Technical Considerations of Pharmacokinetic Assays for LNP-mRNA Drug Products by RT-qPCR
Language English Country United States Media electronic
Document type Journal Article
PubMed
40968313
DOI
10.1208/s12248-025-01122-w
PII: 10.1208/s12248-025-01122-w
Knihovny.cz E-resources
- Keywords
- LNP, MRNA, PK, RT-dPCR, RT-qPCR,
- MeSH
- Real-Time Polymerase Chain Reaction * methods MeSH
- Humans MeSH
- Lipids * chemistry pharmacokinetics MeSH
- Liposomes MeSH
- RNA, Messenger * pharmacokinetics administration & dosage MeSH
- Nanoparticles * chemistry MeSH
- Reverse Transcriptase Polymerase Chain Reaction * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lipid Nanoparticles MeSH Browser
- Lipids * MeSH
- Liposomes MeSH
- RNA, Messenger * MeSH
Lipid nanoparticle-messenger RNA (LNP-mRNA) drug products are a growing class of drug modalities. The unique composition of these drug products requires multiple measurements to account for the different components of these drug modalities. Pharmacokinetic (PK) measurements include measurement of the encapsulated mRNA and components of the LNP in circulation to understand the effectiveness of the therapeutic mRNA. The PK measurements can utilize many different platforms including PCR. Current regulatory guidance documents for bioanalytical method validation are specific to ligand binding and chromatographic assay methods and difficult to interpret for use with molecular workflows. The purpose of this paper is to provide information on considerations for validation of regulated reverse transcription quantitative PCR (RT-qPCR) assays that are used to support the pharmacokinetic analysis of LNP-mRNA drug products.
ABX Biotech LLC Ambler Pennsylvania USA
Beam Therapeutics Inc Cambridge Massachusetts USA
BioAgilytix Laboratories Boston Massachusetts USA
BioAgilytix Laboratories Durham North Carolina USA
BioAgilytix Laboratories Hamburg Germany
Bristol Myers Squibb Lawrenceville New Jersey USA
Charles River Laboratories Reno Nevada USA
Charles River Labs Senneville Quebec Canada
Eli Lilly and Company Indianapolis Indiana USA
Eurofins Viracor Biopharma Services LLC Lenexa Kansas USA
Genentech Inc South San Francisco California USA
Institute of Biotechnology Czech Academy of Sciences Prague Czechia
Johnson and Johnson Spring House Pennsylvania USA
Merck and Co Inc Rahway New Jersey USA
Moderna Inc Cambridge Massachusetts USA
Northern Biomolecular Services Portage Michigan USA
Novartis Biomedical Research Cambridge Massachusetts USA
Pennsylvania Department of Health Exton Pennsylvania USA
PPD Clinical Research Thermo Fisher Scientific Richmond Virginia USA
Regeneron Pharmaceuticals Inc Tarrytown New York USA
TATAA Biocenter Gothenburg Sweden
See more in PubMed
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J. 2023;42(21):e114760. https://doi.org/10.15252/embj.2023114760 . PubMed DOI PMC
Xu S, Yang K, Li R, Zhang L. mRNA vaccine era-mechanisms, drug platform and clinical prospection. Int J Mol Sci. 2020;21(18):6582. https://doi.org/10.3390/ijms21186582 . PubMed DOI PMC
Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol. 2023;20(11):739–54. https://doi.org/10.1038/s41571-023-00811-9 . PubMed DOI
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80. PubMed DOI
Szabo GT, Mahiny AJ, Vlatkovic I. COVID-19 mRNA vaccines: platforms and current developments. Mol Ther. 2022;30(5):1850–68. https://doi.org/10.1016/j.ymthe.2022.02.016 . PubMed DOI PMC
Jia L, Qian SB. Therapeutic mRNA engineering from head to tail. Acc Chem Res. 2021;54(23):4272–82. https://doi.org/10.1021/acs.accounts.1c00541 . PubMed DOI
Cheng F, Wang Y, Bai Y, Liang Z, Mao Q, Liu D, et al. Research advances on the stability of mRNA vaccines. Viruses. 2023;15(3):668. https://doi.org/10.3390/v15030668 . PubMed DOI PMC
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166. https://doi.org/10.1038/s41392-022-01007-w . PubMed DOI PMC
Sergeeva OV, Koteliansky VE, Zatespin TS. mRNA-based therapeutics - advances and perspectives. Biochemistry (Mosc). 2016;81(7):709–22. https://doi.org/10.1134/S0006297916070075 . PubMed DOI
Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7(5):319–34. https://doi.org/10.4155/tde-2016-0006 . PubMed DOI PMC
Hassett KJ, Benenato KE, Jacquinet E, Lee A, Woods A, Yuzhakov O, et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucleic Acids. 2019;15:1–11. https://doi.org/10.1016/j.omtn.2019.01.013 . PubMed DOI PMC
Vasileva O, Zaborova O, Shmykov B, Ivanov R, Reshetnikov V. Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics. Front Pharmacol. 2024;15:1466337. https://doi.org/10.3389/fphar.2024.1466337 . PubMed DOI PMC
Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev. 2007;59(6):454–77. https://doi.org/10.1016/j.addr.2007.04.011 . PubMed DOI
Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94. PubMed DOI PMC
Atterwala H. Impact of pharmacometrics in advancing mRNA therapeutics and vaccines. Nucleic Acid Insights. 2024;1(6):235–42. https://doi.org/10.18609/nai.2024.030 . DOI
August A, Attarwala HZ, Himansu S, et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med. 2021;27(12):2224–33. PubMed DOI PMC
Ortiz J, Brunner L, Ci L, Baek R, Jani D, Marshall JC, et al. Comparison of RT-qPCR with branched DNA to quantify a lipid nanoparticle-encapsulated mRNA therapeutic in serum and liver tissue samples from nonclinical PK studies. AAPS J. 2025;27(1):27. https://doi.org/10.1208/s12248-024-01002-9 . PubMed DOI
US FDA. Guidance for Industry. M10 Bioanalytical Method Validation and Study Sample Analysis (2022). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation . Accessed 2 Feb 2025.
Hays A, Wissel M, Colletti K, Soon R, Azadeh M, Smith J, et al. Recommendations for method development and validation of qPCR and dPCR assays in support of cell and gene therapy drug development. AAPS J. 2024;26(1):24. PubMed DOI
Liu A, Wang X. The pivotal role of chemical modifications in mRNA therapeutics. Front Cell Dev Biol. 2022;10:901510. https://doi.org/10.3389/fcell.2022.901510 . PubMed DOI PMC
Kauppinen S, Vester B, Wengel J. Locked nucleic acid (LNA): high affinity targeting of RNA for diagnostics and therapeutics. Drug Discov Today Technol. 2005;2(3):287–90. https://doi.org/10.1016/j.ddtec.2005.08.012 . PubMed DOI PMC
Adams G. A beginner’s guide to RT-PCR, qPCR and RT-qPCR. Biochem (Lond). 2020;42:48–53. https://doi.org/10.1042/bio20200034 . DOI
Muramatsu H, Lam K, Bajusz C, Laczko D, Kariko K, Schreiner P, et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol Ther. 2022;30(5):1941–51. https://doi.org/10.1016/j.ymthe.2022.02.001 . PubMed DOI PMC
Fabre AL, Colotte M, Luis A, Tuffet S, Bonnet J. An efficient method for long-term room temperature storage of RNA. Eur J Hum Genet. 2014;22(3):379–85. https://doi.org/10.1038/ejhg.2013.145 . PubMed DOI
Zhao P, Hou X, Yan J, Du S, Xue Y, Li W, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater. 2020;5(2):358–63. https://doi.org/10.1016/j.bioactmat.2020.03.001 . PubMed DOI PMC
Guelman S, Zhou Y, Brady A, Peng K. A fit-for-purpose method to measure circulating levels of the mRNA component of a liposomal-formulated individualized neoantigen-specific therapy for cancer. AAPS J. 2022;24(2):64. https://doi.org/10.1208/s12248-022-00709-x . PubMed DOI
Bower J, Zimmer J, McCown S, Tabler E, Karnik S, Kar S, et al. Recommendations for the content and management of certificates of analysis for reference standards from the GCC for bioanalysis. Bioanalysis. 2021;13(8):609–19. PubMed DOI
Asaga S, Kuo C, Nguyen T, Terpenning M, Guiliano AE, Hoon DSB. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91. https://doi.org/10.1373/clinchem.2010.151845 . PubMed DOI
Bachofen C, Willoughby K, Zadoks R, Burr P, Mellor D, Russell GC. Direct RT-PCR from serum enables fast and cost-effective phylogenetic analysis of bovine viral diarrhoea virus. J Virol Methods. 2013;190(1–2):1–3. https://doi.org/10.1016/j.jviromet.2013.03.015 . PubMed DOI
Zhang X, Yang X, Zhang Y, Liu X, Zheng G, Yang Y, et al. Direct serum assay for cell-free Bmi-1 mRNA and its potential diagnostic and prognostic value for colorectal cancer. Clin Cancer Res. 2015;21(5):1225–33. https://doi.org/10.1158/1078-0432.CCR-14-1761 . PubMed DOI
Li L, He JA, Wang W, Xia Y, Song L, Chen ZH, et al. Development of a direct reverse-transcription quantitative PCR (dirRT-qPCR) assay for clinical Zika diagnosis. Int J Infect Dis. 2019;85:167–74. https://doi.org/10.1016/j.ijid.2019.06.007 . PubMed DOI
Wee SK, Sivalingam SP, Yap EPH. Rapid direct nucleic acid amplification test without RNA extraction for SARS-CoV-2 using a portable PCR thermocycler. Genes. 2020;11(6):664. https://doi.org/10.3390/genes11060664 . PubMed DOI PMC
Tichopad A, Kitchen R, Riedmaier I, Becker C, Stahlberg A, Kibista M, et al. Design and optimization of reverse-transcription quantitative PCR experiments. Clin Chem. 2009;55(10):1816–23. https://doi.org/10.1373/clinchem.2009.126201 . PubMed DOI
Beall RF, Hollis A. Global clinical trial mobilization for COVID-19: higher, faster, stronger. Drug Discov Today. 2020;25(10):1801–6. https://doi.org/10.1016/j.drudis.2020.08.001 . PubMed DOI PMC
Padhi BK, Singh M, Huang N, Pelletier G. A PCR-based approach to assess genomic DNA contamination in RNA: application to rat RNA samples. Anal Biochem. 2016;494:49–51. https://doi.org/10.1016/j.ab.2015.10.012 . PubMed DOI
Laurell H, Iacovoni JS, Abot A, Svec D, Maoret JJ, Arnal JF, Kubista M. Correction of RT–qPCR data for genomic DNA-derived signals with ValidPrime. Nucleic Acids Res. 2012;40 (7). https://doi.org/10.1093/nar/gkr1259
Svec D, Tichopad A, Novosadvoa V, Pfaffl MW, Kubista M. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif. 2015;3:9–16. PubMed DOI PMC
Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 2017;12:1–6. https://doi.org/10.1016/j.bdq.2017.04.001 . PubMed DOI PMC
US FDA. Guidance for Industry: Long Term Follow-up After Administration of Human Gene Therapy Products (2020). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/long-term-follow-after-administration-human-gene-therapy-products . Accessed 28 Jan 2025.
Svec D, Andersson D, Pekny M, Sjoback R, Kubista M, Stahlberg A. Direct cell lysis for single-cell gene expression profiling. Front Oncol. 2013;3:274. https://doi.org/10.3389/fonc.2013.00274 . (eCollection 2013). PubMed DOI PMC
Ma H, Bell KN, Loker RN. qPCR and qRT-PCR analysis: Regulatory points to consider when conducting biodistribution and vector shedding studies. Mol Ther Methods Clin Dev. 2020;20:152–68. https://doi.org/10.1016/j.omtm.2020.11.007 . PubMed DOI PMC
Kelley M. Incurred sample reanalysis: it is just a matter of good scientific practice. Bioanalysis. 2011;3(9):931–2. https://doi.org/10.4155/bio.10.215 . PubMed DOI