Ecological success in freshwater lakes: insights from novel cultivated lineages of the abundant Nanopelagicales order
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
24-12912M
Grantová Agentura České Republiky
22-03662S
Grantová Agentura České Republiky
22-33245S
Grantová Agentura České Republiky
20-12496X
Grantová Agentura České Republiky
21-21990S
Grantová Agentura České Republiky
022/2019/P
Grant Agency of the University of South Bohemia
017/2022/P
Grant Agency of the University of South Bohemia
JPMJFR2273
JST FOREST
25K18161
Japan Society for the Promotion of Science
GR1540/37-1
Leibniz-Institut für Gewässerökologie und Binnenfischerei
KK.01.1.1.01.0003
European Regional Development Fund - the Operational Programme Competitiveness
HRZZ IP-2020-02-9021
Croatian Science Foundation
760010/30.12.2022
Ministerul Cercetării şi Inovării
PubMed
41388438
PubMed Central
PMC12817590
DOI
10.1186/s40168-025-02272-x
PII: 10.1186/s40168-025-02272-x
Knihovny.cz E-zdroje
- Klíčová slova
- Aquilimus, Nanopelagicales, Nanopelagicus, Planktophila, Bacterial cultivation, Genomics, Microdiversity, Seasonal variation,
- MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- jezera * mikrobiologie MeSH
- metagenom MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
BACKGROUND: The order Nanopelagicales is the most abundant bacterioplankton lineage in freshwater lakes and exhibits typical streamlined genomic characteristics such as small cell volumes (<0.1 μm3), reduced genome sizes (<1.5 Mbp), and low GC content. These characteristics reflect adaptations to a free-living life strategy in oligotrophic environments. While many Nanopelagicales metagenome-assembled genomes and single-amplified genomes are available in public databases, strain-level microdiversity within this lineage remains poorly understood. This is mainly attributed to the incomplete nature of these genomes and the difficulty in isolating and maintaining pure cultures, with only 20 genome-sequenced cultures available to date. RESULTS: Here, we report the isolation and genome analysis of 72 new Nanopelagicales strains, including members of Planktophila and a novel, previously uncultured genus, Aquilimus. High interspecific diversity and microdiversity were observed in the genus Planktophila, which likely facilitates the coexistence of closely related species within the same habitats by allowing fine-scale niche partitioning. The unusually high diversity of transporters for small organic compounds, along with carbohydrate-active enzymes, suggests that Planktophila members can degrade plant and algal polymers and import the resulting products to support growth. A notable finding is the repeated, independent loss of the oxidative phase of the pentose phosphate pathway in abundant Nanopelagicales species, which may represent an energy-saving adaptation in oligotrophic waters. Two species (Planktophila vernalis and Nanopelagicus abundans) seem to be equally abundant on a global scale, with water pH likely being the most significant factor influencing the predominance of one group over the other in different water bodies. Additionally, P. vernalis may tolerate periods of anoxia due to genomic encoding of respiratory nitrate reductase and nitrate/nitrite antiporters. CONCLUSIONS: In conclusion, this work increased to a great degree the cultivated diversity of the abundant Nanopelagicales order. Analysis of over 1700 metagenomes showed that only a few cultivated species are globally dominant, and time-series analyses revealed consistent spring and autumn peaks. Key metabolic adaptations, such as loss of the oxidative phase of the pentose phosphate pathway and a high microdiversity of genes involved in cell surface biosynthesis and modifications, are likely to help these species survive periods of starvation and avoid predation. These findings highlight the ecological importance of Nanopelagicales and suggest that microdiversity underpins their adaptability. This work lays a foundation for studying their physiology, ecology, and strain-specific functional variation. Video Abstract.
Center of Excellence for Science and Technology Integration of Mediterranean Region Zagreb Croatia
Centre for Limnology Estonian University of Life Sciences 6117 Vehendi Tartu County Estonia
Division of Materials Chemistry Ruder Bošković Institute Bijenička Cesta 54 Zagreb 10000 Croatia
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Hydrobiological Station Faculty of Biology University of Warsaw Pilchy 5 Pisz 12 200 Poland
Institute for Chemical Research Kyoto University Kyoto Japan
Institute of Biochemistry and Biology Potsdam University Maulbeerallee 2 Potsdam 14469 Germany
Institute of Hydrobiology Biology Centre CAS Ceske Budejovice Czech Republic
Leibniz Institute for Baltic Sea Research Warnemünde Seestrasse 15 Rostock 18119 Germany
Research Department for Limnology Mondsee University of Innsbruck Mondsee 5310 Austria
Universität Innsbruck Department of Ecology Innsbruck Austria
University of Montenegro Cetinjski Put 2 Podgorica 81000 Montenegro
Water Research Institute National Research Council Largo Tonolli 50 Verbania 28922 Italy
Zobrazit více v PubMed
Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65. PubMed DOI PMC
Luo H, Thompson LR, Stingl U, Hughes AL. Selection maintains low genomic GC content in marine SAR11 lineages. Mol Biol Evol. 2015;32:2738–48. PubMed DOI
Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater actinobacteria. ISME J. 2018;12:185–98. PubMed DOI PMC
Chiriac M-C, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol. 2023;25:606–41. PubMed DOI
Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012. 10.1128/mbio.00036-12. PubMed DOI PMC
Warnecke F, Amann R, Pernthaler J. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol. 2004;6:242–53. PubMed DOI
Zwart G, et al. Nearly identical 16S rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of globally distributed freshwater bacteria. Syst Appl Microbiol. 1998;21:546–56. PubMed DOI
Hugerth LW, et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 2015;16:279. PubMed DOI PMC
Mehrshad M, Amoozegar MA, Ghai R, Shahzadeh Fazeli SA, Rodriguez-Valera F. Genome reconstruction from metagenomic data sets reveals novel microbes in the brackish waters of the Caspian Sea. Appl Environ Microbiol. 2016;82:1599–612. PubMed DOI PMC
Salka I, et al. Distribution of acI-actinorhodopsin genes in Baltic Sea salinity gradients indicates adaptation of facultative freshwater photoheterotrophs to brackish waters. Environ Microbiol. 2014;16:586–97. PubMed DOI
Newton R, Jones S, Helmus M, Mcmahon K. Phylogenetic ecology of the freshwater actinobacteria PubMed DOI PMC
Glöckner FO, et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol. 2000;66:5053–65. PubMed DOI PMC
Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J. Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol. 2005;71:5551–9. PubMed DOI PMC
Allgaier M, Grossart H-P. Diversity and seasonal dynamics of actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol. 2006;72:3489–97. PubMed DOI PMC
Salcher MM, Pernthaler J, Posch T. Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnol Oceanogr. 2010;55:846–56. DOI
Salcher MM, Posch T, Pernthaler J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 2013;7:896–907. PubMed DOI PMC
Ghai R, McMahon KD, Rodriguez-Valera F. Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep. 2012;4:29–35. PubMed DOI
Garcia SL, et al. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J. 2013;7:137–47. PubMed DOI PMC
Hamilton JJ, et al. Metabolic network analysis and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI. mSystems. 2017;2:e00091–17. PubMed DOI PMC
Ghai R, et al. Metagenomics of the water column in the pristine upper course of the Amazon River. PLoS ONE. 2011;6:e23785. PubMed DOI PMC
Partensky F, Hoepffner N, Li WKW, Ulloa O, Vaulot D. Photoacclimation of PubMed DOI PMC
Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous PubMed DOI
Kang I, Kim S, Islam MR, Cho J-C. The first complete genome sequences of the acI lineage, the most abundant freshwater actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures. Sci Rep. 2017;7:42252. PubMed DOI PMC
Kim S, Kang I, Seo J-H, Cho J-C. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J. 2019;13:2252–63. PubMed DOI PMC
Kim S, Park MS, Song J, Kang I, Cho J-C. High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang. J Microbiol. 2020;58:893–905. PubMed DOI
Kim S, et al. Heme auxotrophy in abundant aquatic microbial lineages. Proc Natl Acad Sci U S A. 2021;118:e2102750118. PubMed DOI PMC
Salcher M, Šimek K. Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology. Aquat Microb Ecol. 2016;77:183–96. DOI
Salcher MM, et al. Bringing the uncultivated microbial majority of freshwater ecosystems into culture. Nat Commun. 2025;16:7971. PubMed DOI PMC
Fernandes C, et al. Ecophysiology and global dispersal of the freshwater SAR11-IIIb genus PubMed DOI
Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 1980;25:943–8. DOI
Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J. 2019;13:2764–77. PubMed DOI PMC
Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70:e102. PubMed DOI
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. PubMed DOI
Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11:431. PubMed DOI PMC
Blum M, et al. Interpro: the protein sequence classification resource in 2025. Nucleic Acids Res. 2025;53:D444–56. PubMed DOI PMC
Tatusov RL. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–8. PubMed DOI PMC
Haft DH. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–3. PubMed DOI PMC
Mistry J, Bateman A, Finn RD. Predicting active site residue annotations in the Pfam database. BMC Bioinformatics. 2007;8:298. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726. PubMed DOI
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29. PubMed DOI PMC
Yin Y, et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51. PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043. PubMed DOI PMC
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020;36:1925–7. PubMed DOI PMC
Goris J, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91. PubMed DOI
Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol. 2020;70:2937–48. PubMed DOI
Olm MR, Brown CT, Brooks B, Banfield JF. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8. PubMed DOI PMC
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8. PubMed DOI
Parks DH, et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022;50:D785–94. PubMed DOI PMC
Löytynoja A. Phylogeny-aware alignment with PRANK. Methods Mol Biol. 2014;1079:155–70. PubMed DOI
Criscuolo A, Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. PubMed DOI PMC
Minh BQ, et al. Iq-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. PubMed DOI PMC
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29-37. PubMed DOI PMC
Bulzu P-A, Kavagutti VS, Andrei A-S, Ghai R. The evolutionary kaleidoscope of rhodopsins. mSystems. 2022;7:e00405-e422. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. PubMed DOI PMC
Käll L, Krogh A, Sonnhammer ELL. An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics. 2005;21(Suppl 1):i251-257. PubMed DOI
Ernst OP, et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev. 2014;114:126–63. PubMed DOI PMC
Mirarab S, et al. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J Comput Biol. 2015;22:377–86. PubMed DOI PMC
Bushnell B, Rood J, Singer E. Bbmerge – accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056. PubMed DOI PMC
Kelley LA, Gardner SP, Sutcliffe MJ. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng Des Sel. 1996;9:1063–5. PubMed DOI
Kille B, et al. Parsnp 2.0: scalable core-genome alignment for massive microbial datasets. Bioinformatics. 2024;40:btae311. PubMed DOI PMC
Drost H-G, Gabel A, Grosse I, Quint M. Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol Biol Evol. 2015;32:1221–31. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. PubMed DOI
Hedlund BP, et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol. 2022;7:1702–8. PubMed PMC
Cho BC, Hardies SC, Jang GI, Hwang CY. Complete genome of streamlined marine actinobacterium PubMed DOI PMC
Mehrshad M, et al. Hidden in plain sight—highly abundant and diverse planktonic freshwater chloroflexi. Microbiome. 2018;6:176. PubMed DOI PMC
Kavagutti VS, Andrei A-Ş, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome. 2019;7:135. PubMed DOI PMC
Kavagutti VS, et al. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome. 2023;11:15. PubMed DOI PMC
Krinos AI, et al. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. Microbiome. 2024;12:133. PubMed DOI PMC
Cronan JE, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol. 2009;459:395–433. PubMed DOI PMC
Ghylin TW, et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI actinobacteria lineage. ISME J. 2014;8:2503–16. PubMed DOI PMC
Escalante-Semerena JC. Conversion of cobinamide into adenosylcobamide in bacteria and archaea. J Bacteriol. 2007;189:4555–60. PubMed DOI PMC
Beale J, Lee SY, Iwata S, Beis K. Structure of the aliphatic sulfonate-binding protein SsuA from PubMed DOI PMC
Tanaka Y, et al. Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake. Sci Adv. 2020;6:eaba7637. PubMed DOI PMC
White D. The physiology and biochemistry of prokaryotes
Takeuchi N, Fullmer MS, Maddock DJ, Poole AM. The constructive black queen hypothesis: new functions can evolve under conditions favouring gene loss. ISME J. 2024;18:wrae011. PubMed DOI PMC
Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280(Pt 2):309–16. PubMed DOI PMC
Li X-L, Spániková S, de Vries RP, Biely P. Identification of genes encoding microbial glucuronoyl esterases. FEBS Lett. 2007;581:4029–35. PubMed DOI
Molina-Henares, A. J., Krell, T., Eugenia Guazzaroni, M., Segura, A. & Ramos, J. L. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30, 157–186 (2006). PubMed
Catara G, Caggiano R, Palazzo L. The DarT/DarG toxin-antitoxin ADP-ribosylation system as a novel target for a rational design of innovative antimicrobial strategies. Pathogens. 2023;12(2):240. PubMed DOI PMC
Cebrián-Sastre E, Martín-Blecua I, Gullón S, Blázquez J, Castañeda-García A. Control of genome stability by EndoMS/NucS-mediated non-canonical mismatch repair. Cells. 2021;10:1314. PubMed DOI PMC
Poindexter, J. S. Oligotrophy. in
Gómez-Consarnau L, et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci Adv. 2019;5:eaaw8855. PubMed DOI PMC
Béjà O, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6. PubMed DOI
Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev. 2016;80:929–54. PubMed DOI PMC
Dwulit-Smith JR, et al. A PubMed DOI PMC
Chazan A, et al. Diverse heliorhodopsins detected via functional metagenomics in freshwater actinobacteria, Chloroflexi and archaea. Environ Microbiol. 2022;24:110–21. PubMed DOI
Cho S-G, et al. Heliorhodopsin binds and regulates glutamine synthetase activity. PLoS Biol. 2022;20:e3001817. PubMed DOI PMC
Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J. Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol. 2003;69:6550–9. PubMed DOI PMC
Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol. 2012;14:794–806. PubMed DOI
Buck U, Grossart H-P, Amann R, Pernthaler J. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol. 2009;11:1854–65. PubMed DOI
Beier S, Bertilsson S. Uncoupling of chitinase activity and uptake of hydrolysis products in freshwater bacterioplankton. Limnol Oceanogr. 2011;56:1179–88. DOI
Taipale S, Jones RI, Tiirola M. Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses. Aquat Microb Ecol. 2009;55:1–16. DOI
Okazaki Y, Nishikawa Y, Wagatsuma R, Takeyama H, Nakano S. Contrasting defense strategies of oligotrophs and copiotrophs revealed by single-cell-resolved virus–host pairing of freshwater bacteria. ISME Commun. 2025;5:ycaf086. PubMed DOI PMC
Eckert EM, Baumgartner M, Huber IM, Pernthaler J. Grazing resistant freshwater bacteria profit from chitin and cell-wall-derived organic carbon. Environ Microbiol. 2013;15:2019–30. PubMed DOI
Pernthaler J, et al. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol. 2001;67:2145–55. PubMed DOI PMC
Šimek K, et al. Differential freshwater flagellate community response to bacterial food quality with a focus on PubMed DOI PMC
Tarao M, Jezbera J, Hahn MW. Involvement of cell surface structures in size-independent grazing resistance of freshwater actinobacteria. Appl Environ Microbiol. 2009;75:4720–6. PubMed DOI PMC
Ferris JA, Lehman JT. Interannual variation in diatom bloom dynamics: roles of hydrology, nutrient limitation, sinking, and whole lake manipulation. Water Res. 2007;41:2551–62. PubMed DOI
Kovářová J, Barrett MP. The pentose phosphate pathway in parasitic trypanosomatids. Trends Parasitol. 2016;32:622–34. PubMed DOI
Lam HM, Winkler ME. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in PubMed DOI PMC
Zhao J, Baba T, Mori H, Shimizu K. Global metabolic response of PubMed DOI
Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol. 2010;12:490–500. PubMed DOI
Spaans SK, Weusthuis RA, Van Der Oost J, Kengen SW. NADPH-generating systems in bacteria and archaea. Front Microbiol PubMed PMC
Szebenyi DME, Musayev FN, di Salvo ML, Safo MK, Schirch V. Serine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism. Biochemistry. 2004;43:6865–76. PubMed DOI
Qin Z, Yan Q, Ma Q, Jiang Z. Crystal structure and characterization of a novel L-serine ammonia-lyase from PubMed DOI
Hu H, Mylon SE, Benoit G. Distribution of the thiols glutathione and 3-mercaptopropionic acid in Connecticut lakes. Limnol Oceanogr. 2006;51:2763–74. DOI
Bachhawat AK, Thakur A, Kaur J, Zulkifli M. Glutathione transporters. Biochimica et Biophysica Acta (BBA) - General Subjects. 2013;1830:3154–64. PubMed DOI
Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H. The yliA, -B, -C, and -D genes of PubMed DOI PMC
Kettler GC, et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet. 2007;3:e231. PubMed DOI PMC
Rodriguez-Valera F, Molina-Pardines C. On the biological meaning of the population pangenome. Trends Microbiol. 2025. 10.1016/j.tim.2025.07.004. PubMed DOI
Hahn J, Inamine G, Kozlov Y, Dubnau D. Characterization of comE, a late competence operon of PubMed DOI
Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F. Key roles for freshwater actinobacteria revealed by deep metagenomic sequencing. Mol Ecol. 2014;23:6073–90. PubMed DOI
Okazaki, Y., Nishikawa, Y., Wagatsuma, R., Takeyama, H. & Nakano, S. Contrasting defense strategies of oligotrophs and copiotrophs revealed by single-cell-resolved virus–host pairing of freshwater bacteria. 2024.07.24.604879 Preprint at 10.1101/2024.07.24.604879 (2024). PubMed PMC
Kavagutti VS, Chiriac M-C, Ghai R, Salcher MM, Haber M. Isolation of phages infecting the abundant freshwater Actinobacteriota order ‘Ca. Nanopelagicales.’ ISME J. 2023;17:943–6. PubMed DOI PMC
Chen L-X, et al. Wide distribution of phage that infect freshwater SAR11 bacteria. mSystems. 2019;4:e00410–19. PubMed DOI PMC
Giovannoni S, Temperton B, Zhao Y, et al. Giovannoni et al. reply. Nature. 2013;499:E4–5. PubMed DOI
Drula E, et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022;50:D571–7. PubMed DOI PMC
Tada Y, Grossart H-P. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method. ISME J. 2014;8:441–54. PubMed DOI PMC
Ceccaldi P, et al. Reductive activation of PubMed DOI
Rodriguez-Valera F, et al. Explaining microbial population genomics through phage predation. Nat Prec. 2009. 10.1038/npre.2009.3489.1. PubMed DOI