Hydrogen Atom Abstraction via Hydride-Coupled Electron Transfer and Its Origin

. 2025 Nov 24 ; 64 (46) : 22698-22710. [epub] 20251113

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41231153

This study explores hydride-coupled electron transfer (HCET) as a fundamentally distinct mechanism alternative to proton-coupled electron transfer (PCET). HCET was identified in the reaction between a CuIII-OH complex and organic substrates, involving hydride transfer coupled with a reversed electron transfer from CuIII-OH to the substrate in a single-barrier step. First, we identified the connection between the thermodynamic cycles and reactivity and showed that the mechanism is dictated by the cycle with more favorable off-diagonal thermodynamics. As evidenced by electronic-structure-based descriptors, the transferred hydrogen atom in HCET gains electron density and volume at the transition state, indicating hydride character, while in PCET, it loses electron density and volume, signaling proton character. Second, intrinsic bond orbital analysis confirmed that HCET is a two-electron process: it involves the complete transfer of the proton and the C-H α-electron from the substrate to the Cu ion, while the β-electron undergoes a transient exchange, initially migrating alongside the α-electron to the Cu center before returning to substrate. An analogous HCET mechanism was identified in the reaction between a NiII-OH complex and TEMPOH, where two β-electrons are engaged in the process: one transiently and one completely transferred to a NiII-coordinating ligand.

Zobrazit více v PubMed

Sazanov L. A.. The Mechanism of Coupling between Electron Transfer and Proton Translocation in Respiratory Complex I. J. Bioenerg. Biomembr. 2014;46(4):247–253. doi: 10.1007/s10863-014-9554-z. PubMed DOI

Kaila V. R. I.. Long-Range Proton-Coupled Electron Transfer in Biological Energy Conversion: Towards Mechanistic Understanding of Respiratory Complex I. J. R. Soc. Interface. 2018;15(141):20170916. PubMed PMC

Hammarström L., Styring S.. Proton -Coupled Electron Transfer of Tyrosines in Photosystem II and Model Systems for Artificial Photosynthesis: The Role of a Redox-Active Link between Catalyst and Photosensitizer. Energy Environ. Sci. 2011;4(7):2379–2388. doi: 10.1039/c1ee01348c. DOI

Zhang L., Silva D.-A., Zhang H., Yue A., Yan Y., Huang X.. Dynamic Protein Conformations Preferentially Drive Energy Transfer along the Active Chain of the Photosystem II Reaction Centre. Nat. Commun. 2014;5(1):4170. doi: 10.1038/ncomms5170. PubMed DOI PMC

Wikstrom M. K. F.. Proton Pump Coupled to Cytochrome c Oxidase in Mitochondria. Nature. 1977;266(5599):271–273. doi: 10.1038/266271a0. PubMed DOI

Kaila V. R. I., Verkhovsky M. I., Wikström M.. Proton-Coupled Electron Transfer in Cytochrome Oxidase. Chem. Rev. 2010;110(12):7062–7081. doi: 10.1021/cr1002003. PubMed DOI

Meyer T. J., Huynh M. H. V., Thorp H. H.. The Possible Role of Proton-Coupled Electron Transfer (PCET) in Water Oxidation by Photosystem II. Angew. Chem., Int. Ed. 2007;46(28):5284–5304. doi: 10.1002/anie.200600917. PubMed DOI

Lanzilotta W. N., Christiansen J., Dean D. R., Seefeldt L. C.. Evidence for Coupled Electron and Proton Transfer in the [8Fe-7S] Cluster of Nitrogenase. Biochemistry. 1998;37(32):11376–11384. doi: 10.1021/bi980048d. PubMed DOI

Horvath S., Fernandez L. E., Soudackov A. V., Hammes-Schiffer S.. Insights into Proton-Coupled Electron Transfer Mechanisms of Electrocatalytic H2 Oxidation and Production. Proc. Natl. Acad. Sci. U.S.A. 2012;109(39):15663–15668. doi: 10.1073/pnas.1118333109. PubMed DOI PMC

Greene B. L., Wu C.-H., McTernan P. M., Adams M. W. W., Dyer R. B.. Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase. J. Am. Chem. Soc. 2015;137(13):4558–4566. doi: 10.1021/jacs.5b01791. PubMed DOI

Mulder D. W., Ratzloff M. W., Bruschi M., Greco C., Koonce E., Peters J. W., King P. W.. Investigations on the Role of Proton-Coupled Electron Transfer in Hydrogen Activation by [FeFe]-Hydrogenase. J. Am. Chem. Soc. 2014;136(43):15394–15402. doi: 10.1021/ja508629m. PubMed DOI

Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S.-K., Lehnert N., Neese F., Skulan A. J., Yang Y.-S., Zhou J.. Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chem. Rev. 2000;100(1):235–350. doi: 10.1021/cr9900275. PubMed DOI

Martinez S., Hausinger R. P.. Catalytic Mechanisms of Fe­(II)- and 2-Oxoglutarate-Dependent Oxygenases. J. Biol. Chem. 2015;290(34):20702–20711. doi: 10.1074/jbc.R115.648691. PubMed DOI PMC

Rokob T. A., Chalupský J., Bím D., Andrikopoulos P. C., Srnec M., Rulíšek L.. Mono- and Binuclear Non-Heme Iron Chemistry from a Theoretical Perspective. J. Biol. Inorg. Chem. 2016;21(5):619–644. doi: 10.1007/s00775-016-1357-8. PubMed DOI

Moody P. C. E., Raven E. L.. The Nature and Reactivity of Ferryl Heme in Compounds I and II. Acc. Chem. Res. 2018;51(2):427–435. doi: 10.1021/acs.accounts.7b00463. PubMed DOI

Islam M. S., Leissing T. M., Chowdhury R., Hopkinson R. J., Schofield C. J.. 2-Oxoglutarate-Dependent Oxygenases. Annu. Rev. Biochem. 2018;87:585–620. doi: 10.1146/annurev-biochem-061516-044724. PubMed DOI

Zheng S., Gutiérrez-Bonet Á., Molander G. A.. Merging Photoredox PCET with Ni-Catalyzed Cross-Coupling: Cascade Amidoarylation of Unactivated Olefins. Chem. 2019;5(2):339–352. doi: 10.1016/j.chempr.2018.11.014. PubMed DOI PMC

Kikuchi T., Yamada K., Yasui T., Yamamoto Y.. Synthesis of Benzo-Fused Cyclic Ketones via Metal-Free Ring Expansion of Cyclopropanols Enabled by Proton-Coupled Electron Transfer. Org. Lett. 2021;23(12):4710–4714. doi: 10.1021/acs.orglett.1c01436. PubMed DOI

Wang B., Zhou M.-J., Zhou Q.-L.. Visible-Light-Induced α, γ-C­(Sp3)–H Difunctionalization of Piperidines. Org. Lett. 2022;24(15):2894–2898. doi: 10.1021/acs.orglett.2c00831. PubMed DOI

Zhang W., Song Y., Sun T.-Y., Wang D., Xia X.-F.. Photocatalytic Proton-Coupled Electron Transfer Enabled Radical Cyclization for Isoquinoline-1,3-Diones Synthesis. J. Org. Chem. 2024;89(7):5060–5068. doi: 10.1021/acs.joc.4c00282. PubMed DOI

Shen G.-B., Luo G.-Z., Qian B.-C., Zhu X.-Q.. Evaluation of Organic Hydride/Acid Pairs as a Type of Thermodynamic-Potential-Regulated Multisite Proton-Coupled Electron Transfer Reagents. J. Org. Chem. 2024;89(9):6205–6221. doi: 10.1021/acs.joc.4c00208. PubMed DOI

Tian J., Yang C., Hu P., Zhong P.-F., Yang C., Guo L., Xia W.. Synergistic Integration of Proton-Coupled Electron Transfer and Heterogeneous Photocatalysis for Promoting the Synthesis of Unsymmetrical Imidazolidines. Org. Lett. 2025;27(15):4039–4045. doi: 10.1021/acs.orglett.5c01020. PubMed DOI

Jeffrey J. L., Terrett J. A., MacMillan D. W. C.. O-H Hydrogen Bonding Promotes H-Atom Transfer from α C-H Bonds for C-Alkylation of Alcohols. Science. 2015;349(6255):1532–1536. doi: 10.1126/science.aac8555. PubMed DOI PMC

Le C., Liang Y., Evans R. W., Li X., MacMillan D. W. C.. Selective Sp3 C-H Alkylation via Polarity-Match-Based Cross-Coupling. Nature. 2017;547(7661):79–83. doi: 10.1038/nature22813. PubMed DOI PMC

Sisti S., Galeotti M., Scarchilli F., Salamone M., Costas M., Bietti M.. Highly Selective C­(Sp3)–H Bond Oxygenation at Remote Methylenic Sites Enabled by Polarity Enhancement. J. Am. Chem. Soc. 2023;145(40):22086–22096. doi: 10.1021/jacs.3c07658. PubMed DOI PMC

Li F., Deng H., Renata H.. Remote B-Ring Oxidation of Sclareol with an Engineered P450 Facilitates Divergent Access to Complex Terpenoids. J. Am. Chem. Soc. 2022;144(17):7616–7621. doi: 10.1021/jacs.2c02958. PubMed DOI

Hammes-Schiffer S.. Comparison of Hydride, Hydrogen Atom, and Proton-Coupled Electron Transfer Reactions. ChemPhysChem. 2002;3(1):33–42. doi: 10.1002/1439-7641(20020118)3:1<33::AID-CPHC33>3.0.CO;2-6. PubMed DOI

Bourrez M., Steinmetz R., Ott S., Gloaguen F., Hammarström L.. Concerted Proton-Coupled Electron Transfer from a Metal-Hydride Complex. Nature Chem. 2015;7(2):140–145. doi: 10.1038/nchem.2157. PubMed DOI

Bím D., Maldonado-Domínguez M., Rulíšek L., Srnec M.. Beyond the Classical Thermodynamic Contributions to Hydrogen Atom Abstraction Reactivity. Proc. Natl. Acad. Sci. U.S.A. 2018;115(44):E10287–E10294. doi: 10.1073/pnas.1806399115. PubMed DOI PMC

Maldonado-Domínguez M., Srnec M.. H-Atom Abstraction Reactivity through the Lens of Asynchronicity and Frustration with Their Counteracting Effects on Barriers. Inorg. Chem. 2022;61(47):18811–18822. doi: 10.1021/acs.inorgchem.2c03269. PubMed DOI

Wojdyla Z., Srnec M.. Radical Ligand Transfer: Mechanism and Reactivity Governed by Three-Component Thermodynamics. Chem. Sci. 2024;15(22):8459–8471. doi: 10.1039/D4SC01507J. PubMed DOI PMC

Donoghue P. J., Tehranchi J., Cramer C. J., Sarangi R., Solomon E. I., Tolman W. B.. Rapid C-H Bond Activation by a Monocopper­(III)–Hydroxide Complex. J. Am. Chem. Soc. 2011;133(44):17602–17605. doi: 10.1021/ja207882h. PubMed DOI PMC

Dhar D., Tolman W. B.. Hydrogen Atom Abstraction from Hydrocarbons by a Copper­(III)-Hydroxide Complex. J. Am. Chem. Soc. 2015;137(3):1322–1329. doi: 10.1021/ja512014z. PubMed DOI PMC

Dhar D., Yee G. M., Spaeth A. D., Boyce D. W., Zhang H., Dereli B., Cramer C. J., Tolman W. B.. Perturbing the Copper­(III)–Hydroxide Unit through Ligand Structural Variation. J. Am. Chem. Soc. 2016;138(1):356–368. doi: 10.1021/jacs.5b10985. PubMed DOI PMC

Dhar D., Yee G. M., Markle T. F., Mayer J. M., Tolman W. B.. Reactivity of the Copper­(III)-Hydroxide Unit with Phenols. Chem. Sci. 2017;8(2):1075–1085. doi: 10.1039/C6SC03039D. PubMed DOI PMC

Ye D., Wu T., Puri A., Hebert D. D., Siegler M. A., Hendrich M. P., Swart M., Garcia-Bosch I.. Enhanced Proton-Coupled Electron-Transfer Reactivity by a Mononuclear Nickel­(II) Hydroxide Radical Complex. Inorg. Chem. 2024;63(52):24453–24465. doi: 10.1021/acs.inorgchem.4c03370. PubMed DOI PMC

Keith, T. A. AIMAll (Version 19.10.12). TK Gristmill Software: Overland Park KS, USA, 2019.

Knizia G.. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013;9(11):4834–4843. doi: 10.1021/ct400687b. PubMed DOI

Knizia G., Klein J. E. M. N.. Electron Flow in Reaction MechanismsRevealed from First Principles. Angew. Chem., Int. Ed. 2015;54(18):5518–5522. doi: 10.1002/anie.201410637. PubMed DOI

Klein J. E. M. N., Knizia G.. cPCET versus HAT: A Direct Theoretical Method for Distinguishing X-H Bond-Activation Mechanisms. Angew. Chem., Int. Ed. 2018;57(37):11913–11917. doi: 10.1002/anie.201805511. PubMed DOI PMC

Mandal M., Elwell C. E., Bouchey C. J., Zerk T. J., Tolman W. B., Cramer C. J.. Mechanisms for Hydrogen-Atom Abstraction by Mononuclear Copper­(III) Cores: Hydrogen-Atom Transfer or Concerted Proton-Coupled Electron Transfer? J. Am. Chem. Soc. 2019;141(43):17236–17244. doi: 10.1021/jacs.9b08109. PubMed DOI PMC

Bower J. K., Cypcar A. D., Henriquez B., Stieber S. C. E., Zhang S.. C­(Sp3)–H Fluorination with a Copper­(II)/(III) Redox Couple. J. Am. Chem. Soc. 2020;142(18):8514–8521. doi: 10.1021/jacs.0c02583. PubMed DOI

Fisher K. J., Kelly H. R., Cody C. C., Decavoli C., Mercado B. Q., Troiano J. L., Crabtree R. H., Batista V. S., Brudvig G. W.. Metal-Dependent Asynchronicity of Concerted Proton-Electron Transfer to a High-Valent Copper­(III) Complex and Its Nickel­(III) Analogue. Inorg. Chem. 2025;64(28):14552–14565. doi: 10.1021/acs.inorgchem.5c02005. PubMed DOI

Geng C., Ye S., Neese F.. Analysis of Reaction Channels for Alkane Hydroxylation by Nonheme Iron­(IV)–Oxo Complexes. Angew. Chem., Int. Ed. 2010;49(33):5717–5720. doi: 10.1002/anie.201001850. PubMed DOI

Zaragoza J. P. T., Yosca T. H., Siegler M. A., Moënne-Loccoz P., Green M. T., Goldberg D. P.. Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex. J. Am. Chem. Soc. 2017;139(39):13640–13643. doi: 10.1021/jacs.7b07979. PubMed DOI PMC

Asaka M., Fujii H.. Participation of Electron Transfer Process in Rate-Limiting Step of Aromatic Hydroxylation Reactions by Compound I Models of Heme Enzymes. J. Am. Chem. Soc. 2016;138(26):8048–8051. doi: 10.1021/jacs.6b03223. PubMed DOI

Srnec M., Solomon E. I.. Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2. J. Am. Chem. Soc. 2017;139(6):2396–2407. doi: 10.1021/jacs.6b11995. PubMed DOI PMC

Yadav V., Gordon J. B., Siegler M. A., Goldberg D. P.. Dioxygen-Derived Nonheme Mononuclear FeIII­(OH) Complex and Its Reactivity with Carbon Radicals. J. Am. Chem. Soc. 2019;141(26):10148–10153. doi: 10.1021/jacs.9b03329. PubMed DOI PMC

Galeotti M., Bietti M., Costas M.. Catalyst and Medium Control over Rebound Pathways in Manganese-Catalyzed Methylenic C-H Bond Oxidation. J. Am. Chem. Soc. 2024;146(13):8904–8914. doi: 10.1021/jacs.3c11555. PubMed DOI PMC

Guo X., Zhang Y., Lai X., Pang Y., Xue X.-S.. C­(Sp3)–F Bond Activation by Lewis Base-Boryl Radicals via Concerted Electron-Fluoride Transfer. Angew. Chem., Int. Ed. 2025;137(3):e202415715 PubMed

M. J., Frisch ; G. W., Trucks ; H. B., Schlegel ; G. E., Scuseria ; M. A., Robb ; J. R., Cheeseman ; G., Scalmani ; V., Barone ; G. A., Petersson ; H., Nakatsuji ; X., Li ; M., Caricato ; A. V., Marenich ; J., Bloino ; B. G., Janesko ; R., Gomperts ; B., Mennucci ; H. P., Hratchian ; J. V., Ortiz ; A. F., Izmaylov ; J. L., Sonnenberg ; D., Williams-Young ; F., Ding ; F., Lipparini ; F., Egidi ; J., Goings ; B., Peng ; A., Petrone ; T., Henderson ; D., Ranasinghe ; V. G., Zakrzewski ; J., Gao ; N., Rega ; G., Zheng ; W., Liang ; M., Hada ; M., Ehara ; K., Toyota ; R., Fukuda ; J., Hasegawa ; M., Ishida ; T., Nakajima ; Y., Honda ; O., Kitao ; H., Nakai ; T., Vreven ; K., Throssell ; J. A., Montgomery, Jr ; J. E., Peralta ; F., Ogliaro ; M. J., Bearpark ; J. J., Heyd ; E. N., Brothers ; K. N., Kudin ; V. N., Staroverov ; T. A., Keith ; R., Kobayashi ; J., Normand ; K., Raghavachari ; A. P., Rendell ; J. C., Burant ; S. S., Iyengar ; J., Tomasi ; M., Cossi ; J. M., Millam ; M., Klene ; C., Adamo ; R., Cammi ; J. W., Ochterski ; R. L., Martin ; K., Morokuma ; O., Farkas ; J. B., Foresman ; D. J., Fox ,. Gaussian 16, Revision C.01. Gaussian, Inc.: Wallingford CT, 2016.

Becke A. D.. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98(7):5648–5652. doi: 10.1063/1.464913. DOI

Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI

Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297–3305. doi: 10.1039/b508541a. PubMed DOI

Cossi M., Rega N., Scalmani G., Barone V.. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003;24(6):669–681. doi: 10.1002/jcc.10189. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...