A label-free impedimetric immunosensor based on nitrogen-doped graphene acid for sensitive detection of vitamin D3
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000048
The State Environmental Fund of the Czech Republic
CZ.02.01.01/00/22_008/0004587
European Regional Development Fund
CZ.02.01.01/00/23_021/0008856
European Regional Development Fund
LM2023066
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
41251834
PubMed Central
PMC12627205
DOI
10.1007/s00604-025-07625-9
PII: 10.1007/s00604-025-07625-9
Knihovny.cz E-zdroje
- Klíčová slova
- 25-Hydroxyvitamin D3, Electrochemical detection, Immunosensor, Impedance measurement, Metal-free, Nitrogen-doped graphene acid,
- MeSH
- biosenzitivní techniky * metody MeSH
- dusík * chemie MeSH
- elektrochemické techniky * metody MeSH
- grafit * chemie MeSH
- imobilizační protilátky imunologie chemie MeSH
- imunoanalýza metody MeSH
- kalcifediol * krev imunologie analýza MeSH
- lidé MeSH
- limita detekce MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
- grafit * MeSH
- imobilizační protilátky MeSH
- kalcifediol * MeSH
A simple metal-free electrochemical immunosensor based on nitrogen-doped graphene acid (NGA) for the detection of 25-hydroxy vitamin D3 (25-OH D3) is presented. The use of NGA, with its well-defined chemical composition, high density of carboxyl functional groups, and excellent biocompatibility, provided a stable and efficient platform for biomolecule immobilization without the need for complex surface modifications. The proposed immunosensor demonstrated high sensitivity (1.97 kΩ ng‒1 mL cm‒2) and a working range of 3.96 to 48.83 ng mL‒1, aligning with clinically relevant vitamin D levels. Moreover, the developed immunosensor exhibited excellent specificity, with minimal cross-reactivity and strong resistance to non-specific adsorption. Furthermore, it maintained stable electrochemical performance for up to 30 days, demonstrating its suitability for practical applications. Compared to existing vitamin D sensors, our platform introduces a streamlined fabrication process that avoids heavy metals, improves reproducibility, and enhances accessibility for point-of-care diagnostics.
Zobrazit více v PubMed
Maestro MA, Molnár F, Carlberg C (2019) Vitamin D and its synthetic analogs. J Med Chem 62:6854–6875. 10.1021/acs.jmedchem.9b00208 PubMed DOI PMC
Janoušek J, Pilařová V, Macáková K et al (2022) Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci 59:517–554. 10.1080/10408363.2022.2070595 PubMed DOI
Cutolo M, Smith V, Paolino S, Gotelli E (2023) Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol 19:265–287. 10.1038/s41584-023-00944-2 PubMed DOI PMC
Amrein K, Scherkl M, Hoffmann M et al (2020) Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr 74:1498–1513. 10.1038/s41430-020-0558-y PubMed DOI PMC
Griffin TP, Wall D, Blake L et al (2020) Higher risk of vitamin D insufficiency/deficiency for rural than urban dwellers. J Steroid Biochem Mol Biol 197:105547. 10.1016/j.jsbmb.2019.105547 PubMed DOI
Yin S, Yang Y, Wu L et al (2019) Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. TrAC Trends Anal Chem 110:204–220. 10.1016/j.trac.2018.11.008 DOI
Van Den Ouweland JMW (2016) Analysis of vitamin D metabolites by liquid chromatography-tandem mass spectrometry. TrAC Trends Anal Chem 84:117–130. 10.1016/j.trac.2016.02.005 DOI
Naik M, Kamath US, Uppangala S et al (2023) Vitamin D metabolites and analytical challenges. Anal Methods 15:399–410. 10.1039/D2AY01692C PubMed DOI
Altieri B, Cavalier E, Bhattoa HP et al (2020) Vitamin D testing: advantages and limits of the current assays. Eur J Clin Nutr 74:231–247. 10.1038/s41430-019-0553-3 PubMed DOI
Hosseini S, Vázquez-Villegas P, Rito-Palomares M, Martinez-Chapa SO (2018) Advantages, disadvantages and modifications of conventional ELISA. Enzyme-linked Immunosorbent Assay (ELISA). Springer Singapore, Singapore, pp 67–115
Hymøller L, Jensen SK (2011) Vitamin D analysis in plasma by high performance liquid chromatography (HPLC) with C30 reversed phase column and UV detection – easy and acetonitrile-free. J Chromatogr A 1218:1835–1841. 10.1016/j.chroma.2011.02.004 PubMed DOI
Rola R, Kowalski K, Bieńkowski T, Studzińska S (2020) Improved sample preparation method for fast LC-MS/MS analysis of vitamin D metabolites in serum. J Pharm Biomed Anal 190:113529. 10.1016/j.jpba.2020.113529 PubMed DOI
Rola R, Kowalski K, Bieńkowski T et al (2021) Evaluation of different biological matrices to assess the vitamin D status in newborns using LC-MS/MS. Microchem J 168:106368. 10.1016/j.microc.2021.106368 DOI
Wang X, Qin Q, Li F (2023) A novel LC-MS/MS method combined with derivatization for simultaneous quantification of vitamin D metabolites in human serum with diabetes as well as hyperlipidemia. RSC Adv 13:34157–34166. 10.1039/D3RA05700C PubMed DOI PMC
Mishra S, Kim E-S, Sharma PK et al (2020) Tailored biofunctionalized biosensor for the label-free sensing of prostate-specific antigen. ACS Appl Bio Mater 3:7821–7830. 10.1021/acsabm.0c01002 PubMed DOI
Duke K, Dhungana P, Richards C et al (2025) Label-free impedimetric determination of cortisol using gold nanoparticles functionalized laser-induced graphene interdigitated electrodes. Adv Mater Technol. 10.1002/admt.202401040 DOI
Saputra HA, Chung JH, Kwon RJ et al (2024) Ultrasensitive interferon-gamma sensor with a bifunctionalized conducting polymer nanobioconjugate for therapy-progress monitoring of cancer patients. Sens Actuators B Chem 398:134739. 10.1016/j.snb.2023.134739 DOI
Ning Q, Feng S, Cheng Y et al (2022) Point-of-care biochemical assays using electrochemical technologies: approaches, applications, and opportunities. Microchim Acta 189:310. 10.1007/s00604-022-05425-z DOI
Xu Y, Wang H (2022) Electrochemical immunosensor for point-of-care quantitative detection of tumor markers based on personal glucometer. J Electroanal Chem 915:116333. 10.1016/j.jelechem.2022.116333 DOI
Dutta G, Park S, Singh A (2015) Low-interference washing-free electrochemical immunosensor using glycerol-3-phosphate dehydrogenase as an enzyme label. Anal Chem 87:3574–3578. 10.1021/ac504485a PubMed DOI
Dutta G, Lillehoj PB (2018) Wash-free, label-free immunoassay for rapid electrochemical detection of PfHRP2 in whole blood samples. Sci Rep 8:17129. 10.1038/s41598-018-35471-8 PubMed DOI PMC
Dutta G, Kim S, Park S, Yang H (2014) Washing-free heterogeneous immunosensor using proximity-dependent electron mediation between an enzyme label and an electrode. Anal Chem 86:4589–4595. 10.1021/ac5006487 PubMed DOI
Dutta G, Lillehoj PB (2017) An ultrasensitive enzyme-free electrochemical immunosensor based on redox cycling amplification using methylene blue. Analyst 142:3492–3499. 10.1039/C7AN00789B PubMed DOI PMC
Dutta G (2023) Next-generation nanobiosensor devices for point-of-care diagnostics. Springer Nature Singapore, Singapore. 10.1007/978-981-19-7130-3
Dutta G, Biswas A (2023) Next generation smart nano-bio-devices. Springer Nature Singapore, Singapore. 10.1007/978-981-19-7107-5
Dutta G, Biswas A, Chakrabarti A (2021) Modern techniques in biosensors: detection methods and commercial aspects. Springer Singapore, Singapore. 10.1007/978-981-15-9612-4
Geng H, Vilms Pedersen S, Ma Y et al (2022) Noble metal nanoparticle biosensors: from fundamental studies toward point-of-care diagnostics. Acc Chem Res 55:593–604. 10.1021/acs.accounts.1c00598 PubMed DOI PMC
Eivazzadeh-Keihan R, Bahojb Noruzi E, Chidar E et al (2022) Applications of carbon-based conductive nanomaterials in biosensors. Chem Eng J 442:136183. 10.1016/j.cej.2022.136183 DOI
Özmen EN, Kartal E, Turan MB et al (2021) Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: a review. Mater Sci Eng, C 129:112356. 10.1016/j.msec.2021.112356 DOI
Kour R, Arya S, Young S-J (2020) Review—recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc 167:037555. 10.1149/1945-7111/ab6bc4 DOI
Tarcan R, Todor-Boer O, Petrovai I et al (2020) Reduced graphene oxide today. J Mater Chem C 8:1198–1224. 10.1039/C9TC04916A DOI
Chauhan D, Gupta PK, Solanki PR (2018) Electrochemical immunosensor based on magnetite nanoparticles incorporated electrospun polyacrylonitrile nanofibers for vitamin-D3 detection. Mater Sci Eng C Mater Biol Appl 93:145–156. 10.1016/j.msec.2018.07.036 PubMed DOI
Anusha T, Bhavani KS, Shanmukha Kumar JV et al (2022) Fabrication of electrochemical immunosensor based on GCN-β-CD/Au nanocomposite for the monitoring of vitamin D deficiency. Bioelectrochemistry 143:107935. 10.1016/j.bioelechem.2021.107935 PubMed DOI
Chauhan D, Kumar R, Panda AK, Solanki PR (2019) An efficient electrochemical biosensor for vitamin-D3 detection based on aspartic acid functionalized gadolinium oxide nanorods. J Mater Res Technol 8:5490–5503. 10.1016/j.jmrt.2019.09.017 DOI
Fahmy HM, Abu Serea ES, Salah-Eldin RE et al (2022) Recent progress in graphene- and related carbon-nanomaterial-based electrochemical biosensors for early disease detection. ACS Biomater Sci Eng 8:964–1000. 10.1021/acsbiomaterials.1c00710 PubMed DOI
Flauzino JMR, Nguyen EP, Yang Q (2022) Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens Bioelectron 195:113628. 10.1016/j.bios.2021.113628 PubMed DOI
Zbořil R, Karlický F, Bourlinos AB et al (2010) Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6:2885–2891. 10.1002/smll.201001401 PubMed DOI PMC
Bakandritsos A, Pykal M, Błoński P et al (2017) Cyanographene and graphene acid: emerging derivatives enabling high-yield and selective functionalization of graphene. ACS Nano 11:2982–2991. 10.1021/acsnano.6b08449 PubMed DOI PMC
Panáček D, Zdražil L, Langer M et al (2022) Graphene nanobeacons with high-affinity pockets for combined, selective, and effective decontamination and reagentless detection of heavy metals. Small 18:2201003. 10.1002/smll.202201003 DOI
Panáček D, Belza J, Hochvaldová L (2024) Single atom engineered antibiotics overcome bacterial resistance. Adv Mater 36:2410652. 10.1002/adma.202410652 PubMed DOI PMC
Seelajaroen H, Bakandritsos A, Otyepka M et al (2020) Immobilized enzymes on graphene as nanobiocatalyst. ACS Appl Mater Interfaces 12:250–259. 10.1021/acsami.9b17777 PubMed DOI PMC
Murbach M, Gerwe B, Dawson-Elli N, Tsui L (2020) Impedance.py: a Python package for electrochemical impedance analysis. J Open Source Softw 5(52):2349. 10.21105/joss.02349 DOI
Johari-Ahar M, Rashidi MR, Barar J et al (2015) An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. Nanoscale 7:3768–3779. 10.1039/C4NR06687A PubMed DOI
Samadi Pakchin P, Fathi M, Ghanbari H (2020) A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron 153:112029. 10.1016/j.bios.2020.112029 PubMed DOI
Šedajová V, Bakandritsos A, Błoński P et al (2022) Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy Environ Sci 15:740–748. 10.1039/D1EE02234B PubMed DOI PMC
Khan U, O’Neill A, Lotya M et al (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871. 10.1002/smll.200902066 PubMed DOI
Lesiak B, Kövér L, Tóth J et al (2018) C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl Surf Sci 452:223–231. 10.1016/j.apsusc.2018.04.269 DOI
He J, Das C, Yang F, Maibach J (2022) Crosslinked poly(acrylic acid) enhances adhesion and electrochemical performance of Si anodes in Li-ion batteries. Electrochim Acta 411:140038. 10.1016/j.electacta.2022.140038 DOI
Dinh C-T, Jain A, De Arquer FPG et al (2018) Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat Energy 4:107–114. 10.1038/s41560-018-0296-8 DOI
Streibel V, Hävecker M, Yi Y et al (2018) In situ electrochemical cells to study the oxygen evolution reaction by near ambient pressure X-ray photoelectron spectroscopy. Top Catal 61:2064–2084. 10.1007/s11244-018-1061-8 DOI
Muñoz J, Céspedes F, Baeza M (2015) Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensors. J Electrochem Soc 162:B217–B224. 10.1149/2.0531508jes DOI
Aydın EB, Aydın M, Sezgintürk MK (2023) A novel electrochemical impedance immunosensor for the quantification of CYFRA 21–1 in human serum. Microchim Acta 190:235. 10.1007/s00604-023-05813-z DOI
Aydın EB, Aydın M, Sezgintürk MK (2021) New impedimetric sandwich immunosensor for ultrasensitive and highly specific detection of spike receptor binding domain protein of SARS-CoV-2. ACS Biomater Sci Eng 7:3874–3885. 10.1021/acsbiomaterials.1c00580 PubMed DOI
Lacina K, Sopoušek J, Čunderlová V et al (2018) Biosensing based on electrochemical impedance spectroscopy: influence of the often-ignored molecular charge. Electrochem Commun 93:183–186. 10.1016/j.elecom.2018.07.015 DOI
Tortolini C, Angeloni A, Antiochia R (2023) A comparative study of voltammetric vs impedimetric immunosensor for rapid SARS-CoV-2 detection at the point-of-care. Electroanalysis 35:e202200349. 10.1002/elan.202200349 DOI
Holick MF (2009) Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19:73–78. 10.1016/j.annepidem.2007.12.001 PubMed DOI PMC
Keyfi F, Nahid S, Mokhtariye A et al (2018) Evaluation of 25-OH vitamin D by high performance liquid chromatography: validation and comparison with electrochemiluminescence. J Anal Sci Technol 9:25. 10.1186/s40543-018-0155-z DOI
Magar HS, Brahman PK, Hassan RYA (2022) Disposable impedimetric nano-immunochips for the early and rapid diagnosis of vitamin-D deficiency. Biosens Bioelectron X 10:100124. 10.1016/j.biosx.2022.100124 DOI