Pigment Formation by Monascus pilosus DBM 4361 in Submerged Liquid Culture

. 2025 Oct 22 ; 73 (42) : 26900-26909. [epub] 20251008

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41060079

Monascus pilosus is usually cultivated on rice because of monacolin K. We focused on pigment production in submerged liquid culture (SLC) where M. pilosus produced different pigments compared to M. purpureus and M. ruber. From the group of classic Monascus pigments, there were formed mostly compounds with a five-carbon side chain, and the dominant pigment was monascuspiloin, a yellow pigment structurally similar to monascin. In SLC, previously undescribed patterns affecting pigment formation were observed, such as the Crabtree effect, carbon catabolite repression of pigments caused by glucose and other mono-/disaccharides, as well as nitrogen regulation, particularly repression of pigment formation by ammonium sulfate. The highest pigment concentration in the extract was obtained using an organic nitrogen source, specifically 340 mg/L for yellow pigments utilizing a combination of sucrose and tryptone, 346 mg/L for orange pigments using starch and tryptone, and 75 mg/L for red pigments using lactose and tryptone.

Zobrazit více v PubMed

Zhang Z.. et al. Insight into the phylogeny and metabolic divergence of Monascus species (M. pilosus, M. ruber, and M. purpureus) at the genome level. Front. Microbiol. 2023;14:1199144. doi: 10.3389/fmicb.2023.1199144. PubMed DOI PMC

Husakova M., Branska B., Patakova P.. Coordinated synthesis of pigments differing in side chain length in Monascus purpureus and investigation of pigments and citrinin relation. J. Agric. Food Chem. 2025;73:2033–2043. doi: 10.1021/acs.jafc.4c09653. PubMed DOI PMC

Manzoni M., Rollini M.. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 2002;58:555–564. doi: 10.1007/s00253-002-0932-9. PubMed DOI

Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health.

EFSA Panel on dietetic products, nutrition and allergies (NDA) Scientific Opinion on the substantiation of health claims related to monacolin K from red yeast rice and maintenance of normal blood LDL cholesterol concentrations (ID 1648, 1700) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011;9:2304. doi: 10.2903/j.efsa.2011.2304. DOI

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific opinion on the safety of monacolins in red yeast rice. EFSA J. 2018;16:05368 PubMed PMC

Commission Regulation (EU) 2022/860 of 1 June 2022 Amending Annex III to Regulation (EC) No 1925/2006 of the European Parliament and of the Council as Regards Monacolins from Red Yeast Rice (Text with EEA Relevance). OJL 2022, 151.

ANKASCIN 568. https://www.ankascin.org/ (accessed Jun 30, 2025).

Liu S.-F.. et al. A randomized, double-blind clinical study of the effects of Ankascin 568 plus on blood lipid regulation. J. Food Drug Anal. 2018;26:393–400. doi: 10.1016/j.jfda.2017.04.006. PubMed DOI PMC

Husakova M., Plechata M., Branska B., Patakova P.. Effect of a Monascus sp. red yeast rice extract on germination of bacterial spores. Front. Microbiol. 2021;12:686100. doi: 10.3389/fmicb.2021.686100. PubMed DOI PMC

Husakova M., Orlandi V. T., Bolognese F., Branska B., Patakova P.. Screening antibacterial photodynamic effect of Monascus red yeast rice (Hong-Qu) and mycelium extracts. Curr. Microbiol. 2024;81:183. doi: 10.1007/s00284-024-03725-6. PubMed DOI PMC

Chen W., Feng Y., Molnár I., Chen F.. Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Nat. Prod. Rep. 2019;36:561–572. doi: 10.1039/C8NP00060C. PubMed DOI PMC

Chiu H.-W.. et al. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One. 2012;7:e40462. doi: 10.1371/journal.pone.0040462. PubMed DOI PMC

Chen R.-J.. et al. Monascuspiloin induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. J. Agric. Food Chem. 2012;60:7185–7193. doi: 10.1021/jf3016927. PubMed DOI

Yang P.-X., Hsu Y.-W., Pan T.-M., Lee C.-L.. Comparative effects of monascin and monascinol produced by Monascus pilosus SWM-008 on pro-inflammatory factors and histopathological alterations in liver and kidney tissues in a streptozotocin–nicotinamide-induced rat model. J. Fungi. 2024;10:815. doi: 10.3390/jof10120815. PubMed DOI PMC

Babitha S., Soccol C. R., Pandey A.. Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. J. Basic Microbiol. 2007;47:118–126. doi: 10.1002/jobm.200610261. PubMed DOI

Dikshit R., Tallapragada P.. Comparative study of Monascus sanguineus and Monascus purpureus for red pigment production under stress condition. Int. Food Res. J. 2013;20:1235–1238.

Zhen Z.. et al. NaCl inhibits citrinin and stimulates Monascus pigments and monacolin K production. Toxins. 2019;11:118. doi: 10.3390/toxins11020118. PubMed DOI PMC

Chen G.. et al. Regulation of the pigment production by changing cellmorphology and gene expression of Monascus ruber in high-sugar synergistic high-salt stress fermentation. J. Appl. Microbiol. 2023;134:lxad207. doi: 10.1093/jambio/lxad207. PubMed DOI

Wang M., Huang T., Chen G., Wu Z.. Production of water-soluble yellow pigments via high glucose stress fermentation of Monascus ruber CGMCC 10910. Appl. Microbiol. Biotechnol. 2017;101:3121–3130. doi: 10.1007/s00253-017-8106-y. PubMed DOI

Huang T.. et al. Metabolism and secretion of yellow pigment under high glucose stress with Monascus ruber . AMB Express. 2017;7:79. doi: 10.1186/s13568-017-0382-5. PubMed DOI PMC

Chen Y.. et al. Carbon catabolite repression governs diverse physiological processes and development in Aspergillus nidulans . mBio. 2022;13:e0373421. doi: 10.1128/mbio.03734-21. PubMed DOI PMC

Fasoyin O. E.. et al. Carbon catabolite repression gene creA regulates morphology, aflatoxin biosynthesis and virulence in Aspergillus flavus. Fungal Genet. Biol. 2018;115:41–51. doi: 10.1016/j.fgb.2018.04.008. PubMed DOI

Cepeda-García C.. et al. Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 2014;98:7113–7124. doi: 10.1007/s00253-014-5760-1. PubMed DOI

Li T.. et al. Comparative transcriptome analysis of Penicillium citrinum cultured with different carbon sources identifies genes involved in citrinin biosynthesis. Toxins. 2017;9:69. doi: 10.3390/toxins9020069. PubMed DOI PMC

Hajjaj H., Niederberger P., Duboc P.. Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Appl. Environ. Microbiol. 2001;67:2596–2602. doi: 10.1128/AEM.67.6.2596-2602.2001. PubMed DOI PMC

Miyake T.. et al. Effects of the principal nutrients on lovastatin production by Monascus pilosus . Biosci. Biotechnol. Biochem. 2006;70:1154–1159. doi: 10.1271/bbb.70.1154. PubMed DOI

Ferrer C.. et al. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J. Clin. Microbiol. 2001;39:2873–2879. doi: 10.1128/JCM.39.8.2873-2879.2001. PubMed DOI PMC

Goldfarb T.. et al. NCBI RefSeq: reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res. 2025;53:D243–D257. doi: 10.1093/nar/gkae1038. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K.. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Larkin M. A.. et al. Clustal W and Clustal X version 2.0. Bioinforma . Oxf. Engl. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Tamura K., Nei M.. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512–526. doi: 10.1093/oxfordjournals.molbev.a040023. PubMed DOI

Xiong F.. et al. Exploring the subcellular localization of Monascus pigments biosynthases: Preliminary unraveling of the compartmentalization mechanism. J. Fungi. 2024;10:375. doi: 10.3390/jof10060375. PubMed DOI PMC

Huang Z., Xu Y., Li L., Li Y.. Two new Monascus metabolites with strong blue fluorescence isolated from red yeast rice. J. Agric. Food Chem. 2008;56:112–118. doi: 10.1021/jf072985a. PubMed DOI

Chen C. C., Chyau C. C., Liao C. C., Hu T. J., Kuo C. F.. Enhanced anti-inflammatory activities of Monascus pilosus fermented products by addition of ginger to the medium. J. Agric. Food Chem. 2010;58:12006–12013. doi: 10.1021/jf103070m. PubMed DOI

Cheng M.-J.. et al. Chemical constituents of red yeast rice fermented with the fungus Monascus pilosus . Chem. Nat. Compd. 2013;49:249–252. doi: 10.1007/s10600-013-0573-5. DOI

Cheng M.-J., Wu M.-D., Yuan G.-F., Su Y.-S., Yanai H.. Secondary metabolites produced by the fungus Monascus pilosus and their anti-inflammatory activity. Phytochem. Lett. 2012;5:567–571. doi: 10.1016/j.phytol.2012.05.015. DOI

Jung H., Kim C., Kim K., Shin C. S.. Color characteristics of Monascus pigments derived by fermentation with various amino acids. J. Agric. Food Chem. 2003;51:1302–1306. doi: 10.1021/jf0209387. PubMed DOI

Lin T., Chiu S.-H., Chen C.-C., Lin C.-H.. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus) J. Food Drug Anal. 2023;31:85–94. doi: 10.38212/2224-6614.3438. PubMed DOI PMC

Dai W., Shao Y., Chen F.. Production of monacolin k in Monascus pilosus: Comparison between industrial strains and analysis of its gene clusters. Microorganisms. 2021;9:747. doi: 10.3390/microorganisms9040747. PubMed DOI PMC

Li S.. et al. Effective enhancement of the ability of Monascus pilosus to produce lipid-lowering compound Monacolin K via perturbation of metabolic flux and histone acetylation modification. Food Res. Int. 2024;195:114961. doi: 10.1016/j.foodres.2024.114961. PubMed DOI

Chen G.. et al. Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation. Appl. Microbiol. Biotechnol. 2020;104:2469–2479. doi: 10.1007/s00253-020-10389-2. PubMed DOI

Lin T. F., Demain A. L.. Effect of nutrition of Monascus sp. on formation of red pigments. Appl. Microbiol. Biotechnol. 1991;36:70–75. doi: 10.1007/BF00164701. DOI

Ruiz-Villafán B.. et al. Carbon catabolite regulation of secondary metabolite formation, an old but not well-established regulatory system. Microb. Biotechnol. 2022;15:1058–1072. doi: 10.1111/1751-7915.13791. PubMed DOI PMC

Ries L. N. A., Beattie S., Cramer R. A., Goldman G. H.. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol. Microbiol. 2018;107:277–297. doi: 10.1111/mmi.13887. PubMed DOI PMC

Yang Y.. et al. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci. Rep. 2015;5:8331. doi: 10.1038/srep08331. PubMed DOI PMC

Mäkelä M. R., Aguilar-Pontes M. V., van Rossen-Uffink D., Peng M., de Vries R. P.. The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA. Sci. Rep. 2018;8:6655. doi: 10.1038/s41598-018-25152-x. PubMed DOI PMC

Chen M.-H., Johns M. R.. Effect of carbon source on ethanol and pigment production by Monascus purpureus . Enzyme Microb. Technol. 1994;16:584–590. doi: 10.1016/0141-0229(94)90123-6. DOI

Cairns T. C., Zheng X., Zheng P., Sun J., Meyer V.. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol. Biofuels. 2019;12:77. doi: 10.1186/s13068-019-1400-4. PubMed DOI PMC

Juzlova P., Martinkova L., Lozinski J., Machek F.. Ethanol as substrate for pigment production by the fungus Monascus purpureus . Enzyme Microb. Technol. 1994;16:996–1001. doi: 10.1016/0141-0229(94)90011-6. DOI

Qian G.-F., Huang J., Farhadi A., Zhang B.-B.. Ethanol addition elevates cell respiratory activity and causes overproduction of natural yellow pigments in submerged fermentation of Monascus purpureus . LWT. 2021;139:110534. doi: 10.1016/j.lwt.2020.110534. DOI

Tudzynski B.. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014;5:656. doi: 10.3389/fmicb.2014.00656. PubMed DOI PMC

Li Z., Zhang S., Guo S., Li A., Wang Y.. Regulation of MareA gene on Monascus Growth and metabolism under different nitrogen sources. J. Basic Microbiol. 2025;65:e2400611. doi: 10.1002/jobm.202400611. PubMed DOI

Ehrlich K. C., Cotty P. J.. Variability in nitrogen regulation of aflatoxin production by Aspergillus flavus strains. Appl. Microbiol. Biotechnol. 2002;60:174–178. doi: 10.1007/s00253-002-1094-5. PubMed DOI

Feng G. H., Leonard T. J.. Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans . Appl. Environ. Microbiol. 1998;64:2275–2277. doi: 10.1128/AEM.64.6.2275-2277.1998. PubMed DOI PMC

Zhou B., Ma Y., Tian Y., Li J., Zhong H.. Quantitative proteomics analysis by sequential window acquisition of all theoretical mass spectra–mass spectrometry reveals inhibition mechanism of pigments and citrinin production of Monascus response to high ammonium chloride concentration. J. Agric. Food Chem. 2020;68:808–817. doi: 10.1021/acs.jafc.9b05852. PubMed DOI

Liu H.. et al. Comparative metabolomics analysis reveals the metabolic regulation mechanism of yellow pigment overproduction by Monascus using ammonium chloride as a nitrogen source. Appl. Microbiol. Biotechnol. 2021;105:6369–6379. doi: 10.1007/s00253-021-11395-8. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...