance of the method. Magn Reson Med Sci. 2024;23(3):268-290. doi: 10.2463/mrms.rev.2023-0175 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...