Does human cytomegalovirus provide a novel therapeutic target for patients with glioblastoma?
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Sten A Olssons Foundation
The Research Council of Finland's Flagship InFLAMES
The Grant Agency of the Czech Ministry of Health
Family Ehrling Persson´s Foundation
Cancerfonden
Biltema Foundation
Lundbeck Foundation
Family of Jochnich´s Foundation
Danish Cancer Society
The Danish National Research Foundation
The Swedish Medical Research Council
The Novo Nordisk Foundation
NU21-03-00195
The Grant Agency of the Czech Ministry of Health
PubMed
41194660
PubMed Central
PMC12590173
DOI
10.1098/rstb.2024.0403
Knihovny.cz E-zdroje
- Klíčová slova
- cytomegalovirus, glioblastoma, reactivation, treatment, vaccine, valganciclovir,
- MeSH
- antivirové látky * terapeutické užití MeSH
- cytomegalovirové infekce * virologie farmakoterapie terapie MeSH
- Cytomegalovirus * fyziologie MeSH
- glioblastom * virologie terapie MeSH
- imunoterapie MeSH
- lidé MeSH
- nádory mozku * virologie terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky * MeSH
Glioblastoma is the most common and aggressive primary malignant brain tumour in adults, with limited treatment options despite years of research. Since the 2005 introduction of the current standard of care, hundreds of clinical trials have failed to deliver significant breakthroughs. In 2002, human cytomegalovirus (HCMV) was detected in 100% of glioblastoma tumours. Although its role in cancer remains debated, and HCMV is not classified as an oncovirus, numerous studies have reported high viral prevalence in glioblastoma. HCMV can induce all 10 'hallmarks of cancer' and has been shown to modify both tumour cell behaviour and the microenvironment, which may enhance tumour growth and promote immune evasion. The association between HCMV and poor glioblastoma prognosis has generated increasing interest in targeting the virus therapeutically. Our clinical studies suggest that adding antiviral treatment to standard care may improve survival in both primary and recurrent glioblastoma. Moreover, an mRNA-based HCMV pp65 dendritic cell vaccine has shown preliminary indications of a potential survival benefit in early phase studies. Future research should prioritize clarifying HCMV's role in glioblastoma and rigorously evaluating antiviral and immunotherapeutic strategies in randomized clinical trials.This article is part of the theme issue 'The indirect effects of cytomegalovirus infection: mechanisms and consequences'.
Czech Academy of Sciences Institute of Molecular Genetics CZ 142 20 Prague Czech republic
Danish Cancer Institute Danish Cancer Society Copenhagen DK 2100 Denmark
Department of Medicine Solna Karolinska Institutet Stockholm 17176 Sweden
Department of Neurology Karolinska University Hospital Stockholm 17176 Sweden
Department of Neurosurgery Karolinska University Hospital Stockholm 17176 Sweden
Zobrazit více v PubMed
Stupp R, et al. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. ( 10.1056/NEJMoa043330) PubMed DOI
von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M. 2015. Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. Br. J. Radiol. 88, 20150354. ( 10.1259/bjr.20150354) PubMed DOI PMC
Lacroix M, et al. 2001. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95, 190–198. ( 10.3171/jns.2001.95.2.0190) PubMed DOI
Wang L, Liang B, Li YI, Liu X, Huang J, Li YM. 2019. What is the advance of extent of resection in glioblastoma surgical treatment—a systematic review. Chin. Neurosurg. J. 5, 2. ( 10.1186/s41016-018-0150-7) PubMed DOI PMC
Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, Vogelbaum MA. 2014. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J. Neurosurg. 121, 1115–1123. ( 10.3171/2014.7.jns132449) PubMed DOI
Woehrer A, Bauchet L, Barnholtz-Sloan JS. 2014. Glioblastoma survival: has it improved? Evidence from population-based studies. Curr. Opin. Neurol. 27, 666–674. ( 10.1097/wco.0000000000000144) PubMed DOI
Tran B, Rosenthal MA. 2010. Survival comparison between glioblastoma multiforme and other incurable cancers. J. Clin. Neurosci. 17, 417–421. ( 10.1016/j.jocn.2009.09.004) PubMed DOI
Vanderbeek AM, et al. 2018. The clinical trials landscape for glioblastoma: is it adequate to develop new treatments? Neuro-oncology 20, 1034–1043. ( 10.1093/neuonc/noy027) PubMed DOI PMC
Stupp R, et al. 2017. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318, 2306. ( 10.1001/jama.2017.18718) PubMed DOI PMC
Liau LM, et al. 2023. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 9, 112. ( 10.1001/jamaoncol.2022.5370) PubMed DOI PMC
Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G, ESMO Guidelines Working Group . 2014. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, iii93–iii101. ( 10.1093/annonc/mdu050) PubMed DOI
Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, Gonzalez J, Palmer JD. 2019. Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): a review. Cancers 11, 174. ( 10.3390/cancers11020174) PubMed DOI PMC
D’Alessio A, Proietti G, Sica G, Scicchitano BM. 2019. Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers 11, 469. ( 10.3390/cancers11040469) PubMed DOI PMC
Smoll NR, Schaller K, Gautschi OP. 2013. Long-term survival of patients with glioblastoma multiforme (GBM). J. Clin. Neurosci. 20, 670–675. ( 10.1016/j.jocn.2012.05.040) PubMed DOI
Hegi ME, et al. 2005. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003. ( 10.1056/NEJMoa043331) PubMed DOI
Louis DN, et al. 2021. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncology 23, 1231–1251. ( 10.1093/neuonc/noab106) PubMed DOI PMC
Neftel C, et al. 2019. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849. ( 10.1016/j.cell.2019.06.024) PubMed DOI PMC
Verhaak RGW, et al. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110. ( 10.1016/j.ccr.2009.12.020) PubMed DOI PMC
Suvà ML, Tirosh I. 2020. The glioma stem cell model in the era of single-cell genomics. Cancer Cell 37, 630–636. ( 10.1016/j.ccell.2020.04.001) PubMed DOI
Butler M, et al. 2020. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer 6, 380–391. ( 10.1016/j.trecan.2020.02.010) PubMed DOI PMC
Uno M, et al. 2011. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma. Clinics 66, 1747–1755. ( 10.1590/s1807-59322011001000013) PubMed DOI PMC
Annavarapu S, Gogate A, Pham T, Davies K, Singh P, Robert N. 2021. Treatment patterns and outcomes for patients with newly diagnosed glioblastoma multiforme: a retrospective cohort study. CNS Oncol. 10, CNS76. ( 10.2217/cns-2021-0007) PubMed DOI PMC
Jang HJ, Park JW. 2025. Microenvironmental drivers of glioma progression. Int. J. Mol. Sci. 26, 2108. ( 10.3390/ijms26052108) PubMed DOI PMC
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. 2024. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 13, 2379062. ( 10.1080/2162402X.2024.2379062) PubMed DOI PMC
Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. 2023. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br. J. Cancer 129, 1212–1224. ( 10.1038/s41416-023-02361-4) PubMed DOI PMC
Ugel S, De Sanctis F, Mandruzzato S, Bronte V. 2015. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Invest. 125, 3365–3376. ( 10.1172/JCI80006) PubMed DOI PMC
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, Terry S, Chouaib S. 2022. The effect of hypoxia and hypoxia-associated pathways in the regulation of antitumor response: friends or foes? Front. Immunol. 13, 828875. ( 10.3389/fimmu.2022.828875) PubMed DOI PMC
Ahmady F, Sharma A, Achuthan AA, Kannourakis G, Luwor RB. 2025. The role of TIM-3 in glioblastoma progression. Cells 14, 346. ( 10.3390/cells14050346) PubMed DOI PMC
Broggi G, et al. 2024. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: a comprehensive review with emphasis on the implications for neuropathologists. Pathol. Res. Pract. 254, 155144. ( 10.1016/j.prp.2024.155144) PubMed DOI
Vincze SR, et al. 2024. ImmunoPET imaging of TIGIT in the glioma microenvironment. Scient. Rep. 14, 5305. ( 10.1038/s41598-024-55296-y) PubMed DOI PMC
de Leve S, Wirsdörfer F, Jendrossek V. 2019. Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapy. Front. Immunol. 10, 698. ( 10.3389/fimmu.2019.00698) PubMed DOI PMC
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. 2024. Natural killer cells at the frontline in the fight against cancer. Cell Death Dis. 15, 614. ( 10.1038/s41419-024-06976-0) PubMed DOI PMC
Thaiss CA, Semmling V, Franken L, Wagner H, Kurts C. 2011. Chemokines: a new dendritic cell signal for T cell activation. Front. Immunol. 2, 31. ( 10.3389/fimmu.2011.00031) PubMed DOI PMC
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. 2025. A comprehensive review on targeting diverse immune cells for anticancer therapy: beyond immune checkpoint inhibitors. Crit. Rev. Oncol. Hematol. 210, 104702. ( 10.1016/j.critrevonc.2025.104702) PubMed DOI
Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ. 2002. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 62, 3347–3350. PubMed
Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C, Devleesschauwer B, Griffiths P. 2019. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta‐analysis. Rev. Med. Virol. 29, e2034. ( 10.1002/rmv.2034) PubMed DOI
Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, Cobbs CS. 2002. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360, 1557–1563. ( 10.1016/s0140-6736(02)11524-8) PubMed DOI
Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS. 2003. High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J. Urol. 170, 998–1002. ( 10.1097/01.ju.0000080263.46164.97) PubMed DOI
Harkins LE, Matlaf LA, Soroceanu L, Klemm K, Britt WJ, Wang W, Bland KI, Cobbs CS. 2010. Detection of human cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae 1, 8. ( 10.1186/2042-4280-1-8) PubMed DOI PMC
Wolmer‐Solberg N, et al. 2013. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int. J. Cancer 133, 2351–2361. ( 10.1002/ijc.28265) PubMed DOI
Baryawno N, et al. 2011. Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J. Clin. Invest. 121, 4043–4055. ( 10.1172/JCI57147) PubMed DOI PMC
Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, Sampson JH. 2008. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-oncology 10, 10–18. ( 10.1215/15228517-2007-035) PubMed DOI PMC
Dziurzynski K, Chang SM, Heimberger AB, Kalejta RF, McGregor Dallas SR, Smit M, Soroceanu L, Cobbs CS. 2012. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-oncology 14, 246–255. ( 10.1093/neuonc/nor227) PubMed DOI PMC
Rahbar A, Pantalone MR, Religa P, Rådestad AF, Söderberg‐Naucler C. 2021. Evidence of human cytomegalovirus infection and expression of 5‐lipoxygenase in borderline ovarian tumors. J. Med. Virol. 93, 4023–4027. ( 10.1002/jmv.26664) PubMed DOI
Carlson JW, Rådestad AF, Söderberg-Naucler C, Rahbar A. 2018. Human cytomegalovirus in high grade serous ovarian cancer possible implications for patients survival. Medicine 97, e9685. ( 10.1097/MD.0000000000009685) PubMed DOI PMC
Price RL, Bingmer K, Harkins L, Iwenofu OH, Kwon CH, Cook C, Pelloski C, Chiocca EA. 2012. Cytomegalovirus infection leads to pleomorphic rhabdomyosarcomas inTrp53 PubMed DOI PMC
Libard S, et al. 2014. Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade. PLoS One 9, e108861. ( 10.1371/journal.pone.0108861) PubMed DOI PMC
Bartek Jr J, et al. 2017. Replication stress, DNA damage signalling, and cytomegalovirus infection in human medulloblastomas. Mol. Oncol. 11, 945–964. ( 10.1002/1878-0261.12061) PubMed DOI PMC
Taher C, et al. 2014. High prevalence of human cytomegalovirus in brain metastases of patients with primary breast and colorectal cancers. Transl. Oncol. 7, 732–740. ( 10.1016/j.tranon.2014.09.008) PubMed DOI PMC
Taher C, de Boniface J, Mohammad AA, Religa P, Hartman J, Yaiw KC, Frisell J, Rahbar A, Söderberg-Naucler C. 2013. High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS One 8, e56795. ( 10.1371/journal.pone.0056795) PubMed DOI PMC
Pantalone MR, et al. 2023. Human cytomegalovirus infection enhances 5‑lipoxygenase and cycloxygenase‑2 expression in colorectal cancer. Int. J. Oncol. 63, 116. ( 10.3892/ijo.2023.5564) PubMed DOI PMC
Costa H, Touma J, Davoudi B, Benard M, Sauer T, Geisler J, Vetvik K, Rahbar A, Söderberg-Naucler C. 2019. Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J. Cancer Res. Clin. Oncol. 145, 2083–2095. ( 10.1007/s00432-019-02946-8) PubMed DOI PMC
El-Shinawi M, Mohamed HT, El-Ghonaimy EA, Tantawy M, Younis A, Schneider RJ, Mohamed MM. 2013. Human cytomegalovirus infection enhances NF-κB/p65 signaling in inflammatory breast cancer patients. PLoS One 8, e55755. ( 10.1371/journal.pone.0055755) PubMed DOI PMC
Mohamed HT, El-Sharkawy AA, El-Shinawi M, Schneider RJ, Mohamed MM. 2022. Inflammatory breast cancer: the secretome of HCMV PubMed DOI PMC
Rahbar A, Orrego A, Peredo I, Dzabic M, Wolmer-Solberg N, Strååt K, Stragliotto G, Söderberg-Nauclér C. 2013. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J. Clin. Virol. 57, 36–42. ( 10.1016/j.jcv.2012.12.018) PubMed DOI
Touma J, Pantalone MR, Rahbar A, Liu Y, Vetvik K, Sauer T, Söderberg-Naucler C, Geisler J. 2023. Human cytomegalovirus protein expression is correlated with shorter overall survival in breast cancer patients: a cohort study. Viruses 15, 732. ( 10.3390/v15030732) PubMed DOI PMC
Goerig NL, et al. 2020. Early Mortality of Brain Cancer Patients and its Connection to Cytomegalovirus Reactivation During Radiochemotherapy. Clin. Cancer Res. 26, 3259–3270. ( 10.1158/1078-0432.CCR-19-3195) PubMed DOI
Yang Z, Tang X, Hasing ME, Pang X, Ghosh S, McMullen TPW, Brindley DN, Hemmings DG. 2022. Human cytomegalovirus seropositivity and viral DNA in breast tumors are associated with poor patient prognosis. Cancers 14, 1148. ( 10.3390/cancers14051148) PubMed DOI PMC
Holdhoff M, et al. 2017. Absence of cytomegalovirus in glioblastoma and other high-grade gliomas by real-time PCR, immunohistochemistry, and in situ hybridization. Clin. Cancer Res. 23, 3150–3157. ( 10.1158/1078-0432.ccr-16-1490) PubMed DOI PMC
Yamashita Y, et al. 2014. Lack of presence of the human cytomegalovirus in human glioblastoma. Mod. Pathol. 27, 922–929. ( 10.1038/modpathol.2013.219) PubMed DOI
Garcia-Martinez A, Alenda C, Irles E, Ochoa E, Quintanar T, Rodriguez-Lescure A, Soto JL, Barbera VM. 2017. Lack of cytomegalovirus detection in human glioma. Virol. J. 14, 216. ( 10.1186/s12985-017-0885-3) PubMed DOI PMC
Yang CF, Ho HL, Lin SC, Hsu CY, Ho DMT. 2017. Detection of human cytomegalovirus in glioblastoma among Taiwanese subjects. PLoS One 12, e0179366. ( 10.1371/journal.pone.0179366) PubMed DOI PMC
Poltermann S, Schlehofer B, Steindorf K, Schnitzler P, Geletneky K, Schlehofer JR. 2006. Lack of association of herpesviruses with brain tumors. J. Neurovirol. 12, 90–99. ( 10.1080/13550280600654573) PubMed DOI
Loit MP, Adle-Biassette H, Bouazza S, Mazeron MC, Manivet P, Lehmann-Che J, Teissier N, Mandonnet E, Molina JM. 2019. Multimodal techniques failed to detect cytomegalovirus in human glioblastoma samples. J. Neurovirol. 25, 50–56. ( 10.1007/s13365-018-0683-8) PubMed DOI
Peredo-Harvey I, Rahbar A, Söderberg-Nauclér C. 2021. Presence of the human cytomegalovirus in glioblastomas—a systematic review. Cancers 13, 5051. ( 10.3390/cancers13205051) PubMed DOI PMC
Prins RM, Cloughesy TF, Liau LM. 2008. Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N. Engl. J. Med. 359, 539–541. ( 10.1056/nejmc0804818) PubMed DOI PMC
El Baba R, Pasquereau S, Haidar Ahmad S, Diab-Assaf M, Herbein G. 2022. Oncogenic and stemness signatures of the high-risk HCMV strains in breast cancer progression. Cancers 14, 4271. ( 10.3390/cancers14174271) PubMed DOI PMC
Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. 2022. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. eBioMedicine 80, 104056. ( 10.1016/j.ebiom.2022.104056) PubMed DOI PMC
El Baba R, Pasquereau S, Haidar Ahmad S, Monnien F, Abad M, Bibeau F, Herbein G. 2023. EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene 42, 2031–2045. ( 10.1038/s41388-023-02709-3) PubMed DOI PMC
Haidar Ahmad S, El Baba R, Herbein G. 2023. Polyploid giant cancer cells, cytokines and cytomegalovirus in breast cancer progression. Cancer Cell Int. 23, 119. ( 10.1186/s12935-023-02971-1) PubMed DOI PMC
Nelson JA, Fleckenstein B, Galloway DA, McDougall JK. 1982. Transformation of NIH 3T3 cells with cloned fragments of human cytomegalovirus strain AD169. J. Virol. 43, 83–91. ( 10.1128/jvi.43.1.83-91.1982) PubMed DOI PMC
Karagas MR, et al. 2025. Carcinogenicity of hepatitis D virus, human cytomegalovirus, and Merkel cell polyomavirus. Lancet Oncol. 26, 994–995. ( 10.1016/S1470-2045(25)00403-6) PubMed DOI PMC
Geder KM, Lausch R, O’Neill F, Rapp F. 1976. Oncogenic transformation of human embryo lung cells by human cytomegalovirus. Science 192, 1134–1137. ( 10.1126/science.179143) PubMed DOI
Geris JM, Spector LG, Pfeiffer RM, Limaye AP, Yu KJ, Engels EA. 2022. Cancer risk associated with cytomegalovirus infection among solid organ transplant recipients in the United States. Cancer 128, 3985–3994. ( 10.1002/cncr.34462) PubMed DOI PMC
Desai R, Collett D, Watson CJE, Johnson PJ, Moss P, Neuberger J. 2015. Impact of cytomegalovirus on long-term mortality and cancer risk after organ transplantation. Transplantation 99, 1989–1994. ( 10.1097/tp.0000000000000641) PubMed DOI
Britt WJ, Alford CA. 1996. Cytomegalovirus. In Fields virology (eds Fields BN, Knipe DM, Howley PM), pp. 2493–2523. Philadelphia, PA: Lippincott-Raven Publishers.
Ramanan P, Razonable RR. 2013. Cytomegalovirus infections in solid organ transplantation: a review. Infect. Chemother. 45, 260. ( 10.3947/ic.2013.45.3.260) PubMed DOI PMC
Griffiths P, Reeves M. 2021. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol. 19, 759–773. ( 10.1038/s41579-021-00582-z) PubMed DOI PMC
Pass RF, Stagno S, Myers GJ, Alford CA. 1980. Outcome of symptomatic congenital cytomegalovirus infection: results of long-term longitudinal follow-up. Pediatrics 66, 758–762. ( 10.1542/peds.66.5.758) PubMed DOI
Britt WJ. 2017. Congenital human cytomegalovirus infection and the enigma of maternal immunity. J. Virol. 91, e02392-16. ( 10.1128/JVI.02392-16) PubMed DOI PMC
Krause PR, et al. 2013. Priorities for CMV vaccine development. Vaccine 32, 4–10. ( 10.1016/j.vaccine.2013.09.042) PubMed DOI PMC
Wu Y, Prager A, Boos S, Resch M, Brizic I, Mach M, Wildner S, Scrivano L, Adler B. 2017. Human cytomegalovirus glycoprotein complex gH/gL/gO uses PDGFR-α as a key for entry. PLoS Pathog. 13, e1006281. ( 10.1371/journal.ppat.1006281) PubMed DOI PMC
Soroceanu L, Akhavan A, Cobbs CS. 2008. Platelet-derived growth factor-α receptor activation is required for human cytomegalovirus infection. Nature 455, 391–395. ( 10.1038/nature07209) PubMed DOI
Martinez-Martin N, et al. 2018. An unbiased screen for human cytomegalovirus identifies neuropilin-2 as a central viral receptor. Cell 174, 1158–1171.( 10.1016/j.cell.2018.06.028) PubMed DOI
Vanarsdall AL, Pritchard SR, Wisner TW, Liu J, Jardetzky TS, Johnson DC. 2018. CD147 promotes entry of pentamer-expressing human cytomegalovirus into epithelial and endothelial cells. MBio 9, e00781-18. ( 10.1128/mBio.00781-18) PubMed DOI PMC
Chan G, Nogalski MT, Yurochko AD. 2009. Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. Proc. Natl Acad. Sci. USA 106, 22369–22374. ( 10.1073/pnas.0908787106) PubMed DOI PMC
Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES. 2003. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461. ( 10.1038/nature01818) PubMed DOI
Nauclér CS, Geisler J, Vetvik K. 2019. The emerging role of human cytomegalovirus infection in human carcinogenesis: a review of current evidence and potential therapeutic implications. Oncotarget 10, 4333–4347. ( 10.18632/oncotarget.27016) PubMed DOI PMC
Soroceanu L, Cobbs CS. 2011. Is HCMV a tumor promoter? Virus Res. 157, 193–203. ( 10.1016/j.virusres.2010.10.026) PubMed DOI PMC
Mercado NB, Real JN, Kaiserman J, Panagioti E, Cook CH, Lawler SE. 2024. Clinical implications of cytomegalovirus in glioblastoma progression and therapy. NPJ Precis. Oncol. 8, 213. ( 10.1038/s41698-024-00709-4) PubMed DOI PMC
Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100, 57–70. ( 10.1016/s0092-8674(00)81683-9) PubMed DOI
Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144, 646–674. ( 10.1016/j.cell.2011.02.013) PubMed DOI
Mui U, Haley C, Tyring S. 2017. Viral oncology: molecular biology and pathogenesis. J. Clin. Med. 6, 111. ( 10.3390/jcm6120111) PubMed DOI PMC
Felsani A, Mileo AM, Paggi MG. 2006. Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25, 5277–5285. ( 10.1038/sj.onc.1209621) PubMed DOI
Lee C, Cho Y. 2002. Interactions of SV40 large T antigen and other viral proteins with retinoblastoma tumour suppressor. Rev. Med. Virol. 12, 81–92. ( 10.1002/rmv.340) PubMed DOI
Helt AM, Galloway DA. 2003. Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis 24, 159–169. ( 10.1093/carcin/24.2.159) PubMed DOI
Iwahori S, Umaña AC, VanDeusen HR, Kalejta RF. 2017. Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. J. Biol. Chem. 292, 6583–6599. ( 10.1074/jbc.m116.773150) PubMed DOI PMC
Iwahori S, Kalejta RF. 2017. Phosphorylation of transcriptional regulators in the retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase encoded by human cytomegalovirus. Virology 512, 95–103. ( 10.1016/j.virol.2017.09.009) PubMed DOI PMC
Steingruber M, Marschall M. 2020. The cytomegalovirus protein kinase pUL97: host interactions, regulatory mechanisms and antiviral drug targeting. Microorganisms 8, 515. ( 10.3390/microorganisms8040515) PubMed DOI PMC
Kamil JP, Hume AJ, Jurak I, Münger K, Kalejta RF, Coen DM. 2009. Human papillomavirus 16 E7 inactivator of retinoblastoma family proteins complements human cytomegalovirus lacking UL97 protein kinase. Proc. Natl Acad. Sci. USA 106, 16823–16828. ( 10.1073/pnas.0901521106) PubMed DOI PMC
Hume AJ, Kalejta RF. 2009. Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div. 4, 1. ( 10.1186/1747-1028-4-1) PubMed DOI PMC
Kalejta RF, Bechtel JT, Shenk T. 2003. Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol. Cell. Biol. 23, 1885–1895. ( 10.1128/mcb.23.6.1885-1895.2003) PubMed DOI PMC
Kalejta RF, Shenk T. 2003. The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G PubMed DOI PMC
Spector DH. 2015. Human cytomegalovirus riding the cell cycle. Med. Microbiol. Immunol. 204, 409–419. ( 10.1007/s00430-015-0396-z) PubMed DOI
Qian Z, Leung-Pineda V, Xuan B, Piwnica-Worms H, Yu D. 2010. Human cytomegalovirus protein pUL117 targets the mini-chromosome maintenance complex and suppresses cellular DNA synthesis. PLoS Pathog. 6, e1000814. ( 10.1371/journal.ppat.1000814) PubMed DOI PMC
Salvant BS, Fortunato EA, Spector DH. 1998. Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J. Virol. 72, 3729–3741. ( 10.1128/jvi.72.5.3729-3741.1998) PubMed DOI PMC
Weisbach H, Schablowsky C, Vetter B, Gruska I, Hagemeier C, Wiebusch L. 2017. Synthetic lethal mutations in the cyclin A interface of human cytomegalovirus. PLoS Pathog. 13, e1006193. ( 10.1371/journal.ppat.1006193) PubMed DOI PMC
Speir E, Modali R, Huang ES, Leon MB, Shawl F, Finkel T, Epstein SE. 1994. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 265, 391–394. ( 10.1126/science.8023160) PubMed DOI
Savaryn JP, Reitsma JM, Bigley TM, Halligan BD, Qian Z, Yu D, Terhune SS. 2013. Human cytomegalovirus pUL29/28 and pUL38 repression of p53-regulated p21CIP1 and caspase 1 promoters during infection. J. Virol. 87, 2463–2474. ( 10.1128/jvi.01926-12) PubMed DOI PMC
Fulkerson HL, Chesnokova LS, Kim JH, Mahmud J, Frazier LE, Chan GC, Yurochko AD. 2020. HCMV-induced signaling through gB–EGFR engagement is required for viral trafficking and nuclear translocation in primary human monocytes. Proc. Natl Acad. Sci. USA 117, 19507–19516. ( 10.1073/pnas.2003549117) PubMed DOI PMC
Lee BJ, Min CK, Hancock M, Streblow DN, Caposio P, Goodrum FD, Yurochko AD. 2021. Human cytomegalovirus host interactions: EGFR and host cell signaling is a point of convergence between viral infection and functional changes in infected cells. Front. Microbiol. 12, 660901. ( 10.3389/fmicb.2021.660901) PubMed DOI PMC
Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. 2019. HCMV modulation of cellular PI3K/AKT/mTOR signaling: new opportunities for therapeutic intervention? Antiviral Res. 163, 82–90. ( 10.1016/j.antiviral.2019.01.009) PubMed DOI PMC
Roy S, Arav-Boger R. 2014. New cell-signaling pathways for controlling cytomegalovirus replication. Am. J. Transplant. 14, 1249–1258. ( 10.1111/ajt.12725) PubMed DOI PMC
Krenzlin H, et al. 2021. Cytomegalovirus infection of glioblastoma cells leads to NF-κB dependent upregulation of the c-MET oncogenic tyrosine kinase. Cancer Lett. 513, 26–35. ( 10.1016/j.canlet.2021.05.005) PubMed DOI PMC
Zhang A, Hildreth RL, Colberg-Poley AM. 2013. Human cytomegalovirus inhibits apoptosis by proteasome-mediated degradation of Bax at endoplasmic reticulum-mitochondrion contacts. J. Virol. 87, 5657–5668. ( 10.1128/jvi.00145-13) PubMed DOI PMC
Terhune S, Torigoi E, Moorman N, Silva M, Qian Z, Shenk T, Yu D. 2007. Human cytomegalovirus UL38 protein blocks apoptosis. J. Virol. 81, 3109–3123. ( 10.1128/JVI.02124-06) PubMed DOI PMC
Ren Y, et al. 2022. Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nat. Microbiol. 7, 1041–1053. ( 10.1038/s41564-022-01136-6) PubMed DOI
Wang T, Qian D, Hu M, Li L, Zhang L, Chen H, Yang R, Wang B. 2014. Human cytomegalovirus inhibits apoptosis by regulating the activating transcription factor 5 signaling pathway in human malignant glioma cells. Oncol. Lett. 8, 1051–1057. ( 10.3892/ol.2014.2264) PubMed DOI PMC
Ahn JH, Hayward GS. 2000. Disruption of PML-associated nuclear bodies by IE1 correlates with efficient early stages of viral gene expression and DNA replication in human cytomegalovirus infection. Virology 274, 39–55. ( 10.1006/viro.2000.0448) PubMed DOI
Scherer M, Schilling EM, Stamminger T. 2017. The human CMV IE1 protein: an offender of PML nuclear bodies. Adv. Anat. Embryol. Cell Biol. 223, 77–94. ( 10.1007/978-3-319-53168-7_4) PubMed DOI
Wen L, et al. 2023. SOX2 downregulation of PML increases HCMV gene expression and growth of glioma cells. PLoS Pathog. 19, e1011316. ( 10.1371/journal.ppat.1011316) PubMed DOI PMC
Fornara O, et al. 2016. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells: prognostic significance and biological impact. Cell Death Differ. 23, 2015. ( 10.1038/cdd.2015.91) PubMed DOI PMC
Soroceanu L, et al. 2015. Cytomegalovirus immediate-early proteins promote stemness properties in glioblastoma. Cancer Res. 75, 3065–3076. ( 10.1158/0008-5472.can-14-3307) PubMed DOI PMC
Luo MH, Fortunato EA. 2007. Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J. Virol. 81, 10424–10436. ( 10.1128/jvi.00866-07) PubMed DOI PMC
Kostopoulou ON, Mohammad A, Bartek Jr J, Winter J, Jung M, Stragliotto G, Söderberg‐Nauclér C, Landázuri N. 2018. Glucocorticoids promote a glioma stem cell‐like phenotype and resistance to chemotherapy in human glioblastoma primary cells: biological and prognostic significance. Int. J. Cancer 142, 1266–1276. ( 10.1002/ijc.31132) PubMed DOI
Merchut-Maya JM, et al. 2022. Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ. 29, 1639–1653. ( 10.1038/s41418-022-00953-w) PubMed DOI PMC
Bartkova J, et al. 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637. ( 10.1038/nature05268) PubMed DOI
Bartkova J, et al. 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870. ( 10.1038/nature03482) PubMed DOI
Bartkova J, et al. 2010. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 29, 5095–5102. ( 10.1038/onc.2010.249) PubMed DOI
Macheret M, Halazonetis TD. 2015. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448. ( 10.1146/annurev-pathol-012414-040424) PubMed DOI
Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. 2018. High speed of fork progression induces DNA replication stress and genomic instability. Nature 559, 279–284. ( 10.1038/s41586-018-0261-5) PubMed DOI
Heiske A, Roettger Y, Bacher M. 2012. Cytomegalovirus upregulates vascular endothelial growth factor and its second cellular kinase domain receptor in human fibroblasts. Viral Immunol. 25, 360–367. ( 10.1089/vim.2012.0028) PubMed DOI
Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GAMS, Smit MJ. 2006. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc. Natl Acad. Sci. USA 103, 13068–13073. ( 10.1073/pnas.0604433103) PubMed DOI PMC
Caposio P, Orloff SL, Streblow DN. 2011. The role of cytomegalovirus in angiogenesis. Virus Res. 157, 204–211. ( 10.1016/j.virusres.2010.09.011) PubMed DOI PMC
Dumortier J, Streblow DN, Moses AV, Jacobs JM, Kreklywich CN, Camp D, Smith RD, Orloff SL, Nelson JA. 2008. Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J. Virol. 82, 6524–6535. ( 10.1128/jvi.00502-08) PubMed DOI PMC
Maussang D, et al. 2009. The human cytomegalovirus–encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res. 69, 2861–2869. ( 10.1158/0008-5472.can-08-2487) PubMed DOI
Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA. 1999. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511–520. ( 10.1016/s0092-8674(00)81539-1) PubMed DOI
Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Söderberg-Nauclér C, Smit MJ. 2010. HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6–STAT3 axis. Sci. Signal. 3, ra58. ( 10.1126/scisignal.2001180) PubMed DOI
Liang S, Yu B, Qian D, Zhao R, Wang B, Hu M. 2019. Human cytomegalovirus ie2 affects the migration of glioblastoma by mediating the different splicing patterns of RON through hnRNP A2B1. NeuroReport 30, 805–811. ( 10.1097/wnr.0000000000001277) PubMed DOI
Ling Y, Kuang Y, Chen LL, Lao WF, Zhu YR, Wang LQ, Wang D. 2017. A novel RON splice variant lacking exon 2 activates the PI3K/AKT pathway via PTEN phosphorylation in colorectal carcinoma cells. Oncotarget 8, 39101–39116. ( 10.18632/oncotarget.16603) PubMed DOI PMC
Bergkamp ND, et al. 2023. A virally encoded GPCR drives glioblastoma through feed-forward activation of the SK1-S1P(1) signaling axis. Sci. Signal 16, eade6737. ( 10.1126/scisignal.ade6737) PubMed DOI
Cui K, Wang X, Han C, Liu S, Hu Y. 2023. Mechanism of human cytomegalovirus-induced epithelial–mesenchymal transition in glioma cells via the upregulation of RIP2 expression. Biol. Pharm. Bull. 46, 1506–1511. ( 10.1248/bpb.b23-00256) PubMed DOI
Oberstein A, Shenk T. 2017. Cellular responses to human cytomegalovirus infection: induction of a mesenchymal-to-epithelial transition (MET) phenotype. Proc. Natl Acad. Sci. USA 114, E8244–E8253. ( 10.1073/pnas.1710799114) PubMed DOI PMC
Warburg O, Wind F, Negelein E. 1927. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530. ( 10.1085/jgp.8.6.519) PubMed DOI PMC
Warburg O. 1956. On the origin of cancer cells. Science 123, 309–314. ( 10.1126/science.123.3191.309) PubMed DOI
Furukawa T, Sakuma S, Plotkin SA. 1976. Human cytomegalovirus infection of WI-38 cells stimulates mitochondrial DNA synthesis. Nature 262, 414–416. ( 10.1038/262414a0) PubMed DOI
Monk CH, Zwezdaryk KJ. 2020. Host mitochondrial requirements of cytomegalovirus replication. Curr. Clin. Microbiol. Rep. 7, 115–123. ( 10.1007/s40588-020-00153-5) PubMed DOI PMC
Betsinger CN, Jankowski CSR, Hofstadter WA, Federspiel JD, Otter CJ, Jean Beltran PM, Cristea IM. 2021. The human cytomegalovirus protein pUL13 targets mitochondrial cristae architecture to increase cellular respiration during infection. Proc. Natl Acad. Sci. USA 118, e2101675118. ( 10.1073/pnas.2101675118) PubMed DOI PMC
Xi Y, Harwood S, Wise LM, Purdy JG. 2019. Human cytomegalovirus pUL37x1 is important for remodeling of host lipid metabolism. J. Virol. 93, 10-1128. ( 10.1128/jvi.00843-19) PubMed DOI PMC
Seyfried TN. 2015. Cancer as a mitochondrial metabolic disease. Front. Cell Dev. Biol. 3, 43. ( 10.3389/fcell.2015.00043) PubMed DOI PMC
Shenk T, Alwine JC. 2014. Human cytomegalovirus: coordinating cellular stress, signaling, and metabolic pathways. Annu. Rev. Virol. 1, 355–374. ( 10.1146/annurev-virology-031413-085425) PubMed DOI
Harrison MAA, Hochreiner EM, Benjamin BP, Lawler SE, Zwezdaryk KJ. 2022. Metabolic reprogramming of glioblastoma cells during HCMV infection induces secretome-mediated paracrine effects in the microenvironment. Viruses 14, 103. ( 10.3390/v14010103) PubMed DOI PMC
de Wit RH, Mujić-Delić A, van Senten JR, Fraile-Ramos A, Siderius M, Smit MJ. 2016. Human cytomegalovirus encoded chemokine receptor US28 activates the HIF-1α/PKM2 axis in glioblastoma cells. Oncotarget 7, 67966–67985. ( 10.18632/oncotarget.11817) PubMed DOI PMC
Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH. 2007. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345–1348. ( 10.1126/science.1142984) PubMed DOI
Seyfried BTN, Kiebish M, Marsh J, Mukherjee P. 2009. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet. J. Cancer Res. Ther. 5 Suppl 1, S7–15. ( 10.4103/0973-1482.55134) PubMed DOI
Mukherjee P, et al. 2019. Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Commun. Biol. 2, 200. ( 10.1038/s42003-019-0455-x) PubMed DOI PMC
Dziurzynski K, et al. 2011. Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype. Clin. Cancer Res. 17, 4642–4649. ( 10.1158/1078-0432.ccr-11-0414) PubMed DOI PMC
Tovar-Salazar A, Weinberg A. 2020. Understanding the mechanism of action of cytomegalovirus-induced regulatory T cells. Virology 547, 1–6. ( 10.1016/j.virol.2020.05.001) PubMed DOI PMC
Baasch S, et al. 2021. Cytomegalovirus subverts macrophage identity. Cell 184, 3774–3793.( 10.1016/j.cell.2021.05.009) PubMed DOI
Frascaroli G, Varani S, Moepps B, Sinzger C, Landini MP, Mertens T. 2013. Human cytomegalovirus subverts the functions of monocytes, impairing chemokine-mediated migration and leukocyte recruitment. J. Virol. 87, 13082–13083. ( 10.1128/jvi.02518-13) PubMed DOI PMC
Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C. 2010. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840. ( 10.1182/blood-2009-12-257832) PubMed DOI PMC
Qin Z, et al. 2018. TLR3 regulates PD-L1 expression in human cytomegalovirus infected glioblastoma. Int. J. Clin. Exp. Pathol. 11, 5318–5326. PubMed PMC
Khasraw M, Reardon DA, Weller M, Sampson JH. 2020. PD-1 inhibitors: do they have a future in the treatment of glioblastoma? Clin. Cancer Res. 26, 5287–5296. ( 10.1158/1078-0432.ccr-20-1135) PubMed DOI PMC
de Dios O, et al. 2024. NKG2C/KLRC2 tumor cell expression enhances immunotherapeutic efficacy against glioblastoma. J. Immunother. Cancer 12, e009210. ( 10.1136/jitc-2024-009210) PubMed DOI PMC
Murad S, Michen S, Becker A, Füssel M, Schackert G, Tonn T, Momburg F, Temme A. 2022. NKG2C+ NK cells for immunotherapy of glioblastoma multiforme. Int. J. Mol. Sci. 23, 5857. ( 10.3390/ijms23105857) PubMed DOI PMC
Lopez-Vergès S, et al. 2011. Expansion of a unique CD57 PubMed DOI PMC
Sarhan D, et al. 2018. Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol. Res. 6, 766–775. ( 10.1158/2326-6066.cir-17-0498) PubMed DOI PMC
López-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. 2023. Adaptive NK cell response to human cytomegalovirus: facts and open issues. Semin. Immunol. 65, 101706. ( 10.1016/j.smim.2022.101706) PubMed DOI
Martín Almazán N, et al. 2023. Non-classical HLA-E restricted CMV 15-mer peptides are recognized by adaptive NK cells and induce memory responses. Front. Immunol. 14, 1230718. ( 10.3389/fimmu.2023.1230718) PubMed DOI PMC
Crawford LB, Hancock MH, Struthers HM, Streblow DN, Yurochko AD, Caposio P, Goodrum FD, Nelson JA. 2021. CD34 PubMed DOI PMC
Söderberg-Nauclér C, Fish KN, Nelson JA. 1997. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91, 119–126. ( 10.1016/s0092-8674(01)80014-3) PubMed DOI
Reeves M, Sissons P, Sinclair J. 2005. Reactivation of human cytomegalovirus in dendritic cells. Discov. Med. 5, 170–174. PubMed
Prösch S, Wendt CEC, Reinke P, Priemer C, Oppert M, Krüger DH, Volk HD, Döcke WD. 2000. A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology 272, 357–365. ( 10.1006/viro.2000.0367) PubMed DOI
Goerig NL, et al. 2016. Frequent occurrence of therapeutically reversible CMV-associated encephalopathy during radiotherapy of the brain. Neuro-oncology 18, 1664–1672. ( 10.1093/neuonc/now120) PubMed DOI PMC
Foster H, Piper K, DePledge L, Li HF, Scanlan J, Jae-Guen Y, Boeckh M, Cobbs C. 2019. Human cytomegalovirus seropositivity is associated with decreased survival in glioblastoma patients. Neurooncol. Adv. 1, vdz020. ( 10.1093/noajnl/vdz020) PubMed DOI PMC
Rahbar A, et al. 2015. Discordant humoral and cellular immune responses to Cytomegalovirus (CMV) in glioblastoma patients whose tumors are positive for CMV. OncoImmunology 4, e982391. ( 10.4161/2162402x.2014.982391) PubMed DOI PMC
Bianchi E, et al. 2015. Human cytomegalovirus and primary intracranial tumours: frequency of tumour infection and lack of correlation with systemic immune anti‐viral responses. Neuropathol. Appl. Neurobiol. 41, e29–e40. ( 10.1111/nan.12172) PubMed DOI
Ursu R, et al. 2021. Predictive factors of human cytomegalovirus reactivation in newly diagnosed glioblastoma patients treated with chemoradiotherapy. J. Neurovirol. 27, 94–100. ( 10.1007/s13365-020-00922-4) PubMed DOI
Hadaczek P, Ozawa T, Soroceanu L, Yoshida Y, Matlaf L, Singer E, Fiallos E, James CD, Cobbs CS. 2013. Cidofovir: a novel antitumor agent for glioblastoma. Clin. Cancer Res. 19, 6473–6483. ( 10.1158/1078-0432.ccr-13-1121) PubMed DOI PMC
Heukers R, et al. 2018. The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene 37, 4110–4121. ( 10.1038/s41388-018-0255-7) PubMed DOI PMC
Hudock TR, Song JJ, Chobrutskiy A, Chobrutskiy BI, Blanck G. 2024. IGH complementarity determining region-3-cytomegalovirus protein chemical complementarity linked to better overall survival probabilities for glioblastoma. Viral Immunol. 37, 259–265. ( 10.1089/vim.2024.0013) PubMed DOI
Stragliotto G, et al. 2013. Effects of valganciclovir as an add‐on therapy in patients with cytomegalovirus‐positive glioblastoma: a randomized, double‐blind, hypothesis‐generating study. Int. J. Cancer 133, 1204–1213. ( 10.1002/ijc.28111) PubMed DOI
Söderberg-Nauclér C, Rahbar A, Stragliotto G. 2013. Survival in patients with glioblastoma receiving valganciclovir. N. Engl. J. Med. 369, 985–986. ( 10.1056/NEJMc1302145) PubMed DOI
Ho AM ‐H., Dion PW, Ng CSH, Karmakar MK. 2013. Understanding immortal time bias in observational cohort studies. Anaesthesia 68, 126–130. ( 10.1111/anae.12120) PubMed DOI
Söderberg‐Naucler C, Peredo I, Rahbar A, Hansson F, Nordlund A, Stragliotto G. 2014. Use of Cox regression with treatment status as a time‐dependent covariate to re‐analyze survival benefit excludes immortal time bias effect in patients with glioblastoma who received prolonged adjuvant treatment with valganciclovir. Int. J. Cancer 135, 248–249. ( 10.1002/ijc.28663) PubMed DOI
Hernán MA. 2010. The hazards of hazard ratios. Epidemiology 21, 13–15. ( 10.1097/ede.0b013e3181c1ea43) PubMed DOI PMC
Hernán MA. 2018. How to estimate the effect of treatment duration on survival outcomes using observational data. BMJ 360, k182. ( 10.1136/bmj.k182) PubMed DOI PMC
Stragliotto G, Pantalone MR, Rahbar A, Bartek J, Söderberg-Naucler C. 2020. Valganciclovir as add-on to standard therapy in glioblastoma patients. Clin. Cancer Res. 26, 4031–4039. ( 10.1158/1078-0432.ccr-20-0369) PubMed DOI
Pantalone MR, Rahbar A, Söderberg-Naucler C, Stragliotto G. 2022. Valganciclovir as add-on to second-line therapy in patients with recurrent glioblastoma. Cancers 14, 1958. ( 10.3390/cancers14081958) PubMed DOI PMC
Stragliotto G, Pantalone MR, Rahbar A, Söderberg-Nauclér C. 2020. Valganciclovir as add-on to standard therapy in secondary glioblastoma. Microorganisms 8, 1471. ( 10.3390/microorganisms8101471) PubMed DOI PMC
Schuessler A, et al. 2014. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 74, 3466–3476. ( 10.1158/0008-5472.can-14-0296) PubMed DOI
Smith C, et al. 2020. Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme. J. Clin. Invest. 130, 6041–6053. ( 10.1172/JCI138649) PubMed DOI PMC
Basílio-Queirós D, Mischak-Weissinger E. 2023. Natural killer cells- from innate cells to the discovery of adaptability. Front. Immunol. 14, 1172437. ( 10.3389/fimmu.2023.1172437) PubMed DOI PMC
Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. 2023. Activating NKG2C receptor: functional characteristics and current strategies in clinical applications. Arch. Immunol. Ther. Exp. 71, 9. ( 10.1007/s00005-023-00674-z) PubMed DOI PMC
Heatley SL, et al. 2013. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J. Biol. Chem. 288, 8679–8690. ( 10.1074/jbc.m112.409672) PubMed DOI PMC
Wolpert F, Roth P, Lamszus K, Tabatabai G, Weller M, Eisele G. 2012. HLA-E contributes to an immune-inhibitory phenotype of glioblastoma stem-like cells. J. Neuroimmunol. 250, 27–34. ( 10.1016/j.jneuroim.2012.05.010) PubMed DOI
Batich KA, et al. 2017. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin. Cancer Res. 23, 1898–1909. ( 10.1158/1078-0432.ccr-16-2057) PubMed DOI PMC
Mitchell DA, et al. 2015. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369. ( 10.1038/nature14320) PubMed DOI PMC