Hydrogen Atom Abstraction via Hydride-Coupled Electron Transfer and Its Origin
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41231153
PubMed Central
PMC12648667
DOI
10.1021/acs.inorgchem.5c03613
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study explores hydride-coupled electron transfer (HCET) as a fundamentally distinct mechanism alternative to proton-coupled electron transfer (PCET). HCET was identified in the reaction between a CuIII-OH complex and organic substrates, involving hydride transfer coupled with a reversed electron transfer from CuIII-OH to the substrate in a single-barrier step. First, we identified the connection between the thermodynamic cycles and reactivity and showed that the mechanism is dictated by the cycle with more favorable off-diagonal thermodynamics. As evidenced by electronic-structure-based descriptors, the transferred hydrogen atom in HCET gains electron density and volume at the transition state, indicating hydride character, while in PCET, it loses electron density and volume, signaling proton character. Second, intrinsic bond orbital analysis confirmed that HCET is a two-electron process: it involves the complete transfer of the proton and the C-H α-electron from the substrate to the Cu ion, while the β-electron undergoes a transient exchange, initially migrating alongside the α-electron to the Cu center before returning to substrate. An analogous HCET mechanism was identified in the reaction between a NiII-OH complex and TEMPOH, where two β-electrons are engaged in the process: one transiently and one completely transferred to a NiII-coordinating ligand.
Zobrazit více v PubMed
Sazanov L. A.. The Mechanism of Coupling between Electron Transfer and Proton Translocation in Respiratory Complex I. J. Bioenerg. Biomembr. 2014;46(4):247–253. doi: 10.1007/s10863-014-9554-z. PubMed DOI
Kaila V. R. I.. Long-Range Proton-Coupled Electron Transfer in Biological Energy Conversion: Towards Mechanistic Understanding of Respiratory Complex I. J. R. Soc. Interface. 2018;15(141):20170916. PubMed PMC
Hammarström L., Styring S.. Proton -Coupled Electron Transfer of Tyrosines in Photosystem II and Model Systems for Artificial Photosynthesis: The Role of a Redox-Active Link between Catalyst and Photosensitizer. Energy Environ. Sci. 2011;4(7):2379–2388. doi: 10.1039/c1ee01348c. DOI
Zhang L., Silva D.-A., Zhang H., Yue A., Yan Y., Huang X.. Dynamic Protein Conformations Preferentially Drive Energy Transfer along the Active Chain of the Photosystem II Reaction Centre. Nat. Commun. 2014;5(1):4170. doi: 10.1038/ncomms5170. PubMed DOI PMC
Wikstrom M. K. F.. Proton Pump Coupled to Cytochrome c Oxidase in Mitochondria. Nature. 1977;266(5599):271–273. doi: 10.1038/266271a0. PubMed DOI
Kaila V. R. I., Verkhovsky M. I., Wikström M.. Proton-Coupled Electron Transfer in Cytochrome Oxidase. Chem. Rev. 2010;110(12):7062–7081. doi: 10.1021/cr1002003. PubMed DOI
Meyer T. J., Huynh M. H. V., Thorp H. H.. The Possible Role of Proton-Coupled Electron Transfer (PCET) in Water Oxidation by Photosystem II. Angew. Chem., Int. Ed. 2007;46(28):5284–5304. doi: 10.1002/anie.200600917. PubMed DOI
Lanzilotta W. N., Christiansen J., Dean D. R., Seefeldt L. C.. Evidence for Coupled Electron and Proton Transfer in the [8Fe-7S] Cluster of Nitrogenase. Biochemistry. 1998;37(32):11376–11384. doi: 10.1021/bi980048d. PubMed DOI
Horvath S., Fernandez L. E., Soudackov A. V., Hammes-Schiffer S.. Insights into Proton-Coupled Electron Transfer Mechanisms of Electrocatalytic H2 Oxidation and Production. Proc. Natl. Acad. Sci. U.S.A. 2012;109(39):15663–15668. doi: 10.1073/pnas.1118333109. PubMed DOI PMC
Greene B. L., Wu C.-H., McTernan P. M., Adams M. W. W., Dyer R. B.. Proton-Coupled Electron Transfer Dynamics in the Catalytic Mechanism of a [NiFe]-Hydrogenase. J. Am. Chem. Soc. 2015;137(13):4558–4566. doi: 10.1021/jacs.5b01791. PubMed DOI
Mulder D. W., Ratzloff M. W., Bruschi M., Greco C., Koonce E., Peters J. W., King P. W.. Investigations on the Role of Proton-Coupled Electron Transfer in Hydrogen Activation by [FeFe]-Hydrogenase. J. Am. Chem. Soc. 2014;136(43):15394–15402. doi: 10.1021/ja508629m. PubMed DOI
Solomon E. I., Brunold T. C., Davis M. I., Kemsley J. N., Lee S.-K., Lehnert N., Neese F., Skulan A. J., Yang Y.-S., Zhou J.. Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chem. Rev. 2000;100(1):235–350. doi: 10.1021/cr9900275. PubMed DOI
Martinez S., Hausinger R. P.. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-Dependent Oxygenases. J. Biol. Chem. 2015;290(34):20702–20711. doi: 10.1074/jbc.R115.648691. PubMed DOI PMC
Rokob T. A., Chalupský J., Bím D., Andrikopoulos P. C., Srnec M., Rulíšek L.. Mono- and Binuclear Non-Heme Iron Chemistry from a Theoretical Perspective. J. Biol. Inorg. Chem. 2016;21(5):619–644. doi: 10.1007/s00775-016-1357-8. PubMed DOI
Moody P. C. E., Raven E. L.. The Nature and Reactivity of Ferryl Heme in Compounds I and II. Acc. Chem. Res. 2018;51(2):427–435. doi: 10.1021/acs.accounts.7b00463. PubMed DOI
Islam M. S., Leissing T. M., Chowdhury R., Hopkinson R. J., Schofield C. J.. 2-Oxoglutarate-Dependent Oxygenases. Annu. Rev. Biochem. 2018;87:585–620. doi: 10.1146/annurev-biochem-061516-044724. PubMed DOI
Zheng S., Gutiérrez-Bonet Á., Molander G. A.. Merging Photoredox PCET with Ni-Catalyzed Cross-Coupling: Cascade Amidoarylation of Unactivated Olefins. Chem. 2019;5(2):339–352. doi: 10.1016/j.chempr.2018.11.014. PubMed DOI PMC
Kikuchi T., Yamada K., Yasui T., Yamamoto Y.. Synthesis of Benzo-Fused Cyclic Ketones via Metal-Free Ring Expansion of Cyclopropanols Enabled by Proton-Coupled Electron Transfer. Org. Lett. 2021;23(12):4710–4714. doi: 10.1021/acs.orglett.1c01436. PubMed DOI
Wang B., Zhou M.-J., Zhou Q.-L.. Visible-Light-Induced α, γ-C(Sp3)–H Difunctionalization of Piperidines. Org. Lett. 2022;24(15):2894–2898. doi: 10.1021/acs.orglett.2c00831. PubMed DOI
Zhang W., Song Y., Sun T.-Y., Wang D., Xia X.-F.. Photocatalytic Proton-Coupled Electron Transfer Enabled Radical Cyclization for Isoquinoline-1,3-Diones Synthesis. J. Org. Chem. 2024;89(7):5060–5068. doi: 10.1021/acs.joc.4c00282. PubMed DOI
Shen G.-B., Luo G.-Z., Qian B.-C., Zhu X.-Q.. Evaluation of Organic Hydride/Acid Pairs as a Type of Thermodynamic-Potential-Regulated Multisite Proton-Coupled Electron Transfer Reagents. J. Org. Chem. 2024;89(9):6205–6221. doi: 10.1021/acs.joc.4c00208. PubMed DOI
Tian J., Yang C., Hu P., Zhong P.-F., Yang C., Guo L., Xia W.. Synergistic Integration of Proton-Coupled Electron Transfer and Heterogeneous Photocatalysis for Promoting the Synthesis of Unsymmetrical Imidazolidines. Org. Lett. 2025;27(15):4039–4045. doi: 10.1021/acs.orglett.5c01020. PubMed DOI
Jeffrey J. L., Terrett J. A., MacMillan D. W. C.. O-H Hydrogen Bonding Promotes H-Atom Transfer from α C-H Bonds for C-Alkylation of Alcohols. Science. 2015;349(6255):1532–1536. doi: 10.1126/science.aac8555. PubMed DOI PMC
Le C., Liang Y., Evans R. W., Li X., MacMillan D. W. C.. Selective Sp3 C-H Alkylation via Polarity-Match-Based Cross-Coupling. Nature. 2017;547(7661):79–83. doi: 10.1038/nature22813. PubMed DOI PMC
Sisti S., Galeotti M., Scarchilli F., Salamone M., Costas M., Bietti M.. Highly Selective C(Sp3)–H Bond Oxygenation at Remote Methylenic Sites Enabled by Polarity Enhancement. J. Am. Chem. Soc. 2023;145(40):22086–22096. doi: 10.1021/jacs.3c07658. PubMed DOI PMC
Li F., Deng H., Renata H.. Remote B-Ring Oxidation of Sclareol with an Engineered P450 Facilitates Divergent Access to Complex Terpenoids. J. Am. Chem. Soc. 2022;144(17):7616–7621. doi: 10.1021/jacs.2c02958. PubMed DOI
Hammes-Schiffer S.. Comparison of Hydride, Hydrogen Atom, and Proton-Coupled Electron Transfer Reactions. ChemPhysChem. 2002;3(1):33–42. doi: 10.1002/1439-7641(20020118)3:1<33::AID-CPHC33>3.0.CO;2-6. PubMed DOI
Bourrez M., Steinmetz R., Ott S., Gloaguen F., Hammarström L.. Concerted Proton-Coupled Electron Transfer from a Metal-Hydride Complex. Nature Chem. 2015;7(2):140–145. doi: 10.1038/nchem.2157. PubMed DOI
Bím D., Maldonado-Domínguez M., Rulíšek L., Srnec M.. Beyond the Classical Thermodynamic Contributions to Hydrogen Atom Abstraction Reactivity. Proc. Natl. Acad. Sci. U.S.A. 2018;115(44):E10287–E10294. doi: 10.1073/pnas.1806399115. PubMed DOI PMC
Maldonado-Domínguez M., Srnec M.. H-Atom Abstraction Reactivity through the Lens of Asynchronicity and Frustration with Their Counteracting Effects on Barriers. Inorg. Chem. 2022;61(47):18811–18822. doi: 10.1021/acs.inorgchem.2c03269. PubMed DOI
Wojdyla Z., Srnec M.. Radical Ligand Transfer: Mechanism and Reactivity Governed by Three-Component Thermodynamics. Chem. Sci. 2024;15(22):8459–8471. doi: 10.1039/D4SC01507J. PubMed DOI PMC
Donoghue P. J., Tehranchi J., Cramer C. J., Sarangi R., Solomon E. I., Tolman W. B.. Rapid C-H Bond Activation by a Monocopper(III)–Hydroxide Complex. J. Am. Chem. Soc. 2011;133(44):17602–17605. doi: 10.1021/ja207882h. PubMed DOI PMC
Dhar D., Tolman W. B.. Hydrogen Atom Abstraction from Hydrocarbons by a Copper(III)-Hydroxide Complex. J. Am. Chem. Soc. 2015;137(3):1322–1329. doi: 10.1021/ja512014z. PubMed DOI PMC
Dhar D., Yee G. M., Spaeth A. D., Boyce D. W., Zhang H., Dereli B., Cramer C. J., Tolman W. B.. Perturbing the Copper(III)–Hydroxide Unit through Ligand Structural Variation. J. Am. Chem. Soc. 2016;138(1):356–368. doi: 10.1021/jacs.5b10985. PubMed DOI PMC
Dhar D., Yee G. M., Markle T. F., Mayer J. M., Tolman W. B.. Reactivity of the Copper(III)-Hydroxide Unit with Phenols. Chem. Sci. 2017;8(2):1075–1085. doi: 10.1039/C6SC03039D. PubMed DOI PMC
Ye D., Wu T., Puri A., Hebert D. D., Siegler M. A., Hendrich M. P., Swart M., Garcia-Bosch I.. Enhanced Proton-Coupled Electron-Transfer Reactivity by a Mononuclear Nickel(II) Hydroxide Radical Complex. Inorg. Chem. 2024;63(52):24453–24465. doi: 10.1021/acs.inorgchem.4c03370. PubMed DOI PMC
Keith, T. A. AIMAll (Version 19.10.12). TK Gristmill Software: Overland Park KS, USA, 2019.
Knizia G.. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013;9(11):4834–4843. doi: 10.1021/ct400687b. PubMed DOI
Knizia G., Klein J. E. M. N.. Electron Flow in Reaction MechanismsRevealed from First Principles. Angew. Chem., Int. Ed. 2015;54(18):5518–5522. doi: 10.1002/anie.201410637. PubMed DOI
Klein J. E. M. N., Knizia G.. cPCET versus HAT: A Direct Theoretical Method for Distinguishing X-H Bond-Activation Mechanisms. Angew. Chem., Int. Ed. 2018;57(37):11913–11917. doi: 10.1002/anie.201805511. PubMed DOI PMC
Mandal M., Elwell C. E., Bouchey C. J., Zerk T. J., Tolman W. B., Cramer C. J.. Mechanisms for Hydrogen-Atom Abstraction by Mononuclear Copper(III) Cores: Hydrogen-Atom Transfer or Concerted Proton-Coupled Electron Transfer? J. Am. Chem. Soc. 2019;141(43):17236–17244. doi: 10.1021/jacs.9b08109. PubMed DOI PMC
Bower J. K., Cypcar A. D., Henriquez B., Stieber S. C. E., Zhang S.. C(Sp3)–H Fluorination with a Copper(II)/(III) Redox Couple. J. Am. Chem. Soc. 2020;142(18):8514–8521. doi: 10.1021/jacs.0c02583. PubMed DOI
Fisher K. J., Kelly H. R., Cody C. C., Decavoli C., Mercado B. Q., Troiano J. L., Crabtree R. H., Batista V. S., Brudvig G. W.. Metal-Dependent Asynchronicity of Concerted Proton-Electron Transfer to a High-Valent Copper(III) Complex and Its Nickel(III) Analogue. Inorg. Chem. 2025;64(28):14552–14565. doi: 10.1021/acs.inorgchem.5c02005. PubMed DOI
Geng C., Ye S., Neese F.. Analysis of Reaction Channels for Alkane Hydroxylation by Nonheme Iron(IV)–Oxo Complexes. Angew. Chem., Int. Ed. 2010;49(33):5717–5720. doi: 10.1002/anie.201001850. PubMed DOI
Zaragoza J. P. T., Yosca T. H., Siegler M. A., Moënne-Loccoz P., Green M. T., Goldberg D. P.. Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex. J. Am. Chem. Soc. 2017;139(39):13640–13643. doi: 10.1021/jacs.7b07979. PubMed DOI PMC
Asaka M., Fujii H.. Participation of Electron Transfer Process in Rate-Limiting Step of Aromatic Hydroxylation Reactions by Compound I Models of Heme Enzymes. J. Am. Chem. Soc. 2016;138(26):8048–8051. doi: 10.1021/jacs.6b03223. PubMed DOI
Srnec M., Solomon E. I.. Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2. J. Am. Chem. Soc. 2017;139(6):2396–2407. doi: 10.1021/jacs.6b11995. PubMed DOI PMC
Yadav V., Gordon J. B., Siegler M. A., Goldberg D. P.. Dioxygen-Derived Nonheme Mononuclear FeIII(OH) Complex and Its Reactivity with Carbon Radicals. J. Am. Chem. Soc. 2019;141(26):10148–10153. doi: 10.1021/jacs.9b03329. PubMed DOI PMC
Galeotti M., Bietti M., Costas M.. Catalyst and Medium Control over Rebound Pathways in Manganese-Catalyzed Methylenic C-H Bond Oxidation. J. Am. Chem. Soc. 2024;146(13):8904–8914. doi: 10.1021/jacs.3c11555. PubMed DOI PMC
Guo X., Zhang Y., Lai X., Pang Y., Xue X.-S.. C(Sp3)–F Bond Activation by Lewis Base-Boryl Radicals via Concerted Electron-Fluoride Transfer. Angew. Chem., Int. Ed. 2025;137(3):e202415715 PubMed
M. J., Frisch ; G. W., Trucks ; H. B., Schlegel ; G. E., Scuseria ; M. A., Robb ; J. R., Cheeseman ; G., Scalmani ; V., Barone ; G. A., Petersson ; H., Nakatsuji ; X., Li ; M., Caricato ; A. V., Marenich ; J., Bloino ; B. G., Janesko ; R., Gomperts ; B., Mennucci ; H. P., Hratchian ; J. V., Ortiz ; A. F., Izmaylov ; J. L., Sonnenberg ; D., Williams-Young ; F., Ding ; F., Lipparini ; F., Egidi ; J., Goings ; B., Peng ; A., Petrone ; T., Henderson ; D., Ranasinghe ; V. G., Zakrzewski ; J., Gao ; N., Rega ; G., Zheng ; W., Liang ; M., Hada ; M., Ehara ; K., Toyota ; R., Fukuda ; J., Hasegawa ; M., Ishida ; T., Nakajima ; Y., Honda ; O., Kitao ; H., Nakai ; T., Vreven ; K., Throssell ; J. A., Montgomery, Jr ; J. E., Peralta ; F., Ogliaro ; M. J., Bearpark ; J. J., Heyd ; E. N., Brothers ; K. N., Kudin ; V. N., Staroverov ; T. A., Keith ; R., Kobayashi ; J., Normand ; K., Raghavachari ; A. P., Rendell ; J. C., Burant ; S. S., Iyengar ; J., Tomasi ; M., Cossi ; J. M., Millam ; M., Klene ; C., Adamo ; R., Cammi ; J. W., Ochterski ; R. L., Martin ; K., Morokuma ; O., Farkas ; J. B., Foresman ; D. J., Fox ,. Gaussian 16, Revision C.01. Gaussian, Inc.: Wallingford CT, 2016.
Becke A. D.. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98(7):5648–5652. doi: 10.1063/1.464913. DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI
Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297–3305. doi: 10.1039/b508541a. PubMed DOI
Cossi M., Rega N., Scalmani G., Barone V.. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003;24(6):669–681. doi: 10.1002/jcc.10189. PubMed DOI