Host Diet Preference Drives Diversity and Composition of Gut Microbiota in Captive Birds

. 2025 Nov ; 15 (11) : e72463. [epub] 20251111

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41234815

Gut microbiota (GM) plays a vital role in host physiology, yet our understanding of the factors driving GM variability in birds remains incomplete. Previous research has provided mixed support for different predictors of bird GM variation, possibly due to the high heterogeneity of avian GM combined with the strong influence of environmental factors on its composition. To suppress the role of these confounding factors, we focused on interspecific GM variation in birds from captive populations, with the aim of clarifying the role of diet and phylogeny. Using 16S rRNA amplicon sequencing, we analysed the GM of 36 bird species from 14 orders, focusing on variability in GM diversity and distribution of individual bacterial constituents. We found that host phylogeny only had limited influence on GM diversity and composition. On the other hand, we identified diet preference of host species as a significant predictor of GM diversity and composition, with herbivorous species exhibiting higher GM alpha diversity than carnivorous species. Furthermore, we observed a converging pattern of GM composition among phylogenetically unrelated carnivorous species, driven by increased abundance of microbial taxa that mostly had an undetermined role in host physiology. This contrasts with obligatory anaerobic bacteria from the phylum Bacteroidetes, and other commensal bacteria, observed with increased abundance in hosts preferring carbohydrate-rich vegetarian diets. Overall, our findings emphasise host diet preference as an important factor determining GM diversity in birds, explaining the convergence of GM composition in phylogenetically distant host species.

Zobrazit více v PubMed

Bisanz, J. E. , Upadhyay V., Turnbaugh J. A., Ly K., and Turnbaugh P. J.. 2019. “Meta‐Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High‐Fat Diet.” Cell Host & Microbe 26, no. 2: 265–272.e4. 10.1016/j.chom.2019.06.013. PubMed DOI PMC

Bodawatta, K. H. , Freiberga I., Puzejova K., Sam K., Poulsen M., and Jønsson K. A.. 2021. “Flexibility and Resilience of Great Tit ( PubMed DOI PMC

Bodawatta, K. H. , Hird S. M., Grond K., Poulsen M., and Jønsson K. A.. 2022. “Avian Gut Microbiomes Taking Flight.” Trends in Microbiology 30, no. 3: 268–280. 10.1016/J.TIM.2021.07.003. PubMed DOI

Bodawatta, K. H. , Klečková I., Klečka J., et al. 2022. “Specific Gut Bacterial Responses to Natural Diets of Tropical Birds.” Scientific Reports 12, no. 1: 713. 10.1038/s41598-022-04808-9. PubMed DOI PMC

Bodawatta, K. H. , Koane B., Maiah G., Sam K., Poulsen M., and Jønsson K. A.. 2021. “Species‐Specific but Not Phylosymbiotic Gut Microbiomes of New Guinean Passerine Birds Are Shaped by Diet and Flight‐Associated Gut Modifications.” Proceedings of the Royal Society B: Biological Sciences 288: 20210446. 10.1098/rspb.2021.0446. PubMed DOI PMC

Callahan, B. J. , McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., and Holmes S. P.. 2016. “DADA2: High‐Resolution Sample Inference From Illumina Amplicon Data.” Nature Methods 13, no. 7: 581–583. 10.1038/nmeth.3869. PubMed DOI PMC

Capunitan, D. C. , Johnson O., Terrill R. S., and Hird S. M.. 2020. “Evolutionary Signal in the Gut Microbiomes of 74 Bird Species From Equatorial Guinea.” Molecular Ecology 29, no. 4: 829–847. 10.1111/mec.15354. PubMed DOI

Caviedes‐Vidal, E. , McWhorter T. J., Lavin S. R., Chediack J. G., Tracy C. R., and Karasov W. H.. 2007. “The Digestive Adaptation of Flying Vertebrates: High Intestinal Paracellular Absorption Compensates for Smaller Guts.” Proceedings of the National Academy of Sciences of the United States of America 104, no. 48: 19132–19137. 10.1073/pnas.0703159104. PubMed DOI PMC

Christensen, P. , and Cook F. D.. 1978. “Lysobacter, a New Genus of Nonfruiting, Gliding Bacteria With a High Base Ratio.” International Journal of Systematic and Evolutionary Microbiology 28, no. 3: 367–393. 10.1099/00207713-28-3-367. DOI

Čížková, D. , Ďureje Ľ., Piálek J., and Kreisinger J.. 2021. “Experimental Validation of Small Mammal Gut Microbiota Sampling From Faeces and From the Caecum After Death.” Heredity 127, no. 2: 141–150. 10.1038/s41437-021-00445-6. PubMed DOI PMC

Coelho, G. D. P. , Ayres L. F. A., Barreto D. S., Henriques B. D., Prado M. R. M. C., and Passos C. M. D.. 2021. “Acquisition of Microbiota According to the Type of Birth: An Integrative Review.” Revista Latino‐Americana de Enfermagem 29: e3446. 10.1590/1518.8345.4466.3446. PubMed DOI PMC

Cowieson, A. J. 2022. “Comparative Biology of Germ‐Free and Conventional Poultry.” Poultry Science 101, no. 10: 102105. 10.1016/j.psj.2022.102105. PubMed DOI PMC

Daft, J. G. , Ptacek T., Kumar R., Morrow C., and Lorenz R. G.. 2015. “Cross‐Fostering Immediately After Birth Induces a Permanent Microbiota Shift That Is Shaped by the Nursing Mother.” Microbiome 3, no. 1: 17. 10.1186/s40168-015-0080-y. PubMed DOI PMC

Davidson, G. L. , Wiley N., Cooke A. C., et al. 2020. “Diet Induces Parallel Changes to the Gut Microbiota and Problem Solving Performance in a Wild Bird.” Scientific Reports 10, no. 1: 20783. 10.1038/s41598-020-77256-y. PubMed DOI PMC

Davis, N. M. , Proctor D. M., Holmes S. P., Relman D. A., and Callahan B. J.. 2018. “Simple Statistical Identification and Removal of Contaminant Sequences in Marker‐Gene and Metagenomics Data.” Microbiome 6, no. 1: 226. 10.1186/s40168-018-0605-2. PubMed DOI PMC

Deusch, S. , Tilocca B., Camarinha‐Silva A., and Seifert J.. 2015. “News in Livestock Research—Use of Omics‐Technologies to Study the Microbiota in the Gastrointestinal Tract of Farm Animals.” Computational and Structural Biotechnology Journal 13: 55–63. 10.1016/j.csbj.2014.12.005. PubMed DOI PMC

Di Mauro, A. , Neu J., Riezzo G., et al. 2013. “Gastrointestinal Function Development and Microbiota.” Italian Journal of Pediatrics 39, no. 1: 15. 10.1186/1824-7288-39-15. PubMed DOI PMC

Diez‐Méndez, D. , Bodawatta K. H., Freiberga I., et al. 2023. “Indirect Maternal Effects via Nest Microbiome Composition Drive Gut Colonization in Altricial Chicks.” Molecular Ecology 32, no. 13: 3657–3671. 10.1111/mec.16959. PubMed DOI

Ding, J. , Liao N., Zheng Y., et al. 2020. “The Composition and Function of Pigeon Milk Microbiota Transmitted From Parent Pigeons to Squabs.” Frontiers in Microbiology 11: 1789. 10.3389/fmicb.2020.01789. PubMed DOI PMC

Duque‐Correa, M. J. , Clauss M., Hoppe M. I., et al. 2022. “Diet, Habitat and Flight Characteristics Correlate With Intestine Length in Birds.” Proceedings. Biological sciences 289, no. 1976: 20220675. 10.1098/rspb.2022.0675. PubMed DOI PMC

Edgar, R. C. , Haas B. J., Clemente J. C., Quince C., and Knight R.. 2011. “UCHIME Improves Sensitivity and Speed of Chimera Detection.” Bioinformatics (Oxford, England) 27, no. 16: 2194–2200. 10.1093/bioinformatics/btr381. PubMed DOI PMC

Florkowski, M. R. , Hamer S. A., and Yorzinski J. L.. 2023. “Brief Exposure to Captivity in a Songbird Is Associated With Reduced Diversity and Altered Composition of the Gut Microbiome.” FEMS Microbiology Ecology 99, no. 9: fiad096. 10.1093/femsec/fiad096. PubMed DOI

Gloor, G. B. , Macklaim J. M., Pawlowsky‐Glahn V., and Egozcue J. J.. 2017. “Microbiome Datasets Are Compositional: And This Is Not Optional.” Frontiers in Microbiology 8: 2224. 10.3389/fmicb.2017.02224. PubMed DOI PMC

Godoy‐Vitorino, F. , Goldfarb K. C., Karaoz U., et al. 2012. “Comparative Analyses of Foregut and Hindgut Bacterial Communities in Hoatzins and Cows.” ISME Journal 6, no. 3: 531–541. 10.1038/ismej.2011.131. PubMed DOI PMC

Gonzalez‐Astudillo, V. , Asin‐Ros J., Moore J., Uzal F. A., and Navarro M. A.. 2023. “ PubMed DOI

Grond, K. , Sandercock B. K., Jumpponen A., and Zeglin L. H.. 2018. “The Avian Gut Microbiota: Community, Physiology and Function in Wild Birds.” Journal of Avian Biology 49, no. 11: e01788. 10.1111/jav.01788. DOI

Grond, K. , Santo Domingo J. W., Lanctot R. B., et al. 2019. “Composition and Drivers of Gut Microbial Communities in Arctic‐Breeding Shorebirds.” Frontiers in Microbiology 10: 2258. 10.3389/fmicb.2019.02258. PubMed DOI PMC

Gunasekaran, M. , Lalzar M., Sharaby Y., Izhaki I., and Halpern M.. 2020. “The Effect of Toxic Pyridine‐Alkaloid Secondary Metabolites on the Sunbird Gut Microbiome.” npj Biofilms and Microbiomes 6, no. 1: 1. 10.1038/s41522-020-00161-9. PubMed DOI PMC

Hird, S. M. , Carstens B. C., Cardiff S. W., Dittmann D. L., and Brumfield R. T.. 2014. “Sampling Locality Is More Detectable Than Taxonomy or Ecology in the Gut Microbiota of the Brood‐Parasitic Brown‐Headed Cowbird ( PubMed DOI PMC

Hird, S. M. , Sánchez C., Carstens B. C., and Brumfield R. T.. 2015. “Comparative Gut Microbiota of 59 Neotropical Bird Species.” Frontiers in Microbiology 6, no. 1: 1–15. 10.3389/fmicb.2015.01403. PubMed DOI PMC

Hooper, L. V. , Littman D. R., and Macpherson A. J.. 2012. “Interactions Between the Microbiota and the Immune System.” Science 336, no. 6086: 1268–1273. 10.1126/science.1223490. PubMed DOI PMC

Hyde, E. R. , Haarmann D. P., Lynne A. M., Bucheli S. R., and Petrosino J. F.. 2013. “The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition.” PLoS One 8, no. 10: e77733. 10.1371/journal.pone.0077733. PubMed DOI PMC

Jetz, W. , Thomas G. H., Joy J. B., Hartmann K., and Mooers A. O.. 2012. “The Global Diversity of Birds in Space and Time.” Nature 491, no. 7424: 444–448. 10.1038/nature11631. PubMed DOI

Jiang, H. , Lei R., Ding S.‐W., and Zhu S.. 2014. “Skewer: A Fast and Accurate Adapter Trimmer for Next‐Generation Sequencing Paired‐End Reads.” BMC Bioinformatics 15, no. 1: 182. 10.1186/1471-2105-15-182. PubMed DOI PMC

Kim, S. J. , Shin S. C., Hong S. G., Lee Y. M., Choi I.‐G., and Park H.. 2012. “Genome Sequence of a Novel Member of the Genus PubMed DOI PMC

Klindworth, A. , Pruesse E., Schweer T., et al. 2013. “Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next‐Generation Sequencing‐Based Diversity Studies.” Nucleic Acids Research 41, no. 1: 1–11. 10.1093/nar/gks808. PubMed DOI PMC

Konopka, T. 2023. umap: Uniform Manifold Approximation and Projection (Version 0.2.10.0) [R]. https://cran.r‐project.org/package=umap.

Kreisinger, J. , Kropáčková L., Petrželková A., et al. 2017. “Temporal Stability and the Effect of Transgenerational Transfer on Fecal Microbiota Structure in a Long Distance Migratory Bird.” Frontiers in Microbiology 8: 50. 10.3389/fmicb.2017.00050. PubMed DOI PMC

Kropáčková, L. , Těšický M., Albrecht T., et al. 2017. “Codiversification of Gastrointestinal Microbiota and Phylogeny in Passerines Is Not Explained by Ecological Divergence.” Molecular Ecology 26, no. 19: 5292–5304. 10.1111/mec.14144. PubMed DOI

Legendre, P. , Oksanen J., and ter Braak C. J. F.. 2011. “Testing the Significance of Canonical Axes in Redundancy Analysis.” Methods in Ecology and Evolution 2, no. 3: 269–277. 10.1111/j.2041-210X.2010.00078.x. DOI

Lewis, W. B. , Moore F. R., and Wang S.. 2017. “Changes in Gut Microbiota of Migratory Passerines During Stopover After Crossing an Ecological Barrier.” Auk 134, no. 1: 137–145. 10.1642/AUK-16-120.1. DOI

Ley, R. E. , Hamady M., Lozupone C., et al. 2008. “Evolution of Mammals and Their Gut Microbes.” Science 320, no. 5883: 1647–1651. 10.1126/science.1155725. PubMed DOI PMC

Li, D. , Dinnage R., Nell L. A., Helmus M. R., and Ives A. R.. 2020. “Phyr: An r Package for Phylogenetic Species‐Distribution Modelling in Ecological Communities.” Methods in Ecology and Evolution 11, no. 11: 1455–1463. 10.1111/2041-210X.13471. DOI

Lin, T.‐C. , Soorneedi A., Guan Y., et al. 2023. “ PubMed DOI PMC

Loo, W. T. , García‐Loor J., Dudaniec R. Y., Kleindorfer S., and Cavanaugh C. M.. 2019. “Host Phylogeny, Diet, and Habitat Differentiate the Gut Microbiomes of Darwin's Finches on Santa Cruz Island.” Scientific Reports 9, no. 1: 18781. 10.1038/s41598-019-54869-6. PubMed DOI PMC

Lucas, F. S. , and Heeb P.. 2005. “Environmental Factors Shape Cloacal Bacterial Assemblages in Great Tit DOI

Lynch, J. B. , Gonzalez E. L., Choy K., et al. 2023. “Gut Microbiota PubMed DOI PMC

Maraci, Ö. , Antonatou‐Papaioannou A., Jünemann S., et al. 2022. “Timing Matters: Age‐Dependent Impacts of the Social Environment and Host Selection on the Avian Gut Microbiota.” Microbiome 10, no. 1: 202. 10.1186/s40168-022-01401-0. PubMed DOI PMC

Martino, C. , Morton J. T., Marotz C. A., et al. 2019. “A Novel Sparse Compositional Technique Reveals Microbial Perturbations.” mSystems 4, no. 1: e00016‐19. 10.1128/msystems.00016-19. PubMed DOI PMC

Matheen, M. I. A. , Gillings M. R., and Dudaniec R. Y.. 2022. “Dominant Factors Shaping the Gut Microbiota of Wild Birds.” Emu ‐ Austral Ornithology 122, no. 3–4: 255–268. 10.1080/01584197.2022.2114088. DOI

Mazel, F. , Guisan A., and Parfrey L. W.. 2024. “Transmission Mode and Dispersal Traits Correlate With Host Specificity in Mammalian Gut Microbes.” Molecular Ecology 33, no. 1: e16862. 10.1111/mec.16862. PubMed DOI

McFall‐Ngai, M. , Hadfield M. G., Bosch T. C. G., et al. 2013. “Animals in a Bacterial World, a New Imperative for the Life Sciences.” Proceedings of the National Academy of Sciences of the United States of America 110, no. 9: 3229–3236. 10.1073/pnas.1218525110. PubMed DOI PMC

McInnes, L. , Healy J., and Melville J.. 2020. “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction (No. arXiv:1802.03426).” DOI

McKenzie, V. J. , Song S. J., F. Delsuc,, et al. 2017. “The effects of captivity on the mammalian gut microbiome.” Integrative and Comparative Biology 57, no. 4: 690–704. 10.1093/icb/icx090. PubMed DOI PMC

McMurdie, P. J. , and Holmes S.. 2013. “Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data.” PLoS One 8, no. 4: e61217. 10.1371/journal.pone.0061217. PubMed DOI PMC

Murray, M. H. , Lankau E. W., Kidd A. D., et al. 2020. “Gut Microbiome Shifts With Urbanization and Potentially Facilitates a Zoonotic Pathogen in a Wading Bird.” PLoS One 15, no. 3: e0220926. 10.1371/journal.pone.0220926. PubMed DOI PMC

Nyaoke, A. C. , Navarro M. A., Fresneda K., et al. 2020. “ PubMed DOI PMC

Oakley, B. B. , Lillehoj H. S., Kogut M. H., et al. 2014. “The Chicken Gastrointestinal Microbiome.” FEMS Microbiology Letters 360, no. 2: 100–112. 10.1111/1574-6968.12608. PubMed DOI

Ovaskainen, O. , Tikhonov G., Norberg A., et al. 2017. “How to Make More Out of Community Data? A Conceptual Framework and Its Implementation as Models and Software.” Ecology Letters 20, no. 5: 561–576. 10.1111/ele.12757. PubMed DOI

Perez‐Lamarque, B. , Sommeria‐Klein G., Duret L., and Morlon H.. 2023. “Phylogenetic Comparative Approach Reveals Evolutionary Conservatism, Ancestral Composition, and Integration of Vertebrate Gut Microbiota.” Molecular Biology and Evolution 40, no. 7: msad144. 10.1093/molbev/msad144. PubMed DOI PMC

Phillips, J. N. , Berlow M., and Derryberry E. P.. 2018. “The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White‐Crowned Sparrows.” Frontiers in Ecology and Evolution 6: 253–266. 10.3389/fevo.2018.00148. DOI

Quast, C. , Pruesse E., Yilmaz P., et al. 2013. “The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web‐Based Tools.” Nucleic Acids Research 41, no. D1: 590–596. 10.1093/nar/gks1219. PubMed DOI PMC

R Core Team . 2015. R: A Language and Environment for Statistical Computing [Computer Software]. R Foundation for Statistical Computing. https://www.r‐project.org/.

Revell, L. J. 2012. “Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things).” Methods in Ecology and Evolution 3, no. 2: 217–223. 10.1111/j.2041-210X.2011.00169.x. DOI

Risely, A. , Waite D. W., Ujvari B., Hoye B. J., and Klaassen M.. 2018. “Active Migration Is Associated With Specific and Consistent Changes to Gut Microbiota in Calidris Shorebirds.” Journal of Animal Ecology 87, no. 2: 428–437. 10.1111/1365-2656.12784. PubMed DOI

Roggenbuck, M. , Bærholm Schnell I., Blom N., et al. 2014. “The Microbiome of New World Vultures.” Nature Communications 5, no. 1: 5498. 10.1038/ncomms6498. PubMed DOI

Schmiedova, L. , Kreisinger J., Kubovciak J., et al. 2023. “Gut Microbiota Variation Between Climatic Zones and due to Migration Strategy in Passerine Birds.” Frontiers in Microbiology 14: 1080017. 10.3389/fmicb.2023.1080017. PubMed DOI PMC

Schmiedova, L. , Tomasek O., Pinkasova H., Albrecht T., and Kreisinger J.. 2022. “Variation in Diet Composition and Its Relation to Gut Microbiota in a Passerine Bird.” Scientific Reports 12, no. 1: 3787. 10.1038/s41598-022-07672-9. PubMed DOI PMC

Schmiedová, L. , Černá K., Li T., Těšický M., Kreisinger J., and Vinkler M.. 2024. “Bacterial Communities Along Parrot Digestive and Respiratory Tracts: The Effects of Sample Type, Species and Time.” International Microbiology 27, no. 1: 127–142. 10.1007/s10123-023-00372-y. PubMed DOI PMC

Song, S. J. , Sanders J. G., Delsuc F., et al. 2020. “Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence Between Birds and Bats.” MBio 11, no. 1: e02901‐19. 10.1128/mBio.02901-19. PubMed DOI PMC

Sun, F. , Chen J., Liu K., Tang M., and Yang Y.. 2022. “The Avian Gut Microbiota: Diversity, Influencing Factors, and Future Directions.” Frontiers in Microbiology 13: 934272. 10.3389/fmicb.2022.934272. PubMed DOI PMC

Thomas, F. , Hehemann J.‐H., Rebuffet E., Czjzek M., and Michel G.. 2011. “Environmental and Gut Bacteroidetes: The Food Connection.” Frontiers in Microbiology 2: 93. 10.3389/fmicb.2011.00093. PubMed DOI PMC

Tikhonov, G. , Ovaskainen O., Oksanen J., de Jonge M., Opedal O., and Dallas T.. 2022. Hmsc: Hierarchical Model of Species Communities (Version 3.0‐13). [Computer Software]. https://cran.r‐project.org/web/packages/Hmsc/index.html.

Trevelline, B. K. , Sosa J., Hartup B. K., and Kohl K. D.. 2020. “A Bird's‐Eye View of Phylosymbiosis: Weak Signatures of Phylosymbiosis Among all 15 Species of Cranes.” Proceedings of the Royal Society B: Biological Sciences 287, no. 1923: 20192988. 10.1098/rspb.2019.2988. PubMed DOI PMC

Videvall, E. , Strandh M., Engelbrecht A., Cloete S., and Cornwallis C. K.. 2018. “Measuring the Gut Microbiome in Birds: Comparison of Faecal and Cloacal Sampling.” Molecular Ecology Resources 18, no. 3: 424–434. 10.1111/1755-0998.12744. PubMed DOI

Waite, D. W. , and Taylor M. W.. 2014. “Characterizing the Avian Gut Microbiota: Membership, Driving Influences, and Potential Function.” Frontiers in Microbiology 5: 1–12. 10.3389/fmicb.2014.00223. PubMed DOI PMC

Wang, Q. , Garrity G. M., Tiedje J. M., Cole J. R., and Al W. E. T.. 2007. “Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences Into the New Bacterial Taxonomy.” Applied and Environmental Microbiology 73, no. 16: 5261–5267. 10.1128/AEM.00062-07. PubMed DOI PMC

Wang, W. , Zheng S., Sharshov K., et al. 2017. “Metagenomic Profiling of Gut Microbial Communities in Both Wild and Artificially Reared Bar‐Headed Goose ( PubMed DOI PMC

Wilman, H. , Belmaker J., Simpson J., de la Rosa C., Rivadeneira M. M., and Jetz W.. 2014. “EltonTraits 1.0: Species‐Level Foraging Attributes of the World's Birds and Mammals.” Ecology 95, no. 7: 2027. 10.1890/13-1917.1. DOI

Xiao, K. , Fan Y., Zhang Z., et al. 2021. “Covariation of the Fecal Microbiome With Diet in Nonpasserine Birds.” mSphere 6, no. 3: e00308‐21. 10.1128/msphere.00308-21. PubMed DOI PMC

Yan, W. , Sun C., Zheng J., et al. 2019. “Efficacy of Fecal Sampling as a Gut Proxy in the Study of Chicken Gut Microbiota.” Frontiers in Microbiology 10: 2126. 10.3389/fmicb.2019.02126. PubMed DOI PMC

Youngblut, N. D. , Reischer G. H., Walters W., et al. 2019. “Host Diet and Evolutionary History Explain Different Aspects of Gut Microbiome Diversity Among Vertebrate Clades.” Nature Communications 10, no. 1: 1–15. 10.1038/s41467-019-10191-3. PubMed DOI PMC

Zhang, K. , Wang X., Gong X., and Sui J.. 2022. “Gut Microbiome Differences in Rescued Common Kestrels ( PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...