Effects of Isovolumic Loading Elicited Either by 3-Branch or by 4-Branch Spring Expander on the Degree of Cardiac Atrophy of the Failing Heart in Rats After Heterotopic Heart Transplantation: No Evidence for Sex-Linked Differences
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
41329532
PubMed Central
PMC12746851
DOI
10.33549/physiolres.935650
PII: 935650
Knihovny.cz E-zdroje
- MeSH
- atrofie MeSH
- charakteristické znaky pohlaví * MeSH
- heterotopická transplantace metody MeSH
- krysa rodu Rattus MeSH
- podpůrné srdeční systémy * škodlivé účinky MeSH
- potkani inbrední LEW MeSH
- sexuální faktory MeSH
- srdeční selhání * patofyziologie patologie chirurgie MeSH
- transplantace srdce * metody škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
An important harmful side effect of the prolonged support of the left ventricle (LV) with an LV assist device (LVAD) in patients with advanced heart failure (HF) is development of cardiac atrophy. Our first aim was to evaluate if implantation of the four-branch spring expander into LV of the rat will exhibit greater attenuation of unloading-induced cardiac atrophy as compared with the three-branch spring expander. The second aim was to assess if sex-related differences are present in the development of unloading-induced cardiac atrophy in the failing hearts with implanted either three-branch or four-branch spring expander into the LV. Heterotopic heart transplantation in the rat (HTx) served as the model of heart unloading after LVAD implantation. HF was induced by volume overload achieved by creation of the aorto-caval fistula. The degree of cardiac atrophy was assessed as the weight ratio of the heterotopically transplanted heart to the control native heart. We found that enhancement of isovolumic loading by implantation of either type of spring expander into the LV reduced the degree of post-HTx cardiac atrophy in the failing hearts but the four-branch variant was significantly more effective. In addition, we found that there were no sex-related differences in the development of unloading-induced cardiac atrophy or in the attenuation of this process in the failing hearts. We propose that enhancing cardiac work by increasing isovolumic loading via implantation of the spring expander might be a reasonable approach to attenuate the unloading-induced cardiac atrophy in the failing hearts in both sexes. Key words Heart failure in rats " Cardiac atrophy " Aorto-caval fistula " Heterotopic heart transplantation " Three-branch spring expander " Four-branch spring expander.
Zobrazit více v PubMed
Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118:3272–3287. doi: 10.1093/cvr/cvac013. PubMed DOI
Khan MS, Shahid I, Bennis A, Rakisheva A, Metra M, Butler J. Global epidemiology of heart failure. Nat Rev Cardiol. 2024;21:717–734. doi: 10.1038/s41569-024-01046-6. PubMed DOI
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation. 2025;151:e41–e660. doi: 10.1161/CIR.0000000000001303. PubMed DOI PMC
Beghini A, Sammartino AM, Papp Z, von Haehling S, Biegus J, Ponikowski P, Adamo M, et al. 2024 update in heart failure. ESC Heart Fail. 2025;12:8–42. doi: 10.1002/ehf2.14857. PubMed DOI PMC
Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385:812–824. doi: 10.1016/S0140-6736(14)61889-4. PubMed DOI
Moayedi Y, Ross HJ. Advances in heart failure: a review of biomarkers, emerging pharmacological therapies, durable mechanical support and telemonitoring. Clin Sci (Lond) 2017;131:553–566. doi: 10.1042/CS20160196. PubMed DOI
Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J. 2022;43:2549–2561. doi: 10.1093/eurheartj/ehac223. PubMed DOI PMC
Kitai T, Kohsaka S, Kato T, Kato E, Sato K, Teramoto K, Yaku H, et al. JCS/JHFS 2025 Guideline on Diagnosis and Treatment of Heart Failure. J Card Fail. 2025;31:1164–1322. doi: 10.1016/j.cardfail.2025.02.014. PubMed DOI
Colombo G, Biering-Sorensen T, Ferreira JP, Lombardi CM, Bonelli A, Garascia A, Metra M, Inciardi RM. Cardiac remodeling in the era of the recommended four pillars heart failure medical therapy. ESC Heart Fail. 2025;12:1029–1044. doi: 10.1002/ehf2.15095. PubMed DOI PMC
Burkhoff D, Topkara VK, Sayer G, Uriel N. Reverse Remodeling With Left Ventricular Assist Devices. Circ Res. 2021;128:1594–1612. doi: 10.1161/CIRCRESAHA.121.318160. PubMed DOI PMC
Margulies KB. Reversal mechanisms of left ventricular remodeling: lessons from left ventricular assist device experiments. J Card Fail. 2002;8(6 Suppl):S500–S505. doi: 10.1054/jcaf.2002.129264. PubMed DOI
Pamias-Lopez B, Ibrahim ME, Pitoulis FG. Cardiac mechanics and reverse remodeling under mechanical support from left ventricular assist devices. Front Cardiovasc Med. 2023;10:1212875. doi: 10.3389/fcvm.2023.1212875. PubMed DOI PMC
Galeone A, Buccoliero C, Barile B, Nicchia GP, Onorati F, Luciani GB, Brunetti B. Cellular and Molecular Mechanisms Activated by a Left Ventricular Assist Device. Int J Mol Sci. 2023;25:288. doi: 10.3390/ijms25010288. PubMed DOI PMC
Mullens W, Dauw J, Gustafsson F, Mebazaa A, Steffel J, Witte KK, Delgado V, et al. Integration of implantable device therapy in patients with heart failure. A clinical consensus statement from the Heart Failure Association (HFA) and European Heart Rhythm Association (EHRA) of the European Society of Cardiology (ESC) Eur J Heart Fail. 2024;26:483–501. doi: 10.1002/ejhf.3150. PubMed DOI
Saeed D, Feldman D, Banayosy AE, Birks E, Blume E, Cowger J, Hayward C, et al. The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10-Year Update. J Heart Lung Transplant. 2023;42:e1–e222. doi: 10.1016/j.healun.2022.12.004. PubMed DOI
Boulet J, Wanderley MRB, Jr, Mehra MR. Contemporary Left Ventricular Assist Device Therapy as a Bridge or Alternative to Transplantation. Transplantation. 2024;108:1333–1341. doi: 10.1097/TP.0000000000004834. PubMed DOI
Pamias-Lopez B, Ibrahim ME, Pitoulis FG. Cardiac mechanics and reverse remodeling under mechanical support from left ventricular assist devices. Front Cardiovasc Med. 2023;10:1212875. doi: 10.3389/fcvm.2023.1212875. PubMed DOI PMC
Hamad EA, Byku M, Larson SB, Billia F. LVAD therapy as a catalyst to heart failure remission and myocardial recovery. Clin Cardiol. 2023;46:1154–1162. doi: 10.1002/clc.24094. PubMed DOI PMC
Kayali F, Tahhan O, Vecchio G, Jubouri M, Noubani JM, Bailey DM, Williams IM, et al. Left ventricular unloading to facilitate ventricular remodeling in heart failure: A narrative review of mechanical circulatory support. Exp Physiol. 2024;109:1826–1836. doi: 10.1113/EP091796. PubMed DOI PMC
Itagaki S, Moss N, Toyoda N, Mancini D, Egorova N, Serrao G, Lala A, et al. Incidence, Outcomes, and Opportunity for Left Ventricular Assist Device Weaning for Myocardial Recovery. JACC Heart Fail. 2024;12:893–901. doi: 10.1016/j.jchf.2023.12.006. PubMed DOI
Kanwar MK, Selzman CH, Ton V-K, Miera O, Cornwell WK, 3rd, Antaki J, Drakos S, Shah P. Clinical myocardial recovery in advanced heart failure with long term left ventricular assist device support. J Heart Lung Transplant. 2022;41:1324–1334. doi: 10.1016/j.healun.2022.05.015. PubMed DOI PMC
Pokorný M, Cervenka L, Netuka I, Pirk J, Koňařík M, Malý J. Ventricular assist devices in heart failure: how to support the heart but prevent atrophy? Physiol Res. 2014;63:147–156. doi: 10.33549/physiolres.932617. PubMed DOI
Brinks H, Giraud M-N, Segiser A, Ferrié C, Longnus S, Ullrich ND, Koch WJ, et al. Dynamic patterns of ventricular remodeling and apoptosis in hearts unloaded by heterotopic transplantation. J Heart Lung Transplant. 2014;33:203–210. doi: 10.1016/j.healun.2013.10.006. PubMed DOI PMC
Heckle MR, Flatt DM, Sun Y, Mancarella S, Marion TN, Gerling IC, Weber KT. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail Rev. 2016;21:191–198. doi: 10.1007/s10741-016-9535-x. PubMed DOI
Pham BN, Chaparro SV. Left ventricular assist device recovery: does duration of mechanical support matter? Heart Fail Rev. 2019;24:237–244. doi: 10.1007/s10741-018-9744-6. PubMed DOI
Drakos SG, Badolia R, Makaju A, Kyriakopoulos VP, Wever-Pinzon O, Tracy CM, Bakhtina A, et al. Distinct Transcriptomic and Proteomic Profile Specifies Patients Who Have Heart Failure With Potential of Myocardial Recovery on Mechanical Unloading and Circulatory Support. Circulation. 2023;147:409–424. doi: 10.1161/CIRCULATIONAHA.121.056600. PubMed DOI PMC
Fu X, Segiser A, Carrel TP, Tevaearai Stahel HT, Most H. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling. Front Cardiovasc Med. 2016;3:34. doi: 10.3389/fcvm.2016.00034. PubMed DOI PMC
Benke K, Sayour AA, Mátyás C, Ágg B, Németh BT, Oláh A, Ruppert M, et al. Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation. 2017;101:498–505. doi: 10.1097/TP.0000000000001585. PubMed DOI
Soloff LA. Atrophy of myocardium and its myocytes by left ventricular assist device. Circulation. 1999;100:1012. doi: 10.1161/circ.100.9.1011/-b. PubMed DOI
Tsuneyoshi H, Oriyanhan W, Kanemitsu H, Shiina R, Nishina T, Matsuoka S, Ikeda T, Komeda M. Does the beta2-agonist clenbuterol help to maintain the myocardial potential to recover during mechanical unloading? Circulation. 2005;112(9 Suppl):I51–I56. doi: 10.1161/CIRCULATIONAHA.104.525097. PubMed DOI
Didié M, Biermann D, Buchert R, Hess A, Wittköpper K, Christalla P, Döker S, et al. Preservation of left ventricular function and morphology in volume-loaded versus volume-unloaded heterotopic heart transplants. Am J Physiol Heart Circ Physiol. 2013;305:H533–H541. doi: 10.1152/ajpheart.00218.2013. PubMed DOI
Liu Y, Maureira P, Gauchotte G, Falanga A, Marie V, Olivier A, Groubatch F, et al. Effect of chronic left ventricular unloading on myocardial remodeling: Multimodal assessment of two heterotopic heart transplantation techniques. J Heart Lung Transplant. 2015;34:594–603. doi: 10.1016/j.healun.2014.11.015. PubMed DOI
Pokorný M, Mrázová I, Malý J, Pirk J, Netuka I, Vaňourková Z, Doleželová Š, et al. Effects of increased myocardial tissue concentration of myristic, palmitic and palmitoleic acids on the course of cardiac atrophy of the failing heart unloaded by heterotopic transplantation. Physiol Res. 2018;67:13–30. doi: 10.33549/physiolres.933637. PubMed DOI
Pokorný M, Mŕzov́ I, Kub́tov́ H, Pitha J, Malý J, Pirk J, Maxová H, et al. Intraventricular placement of a spring expander does not attenuate cardiac atrophy of the healthy heart induced by unloading via heterotopic heart transplantation. Physiol Res. 2019;68:567–580. doi: 10.33549/physiolres.933936. PubMed DOI
Kim G, Kil HR, Quan C, Lee SS. Effects of carvedilol and metoprolol on the myocardium during mechanical unloading in a rat heterotopic heart transplantation model. Cardiol Young. 2021;31:1269–1274. doi: 10.1017/S1047951121000196. PubMed DOI
Rakusan K, Heron MI, Kolar F, Korecky B. Transplantation-induced atrophy of normal and hypertrophic rat hearts: effect on cardiac myocytes and capillaries. J Mol Cell Cardiol. 1997;29:1045–1054. doi: 10.1006/jmcc.1996.0350. PubMed DOI
Pokorný M, Mrázová I, Šochman J, Melenovský V, Malý J, Pirk J, Červenková L, et al. Isovolumic loading of the failing heart by intraventricular placement of a spring expander attenuates cardiac atrophy after heterotopic heart transplantation. Biosci Rep. 2018;38:BSR20180371. doi: 10.1042/BSR20180371. PubMed DOI PMC
Kolesár DM, Mrázová I, Kujal P, Pokorný M, Škaroupková P, Sadowski J, Šnorek M, et al. Intraventricular spring expander attenuates cardiac atrophy of the failing heart after unloading caused by heterotopic heart transplantation: no sex-linked differences. Physiol Res. 2025;74:373–392. doi: 10.33549/physiolres.935560. PubMed DOI PMC
Klein I, Hong C, Schreiber SS. Isovolumic loading prevents atrophy of the heterotopically transplanted rat heart. Circ Res. 1991;69:1421–1425. doi: 10.1161/01.RES.69.5.1421. PubMed DOI
Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC
Varghese TP, Maryam BT. Unraveling the complex pathophysiology of heart failure: insights into the role of renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) Curr Probl Cardiol. 2024;49:102411. doi: 10.1016/j.cpcardiol.2024.102411. PubMed DOI
Ono K, Lindsey ES. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg. 1969;57:225–229. doi: 10.1016/S0022-5223(19)42744-X. PubMed DOI
Clayton JA, Gaugh MD. Sex as a Biological Variable in Cardiovascular Diseases: JACC Focus Seminar 1/7. J Am Coll Cardiol. 2022;79:1388–1397. doi: 10.1016/j.jacc.2021.10.050. PubMed DOI
Lindsey ML, Usselman CW, Ripplinger CM, Carter JR, DeLeon-Pennell KY. Sex as a biological variable for cardiovascular physiology. Am J Physiol Heart Circ Physiol. 2024;326:H459–H469. doi: 10.1152/ajpheart.00727.2023. PubMed DOI PMC
Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res. 1990;24:430–432. doi: 10.1093/cvr/24.5.430. PubMed DOI
Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Oliver-Dussault C, Ascah A, Marcil M, Matas J, Picard S, Pibarot P, Burelle Y, Deschepper CF. Early predictors of cardiac decompensation in experimental volume overload. Mol Cell Biochem. 2010;338:271–282. doi: 10.1007/s11010-009-0361-5. PubMed DOI
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, et al. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res. 2015;64:857–873. doi: 10.33549/physiolres.932977. PubMed DOI PMC
Kala P, Sedláková L, Škaroupková P, Kopkan L, Vaňourková Z, Táborský M, Nishiyama A, et al. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC
Sporková A, Husková Z, Škaroupková P, Rami Reddy N, Falck JR, Sadowski J, Červenka L. Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: evidence against a role of direct vascular effects of epoxyeicosatrienoic acids in progression of experimental heart failure. Physiol Res. 2017;66:29–39. doi: 10.33549/physiolres.933350. PubMed DOI
Kala P, Červenka L, Škaroupková P, Táborský M, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the mortality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: effects of treatment with angiotensin converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol Res. 2019;68:589–601. doi: 10.33549/physiolres.934094. PubMed DOI
Doul J, Gawrys O, Škaroupková P, Vaňourková Z, Szeiffová Bačová B, Sýkora M, Maxová H, et al. Effects of renal denervation on the course of cardiorenal syndrome: insight from studies with Fawn-Hooded hypertensive rats. Physiol Res. 2024;73(Suppl 3):S737–S754. doi: 10.33549/physiolres.935469. PubMed DOI PMC
Lossef SV, Lutz RJ, Mundorf J, Barth KH. Comparison of mechanical deformation properties of metallic stents with use of stress-strain analysis. J Vasc Interv Radiol. 1994;5:341–349. doi: 10.1016/S1051-0443(94)71499-8. PubMed DOI
Zingaro A, Bucelli M, Fumagalli I, Dede’ L, Quarteroni A. Modeling isovolumetric phases in cardiac flows by an Augmented Resistive Immersed Implicit Surface method. Int J Numer Method Biomed Eng. 2023;39:e3767. doi: 10.1002/cnm.3767. PubMed DOI
Brown AL, Salvador M, Shi L, Pfaller MR, Hu Z, Harold KE, Hsiai T, et al. A Modular Framework for Implicit 3D-0D Coupling in Cardiac Mechanics. Comput Methods Appl Mech Eng. 2024;421:116764. doi: 10.1016/j.cma.2024.116764. PubMed DOI PMC
Torre M, Morganti S, Pasqualini FS, Reali A. Current progress toward isogeometric modeling of the heart biophysics. Biophys Rev (Melville) 2023;4:041301. doi: 10.1063/5.0152690. PubMed DOI PMC
Kolesár DM, Kujal P, Mrázová I, Pokorný M, Škaroupková P, Sadowski J, Červenka L, Netuka I. Sex-Linked Differences in Cardiac Atrophy After Mechanical Unloading Induced by Heterotopic Heart Transplantation. Physiol Res. 2024;73:9–25. doi: 10.33549/physiolres.935217. PubMed DOI PMC
Kolesár DM, Kujal P, Mrázová I, Pokorný M, Škaroupková P, Vaňourková Z, Sadowski J, et al. Sex-Linked Differences in Cardiac Atrophy After Heterotopic Heart Transplantation: No Direct Relation to the Actions of Sex Steroid Hormones. Physiol Res. 2024;73(Suppl 2):S527–S539. doi: 10.33549/physiolres.935308. PubMed DOI PMC
Wilder J. Basimetric approach (law of initial value) to biological rhythms. Ann N Y Acad Sci. 1962;98:1211–1220. doi: 10.1111/j.1749-6632.1962.tb30629.x. PubMed DOI