Borealisation of Plant Communities in the Arctic Is Driven by Boreal-Tundra Species

. 2025 Sep ; 28 (9) : e70209.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40977098

Grantová podpora
869471 Horizon 2020 Framework Programme
FFL21-0194 Stiftelsen för Strategisk Forskning
101152158 H2020 Marie Skłodowska-Curie Actions
WAF KAW 2019.0202 Knut och Alice Wallenbergs Stiftelse
NE/W006448/1 Natural Environment Research Council
DNRF168 Danmarks Grundforskningsfond
164079 NordForsk
274712 Norges Forskningsråd
UK Department of Science, Innovation and Technology ("DSIT")

Following rapid climate change, tundra plant communities are experiencing extensive compositional shifts. A conservation concern is the potential encroachment of boreal species into the tundra ('borealisation'). Tundra borealisation has been sporadically reported, but not systematically quantified. Here, we synthesised data from across 32 study areas, spanning 1137 plots and 287 vascular plant species, resurveyed between 1981 and 2023. We (i) quantified tundra borealisation as the colonisation and increase in abundance of Boreal and Boreal-Tundra species, (ii) assessed biogeographical, climatic and local borealisation drivers and (iii) identified species contributing to borealisation and their associated traits. Half of the plots experienced borealisation, although borealisation rates were not different to random expectation. Borealisation was greater in Eurasia, closer to the treeline, at higher elevations, in warmer and wetter regions, where climate change was limited, and where initial boreal abundance was lower. Boreal coloniser species were generally short-statured, and more often shrubs and graminoids. Boreal species colonised around three times less frequently than Boreal-Tundra species. Hence, our findings indicate that tundra borealisation is mainly driven by the spread of already established boreal-low Arctic tundra species. These plant community composition changes could have cascading impacts on land-atmosphere interactions, trophic dynamics and Indigenous and local livelihoods.

Amsterdam Institute for Life and Environment Vrije Universiteit Amsterdam Amsterdam the Netherlands

Arctic Research Centre Aarhus C Denmark

Biology Department Grand Valley State University Allendale Michigan USA

CREAF Bellaterra Spain

Department of Arctic and Marine Biology; Faculty of Biosciences Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway

Department of Arctic Biology University Centre in Svalbard Longyearbyen Norway

Department of Biodiversity and Nature Tourism Estonian University of Life Sciences Tartu Estonia

Department of Biological Sciences and Bjerknes Center for Climate Research University of Bergen Bergen Norway

Department of Biological Sciences Florida International University Miami Florida USA

Department of Biology Aarhus University Aarhus C Denmark

Department of Biology and Environmental Sciences Marietta College Marietta Ohio USA

Department of Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden

Department of Biology Memorial University St John's Newfoundland Canada

Department of Biology University of Copenhagen Copenhagen Denmark

Department of Earth Sciences University of Gothenburg Gothenburg Sweden

Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado USA

Department of Ecoscience Aarhus University Roskilde Denmark

Department of Electrical Engineering Mathematics and Science Faculty of Engineering and Sustainable Development University of Gävle Gävle Sweden

Department of Forest and Conservation Sciences Faculty of Forestry University of British Columbia Vancouver British Columbia Canada

Department of Geography University of British Columbia Vancouver British Columbia Canada

Department of Natural History Norwegian University of Science and Technology Trondheim Norway

Department of Wildlife Fish and Conservation Biology University of California Davis Davis California USA

Dutch Research Council Den Haag the Netherlands

Environmental Science Center Qatar University Doha Qatar

Faculty of Environmental and Forest Sciences Agricultural University of Iceland Reykjavík Iceland

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

Gothenburg Global Biodiversity Centre Gothenburg Sweden

Institute of Arctic and Alpine Research University of Colorado Boulder Colorado USA

Institute of Hydrobiology Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic

Institute of Life and Environmental Sciences University of Iceland Reykjavík Iceland

Natural Resources Institute Finland Oulu Finland

Norwegian Institute for Nature Research Bergen Norway

Norwegian Institute for Nature Research Oslo Norway

Organismal and Evolutionary Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

School of Biosciences University of Nottingham Nottingham UK

School of Environment Resources and Sustainability University of Waterloo Waterloo Ontario Canada

School of GeoSciences University of Edinburgh Edinburgh UK

Swedish Environmental Research Institute Gothenburg Sweden

USDA Forest Service Research and Development Río Piedras Puerto Rico USA

Zobrazit více v PubMed

Aarnes, I. , Bjune A. E., Birks H. H., Balascio N. L., Bakke J., and Blaauw M.. 2012. “Vegetation Responses to Rapid Climatic Changes During the Last Deglaciation 13,500–8,000 Years Ago on Southwest Andøya, Arctic Norway.” Vegetation History and Archaeobotany 21: 17–35.

Abbott, R. J. , Smith L. C., Milne R. I., Crawford R. M. M., Wolff K., and Balfour J.. 2000. “Molecular Analysis of Plant Migration and Refugia in the Arctic.” Science 289: 1343–1346. PubMed

Alsos, I. G. , Rijal D. P., Ehrich D., et al. 2022. “Postglacial Species Arrival and Diversity Buildup of Northern Ecosystems Took Millennia.” Science Advances 8: eabo7434. PubMed PMC

Aubin, I. , Munson A. D., Cardou F., et al. 2016. “Traits to Stay, Traits to Move: A Review of Functional Traits to Assess Sensitivity and Adaptive Capacity of Temperate and Boreal Trees to Climate Change.” Environmental Reviews 24: 164–186.

Barrio, I. C. , Ehrich D., Soininen E. M., et al. 2022. “Developing Common Protocols to Measure Tundra Herbivory Across Spatial Scales.” Arctic Science 8: 638–679.

Behrend, A. M. , Aradóttir Á. L., Svavarsdóttir K., Thórhallsdóttir T. E., and Pommerening A.. 2024. “Natural Colonization as a Means to Upscale Restoration of Subarctic Woodlands in Iceland.” Restoration Ecology 33: e14332.

Birks, H. H. 2008. “The Late‐Quaternary History of Arctic and Alpine Plants.” Plant Ecology and Diversity 1: 135–146.

Bjorkman, A. D. , Myers‐Smith I. H., Elmendorf S. C., et al. 2018a. “Plant Functional Trait Change Across a Warming Tundra Biome.” Nature 562: 57–62. PubMed

Bjorkman, A. D. , Myers‐Smith I. H., Elmendorf S. C., et al. 2018b. “Tundra Trait Team: A Database of Plant Traits Spanning the Tundra Biome.” Global Ecology and Biogeography 27: 1402–1411.

Bliss, L. C. 1962. “Adaptations of Arctic and Alpine Plants to Environmental Conditions.” Arctic 15: 117–144.

Bråthen, K. A. , Pugnaire F. I., and Bardgett R. D.. 2021. “The Paradox of Forbs in Grasslands and the Legacy of the Mammoth Steppe.” Frontiers in Ecology and the Environment 19: 584–592.

Brown, C. D. , Dufour‐Tremblay G., Jameson R. G., et al. 2019. “Reproduction as a Bottleneck to Treeline Advance Across the Circumarctic Forest Tundra Ecotone.” Ecography 42: 137–147.

Bürkner, P.‐C. 2017. “brms: An R Package for Bayesian Multilevel Models Using Stan.” Journal of Statistical Software 80: 1–28.

Callaghan, T. V. , Björn L. O., Chernov Y., et al. 2004a. “Biodiversity, Distributions and Adaptations of Arctic Species in the Context of Environmental Change.” Ambio 33: 404–417. PubMed

Callaghan, T. V. , Björn L. O., Chernov Y., et al. 2004b. “Synthesis of Effects in Four Arctic Subregions.” Ambio 33: 469–473. PubMed

Callaghan, T. V. , Werkman B. R., and Crawford R. M. M.. 2002. “The Tundra‐Taiga Interface and Its Dynamics: Concepts and Applications.” Ambio 12: 6–14. PubMed

Chan, W. P. , Lenoir J., Mai G. S., Kuo H. C., Chen I. C., and Shen S. F.. 2024. “Climate Velocities and Species Tracking in Global Mountain Regions.” Nature 629, no. 8010: 114–120. PubMed PMC

Cornelissen, J. H. C. , Callaghan T. V., Alatalo J. M., et al. 2001. “Global Change and Arctic Ecosystems: Is Lichen Decline a Function of Increases in Vascular Plant Biomass?” Journal of Ecology 89, no. 6: 984–994.

Daniëls, F. J. A. , Gillespie L. J., and Poulin M.. 2013. “Chapter 9. Plants.” In Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity, 311–353. Conservation of Arctic Flora and Fauna.

De Pauw, K. , Sanczuk P., Meeussen C., et al. 2022. “Forest Understorey Communities Respond Strongly to Light in Interaction With Forest Structure, but Not to Microclimate Warming.” New Phytologist 233, no. 1: 219–235. PubMed

Dial, R. J. , Maher C. T., Hewitt R. E., and Sullivan P. F.. 2022. “Sufficient Conditions for Rapid Range Expansion of a Boreal Conifer.” Nature 608: 546–551. PubMed PMC

Dunn, P. K. , and Smyth G. K.. 2018. “Chapter 9: Models for Proportions: Binomial GLMs.” In Generalized Linear Models With Examples in R, edited by Dunn P. K. and Smyth G. K., 333–369. Springer.

Elmendorf, S. C. , Henry G. H. R., Hollister R. D., et al. 2012. “Plot‐Scale Evidence of Tundra Vegetation Change and Links to Recent Summer Warming.” Nature Climate Change 2: 453–457.

Elmendorf, S. C. , Henry G. H. R., Hollister R. D., et al. 2015. “Experiment, Monitoring, and Gradient Methods Used to Infer Climate Change Effects on Plant Communities Yield Consistent Patterns.” Proceedings of the National Academy of Sciences of the United States of America 112: 448–452. PubMed PMC

Elmhagen, B. , Berteaux D., Burgess R. M., et al. 2017. “Homage to Hersteinsson and Macdonald: Climate Warming and Resource Subsidies Cause Red Fox Range Expansion and Arctic Fox Decline.” Polar Research 36: 3.

Elven, R. 2007. Checklist of the Panarctic Flora (PAF) Vascular Plants. National Centre of Biosystematics, Natural History Museum, University of Oslo.

Emblemsvåg, M. , Pecuchet L., Velle L. G., Nogueira A., and Primicerio R.. 2022. “Recent Warming Causes Functional Borealization and Diversity Loss in Deep Fish Communities East of Greenland.” Diversity and Distributions 28: 2071–2083.

Eskelinen, A. , Kaarlejärvi E., and Olofsson J.. 2017. “Herbivory and Nutrient Limitation Protect Warming Tundra From Lowland Species' Invasion and Diversity Loss.” Global Change Biology 23: 245–255. PubMed

Fauchald, P. , Park T., Tommervik H., Myneni R., and Hausner V. H.. 2017. “Arctic Greening From Warming Promotes Declines in Caribou Populations.” Science Advances 3, no. 4: e1601365. PubMed PMC

Frost, G. V. , and Epstein H. E.. 2014. “Tall Shrub and Tree Expansion in Siberian Tundra Ecotones Since the 1960s.” Global Change Biology 20: 1264–1277. PubMed

Fullman, T. J. , Joly K., and Ackerman A.. 2017. “Effects of Environmental Features and Sport Hunting on Caribou Migration in Northwestern Alaska.” Movement Ecology 5: 4. PubMed PMC

García Criado, M. , Myers‐Smith I. H., Bjorkman A. D., et al. 2025. “Plant Diversity Dynamics Over Space and Time in a Warming Arctic.” Nature 642: 653–661. PubMed PMC

García Criado, M. , Myers‐Smith I. H., Bjorkman A. D., Lehmann C. E. R., and Stevens N.. 2020. “Woody Plant Encroachment Intensifies Under Climate Change Across Tundra and Savanna Biomes.” Global Ecology and Biogeography 29: 925–943.

García Criado, M. , Myers‐Smith I. H., Bjorkman A. D., et al. 2023. “Plant Traits Poorly Predict Winner and Loser Shrub Species in a Warming Tundra Biome.” Nature Communications 14: 3837. PubMed PMC

GBIF . 2024. “GBIF.org.”

Graae, B. J. , Vandvik V., Armbruster W. S., et al. 2018. “Stay or Go—How Topographic Complexity Influences Alpine Plant Population and Community Responses to Climate Change.” Perspectives in Plant Ecology, Evolution and Systematics 30: 41–50.

Gustafson, A. , Miller P. A., Björk R. G., Olin S., and Smith B.. 2021. “Nitrogen Restricts Future Sub‐Arctic Treeline Advance in an Individual‐Based Dynamic Vegetation Model.” Biogeosciences 18: 6329–6347.

Harris, J. A. , Hollister R. D., Botting T. F., et al. 2022. “Understanding the Climate Impacts on Decadal Vegetation Change in Northern Alaska.” Arctic Science 8: 878–898.

Harsch, M. A. , Hulme P. E., McGlone M. S., and Duncan R. P.. 2009. “Are Treelines Advancing? A Global Meta‐Analysis of Treeline Response to Climate Warming.” Ecology Letters 12: 1040–1049. PubMed

Heijmans, M. M. , Magnússon R. Í., Lara M. J., et al. 2022. “Tundra Vegetation Change and Impacts on Permafrost.” Nature Reviews Earth and Environment 3, no. 1: 68–84.

Henry, G. H. R. , and Molau U.. 1997. “Tundra Plants and Climate Change: The International Tundra Experiment (ITEX).” Global Change Biology 3: 1–9.

Hupp, J. , Brubaker M., Wilkinson K., and Williamson J.. 2015. “How Are Your Berries? Perspectives of Alaska's Environmental Managers on Trends in Wild Berry Abundance.” International Journal of Circumpolar Health 74: 28704. PubMed PMC

IPCC . 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Kaarlejärvi, E. , Eskelinen A., and Olofsson J.. 2017. “Herbivores Rescue Diversity in Warming Tundra by Modulating Trait‐Dependent Species Losses and Gains.” Nature Communications 8: 419. PubMed PMC

Karger, D. N. , Conrad O., Böhner J., et al. 2017. “Climatologies at High Resolution for the Earth's Land Surface Areas.” Scientific Data 4: 170122. PubMed PMC

Kattge, J. , Bönisch G., Díaz S., et al. 2020. “TRY Plant Trait Database—Enhanced Coverage and Open Access.” Global Change Biology 26: 119–188. PubMed

Kéry, M. 2004. “Extinction Rate. Estimates for Plant Populations in Revisitation Studies: Importance of Detectability.” Conservation Biology 18, no. 2: 570–574.

Khitun, O. V. , Koroleva T. M., Chinenko S. V., et al. 2016. “Applications of Local Floras for Floristic Subdivision and Monitoring Vascular Plant Diversity in the Russian Arctic.” Arctic Science 2: 103–126.

Kindt, R. 2020. “WorldFlora: An R Package for Exact and Fuzzy Matching of Plant Names Against the World Flora Online Taxonomic Backbone Data.” Applications in Plant Sciences 8: e11388. PubMed PMC

Kroiss, S. J. , and HilleRisLambers J.. 2015. “Recruitment Limitation of Long‐Lived Conifers: Implications for Climate Change Responses.” Ecology 96: 1286–1297. PubMed

Le Pogam, A. , O'Connor R. S., Love O. P., Petit M., Régimbald L., and Vézina F.. 2021. “Coping With the Worst of Both Worlds: Phenotypic Adjustments for Cold Acclimatization Benefit Northward Migration and Arrival in the Cold in an Arctic‐Breeding Songbird.” Functional Ecology 35: 1240–1254.

Lenoir, J. , Bertrand R., Comte L., et al. 2020. “Species Better Track Climate Warming in the Oceans Than on Land.” Nature Ecology & Evolution 4: 1044–1059. PubMed

Liu, H. , Mi Z., Lin L., et al. 2018. “Shifting Plant Species Composition in Response to Climate Change Stabilizes Grassland Primary Production.” Proceedings of the National Academy of Sciences of the United States of America 115: 4051–4056. PubMed PMC

Lloyd, A. H. , Rupp T. S., Fastie C. L., and Starfield A. M.. 2002. “Patterns and Dynamics of Treeline Advance on the Seward Peninsula, Alaska.” Journal of Geophysical Research: Atmospheres 107: ALT 2‐1–ALT 2‐15.

Lynn, J. S. , Gya R., Klanderud K., Telford R. J., Goldberg D. E., and Vandvik V.. 2023. “Traits Help Explain Species' Performance Away From Their Climate Niche Centre.” Diversity and Distributions 29: 962–978.

Lynn, J. S. , Klanderud K., Telford R. J., Goldberg D. E., and Vandvik V.. 2021. “Macroecological Context Predicts Species' Responses to Climate Warming.” Global Change Biology 27: 2088–2101. PubMed

Macias‐Fauria, M. , Forbes B. C., Zetterberg P., and Kumpula T.. 2012. “Eurasian Arctic Greening Reveals Teleconnections and the Potential for Novel Ecosystems.” Environmental Reviews 2: 613–618.

Mallory, C. D. , and Boyce M. S.. 2018. “Observed and Predicted Effects of Climate Change on Arctic Caribou and Reindeer.” Environmental Reviews 26: 13–25.

May, J. L. , and Hollister R. D.. 2012. “Validation of a Simplified Point Frame Method to Detect Change in Tundra Vegetation.” Polar Biology 35: 1815–1823.

Meltofte, H. 2013. Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity. Conservation of Arctic Flora and Fauna.

Molau, U. , and Mølgaard P., eds. 1996. ITEX Manual. ITEX Secretariat.

Myers‐Smith, I. H. , Forbes B. C., Wilmking M., et al. 2011. “Shrub Expansion in Tundra Ecosystems: Dynamics, Impacts and Research Priorities.” Environmental Research Letters 6: 045509.

Obu, J. , Westermann S., Bartsch A., et al. 2019. “Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000–2016 at 1 km

Olson, D. M. , Dinerstein E., Wikramanayake E. D., et al. 2001. “Terrestrial Ecoregions of the World: A New Map of Life on Earth: A New Global Map of Terrestrial Ecoregions Provides an Innovative Tool for Conserving Biodiversity.” Bioscience 51: 933–938.

Pajunen, A. M. , Oksanen J., and Virtanen R.. 2011. “Impact of Shrub Canopies on Understorey Vegetation in Western Eurasian Tundra.” Journal of Vegetation Science 22: 837–846.

Parker, T. C. , Thurston A. M., Raundrup K., Subke J.‐A., Wookey P. A., and Hartley I. P.. 2021. “Shrub Expansion in the Arctic May Induce Large‐Scale Carbon Losses due to Changes in Plant‐Soil Interactions.” Plant and Soil 463: 643–651.

Pärtel, M. 2014. “Community Ecology of Absent Species: Hidden and Dark Diversity.” Journal of Vegetation Science 25: 1154–1159.

Pecuchet, L. , Blanchet M.‐A., Frainer A., et al. 2020. “Novel Feeding Interactions Amplify the Impact of Species Redistribution on an Arctic Food Web.” Global Change Biology 26: 4894–4906. PubMed

R Core Team . 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Ray, N. , and Adams J.. 2001. “A GIS‐Based Vegetation Map of the World at the Last Glacial Maximum (25,000–15,000 BP).” Internet Archaeology 11: 1–44.

Raynolds, M. K. , Walker D. A., Balser A., et al. 2019. “A Raster Version of the Circumpolar Arctic Vegetation Map (CAVM).” Remote Sensing of Environment 232: 111297.

Rees, W. G. , Hofgaard A., Boudreau S., et al. 2020. “Is Subarctic Forest Advance Able to Keep Pace With Climate Change?” Global Change Biology 26: 3965–3977. PubMed

Rees, W. G. , Stammler F. M., Danks F. S., and Vitebsky P.. 2008. “Vulnerability of European Reindeer Husbandry to Global Change.” Climatic Change 87: 199–217.

Roland, C. , Schmidt J. H., Stehn S. E., Hampton‐Miller C. J., and Nicklen E. F.. 2021. “Borealization and Its Discontents: Drivers of Regional Variation in Plant Diversity Across Scales in Interior Alaska.” Ecosphere 12: e03485.

Ropars, P. , and Boudreau S.. 2012. “Shrub Expansion at the Forest–Tundra Ecotone: Spatial Heterogeneity Linked to Local Topography.” Environmental Research Letters 7: 015501.

Rupp, T. S. , Chapin F. S., and Starfield A. M.. 2001. “Modeling the Influence of Topographic Barriers on Treeline Advance at the Forest‐Tundra Ecotone in Northwestern Alaska.” Climatic Change 48: 399–416.

Sanczuk, P. , De Pauw K., De Lombaerde E., et al. 2023. “Microclimate and Forest Density Drive Plant Population Dynamics Under Climate Change.” Nature Climate Change 13, no. 8: 840–847.

Sokolova, N. A. , Fufachev I. A., Ehrich D., Shtro V. G., Sokolov V. A., and Sokolov A. A.. 2024. “Expansion of Voles and Retraction of Lemmings Over 60 Years Along a Latitudinal Gradient on Yamal Peninsula.” Global Change Biology 30, no. 2: e17161.

Speed, J. D. M. , Austrheim G., Hester A. J., and Mysterud A.. 2012. “Elevational Advance of Alpine Plant Communities Is Buffered by Herbivory.” Journal of Vegetation Science 23: 617–625.

Speed, J. D. M. , Chimal‐Ballesteros J. A., Martin M. D., Barrio I. C., Vuorinen K. E. M., and Soininen E. M.. 2021. “Will Borealization of Arctic Tundra Herbivore Communities Be Driven by Climate Warming or Vegetation Change?” Global Change Biology 27: 6568–6577. PubMed

Speed, J. D. M. , Martinsen V., Hester A. J., et al. 2015. “Continuous and Discontinuous Variation in Ecosystem Carbon Stocks With Elevation Across a Treeline Ecotone.” Biogeosciences 12: 1615–1627.

Sporbert, M. , Welk E., Seidler G., et al. 2021. “Different Sets of Traits Explain Abundance and Distribution Patterns of European Plants at Different Spatial Scales.” Journal of Vegetation Science 32: e13016.

Staude, I. R. , Pereira H. M., Daskalova G. N., et al. 2022. “Directional Turnover Towards Larger‐Ranged Plants Over Time and Across Habitats.” Ecology Letters 25: 466–482. PubMed

Steinbauer, M. J. , Grytnes J.‐A., Jurasinski G., et al. 2018. “Accelerated Increase in Plant Species Richness on Mountain Summits Is Linked to Warming.” Nature 556: 231–234. PubMed

Tang, J. , Zhou P., Miller P. A., et al. 2023. “High‐Latitude Vegetation Changes Will Determine Future Plant Volatile Impacts on Atmospheric Organic Aerosols.” npj Climate and Atmospheric Science 6: 1–13.

Tape, K. D. , Gustine D. D., Ruess R. W., Adams L. G., and Clark J. A.. 2016. “Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.” PLoS One 11: e0152636. PubMed PMC

Tape, K. D. , Jones B. M., Arp C. D., Nitze I., and Grosse G.. 2018. “Tundra Be Dammed: Beaver Colonization of the Arctic.” Global Change Biology 24: 4478–4488. PubMed

Thomas, H. J. D. , Bjorkman A. D., Myers‐Smith I. H., et al. 2020. “Global Plant Trait Relationships Extend to the Climatic Extremes of the Tundra Biome.” Nature Communications 11: 1–12. PubMed PMC

Timoney, K. P. 2023. “No Evidence of a Northward Biome Shift of Treeline in the Mackay Lake Region, North‐Central Canada.” Écoscience 30: 113–129.

Valdez, J. W. , Callaghan C. T., Junker J., Purvis A., Hill S. L. L., and Pereira H. M.. 2023. “The Undetectability of Global Biodiversity Trends Using Local Species Richness.” Ecography 2023: e06604.

Valladares, F. , Bastias C. C., Godoy O., Granda E., and Escudero A.. 2015. “Species Coexistence in a Changing World.” Frontiers in Plant Science 6: 866. PubMed PMC

Verdonen, M. , Barrio I. C., Barbero‐Palacios L., et al. 2025. “Borealization of Tundra Ecosystems With Climate and Land‐Use Change.” DOI

Villén‐Peréz, S. , Heikkinen J., Salemaa M., and Mäkipää R.. 2020. “Global Warming Will Affect the Maximum Potential Abundance of Boreal Plant Species.” Ecography 43: 801–811.

Vincent, H. , Bornand C. N., Kempel A., and Fischer M.. 2020. “Rare Species Perform Worse Than Widespread Species Under Changed Climate.” Biological Conservation 246: 108586.

Vuorinen, K. E. M. , Oksanen L., Oksanen T., Pyykonen A., Olofsson J., and Virtanen R.. 2017. “Open Tundra Persist, but Arctic Features Decline‐Vegetation Changes in the Warming Fennoscandian Tundra.” Global Change Biology 23: 3794–3807. PubMed

Walker, D. A. , Raynolds M. K., Daniëls F. J. A., et al. 2005. “The Circumpolar Arctic Vegetation Map.” Journal of Vegetation Science 16: 267–282.

Wei, T. , and Simko V.. 2021. R Package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.92). https://github.com/taiyun/corrplot.

Westoby, M. 1998. “A Leaf‐Height‐Seed (LHS) Plant Ecology Strategy Scheme.” Plant and Soil 199: 213–227.

WFO . 2024. “World Flora Online.” https://www.worldfloraonline.org/.

Zhang, W. , Miller P. A., Smith B., Wania R., Koenigk T., and Döscher R.. 2013. “Tundra Shrubification and Tree‐Line Advance Amplify Arctic Climate Warming: Results From an Individual‐Based Dynamic Vegetation Model.” Environmental Research Letters 8: 034023.

Zhou, J. , Tape K. D., Prugh L., Kofinas G., Carroll G., and Kielland K.. 2020. “Enhanced Shrub Growth in the Arctic Increases Habitat Connectivity for Browsing Herbivores.” Global Change Biology 26: 3809–3820. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...