CD Molecules Nomenclature 2025: Antibody Validation and Expression Profiling of Immune System G Protein-Coupled Receptors

. 2025 Dec ; 55 (12) : e70099.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41420480

Grantová podpora
2000773 National Health and Medical Research Council
PID2023-146941OB-I00 Agencia Estatal de Investigación. Spanish Ministry of Science, Innovation and Universities
LX22NPO5102 NextGenerationEU
NU23J-03-00026 Ministerstvo Zdravotnictví Ceské Republiky
Ministère de l'Enseignement Supérieur et de la Recherche (Luxembourg)
2016108 Australia Medical Research Future Fund
UNCE/24/MED/003 Charles University Research Center Program

Monoclonal antibodies (mAbs) targeting cell-surface molecules are pivotal in biomedical research, diagnostic applications, and biotechnology. Over the past four decades, the CD nomenclature system, established by the Human Leukocyte Differentiation Antigens Workshops and endorsed by the International Union of Immunological Societies (IUIS), has provided a standardized naming convention for both mAbs and the cell surface molecules they target. G protein-coupled receptors (GPCRs) represent the largest family of cell-surface receptors, playing essential roles in both innate and adaptive immune responses. Despite their significance, GPCRs are underrepresented in terms of well-validated mAbs available for flow cytometry and therapeutic applications. At the Eleventh HLDA Workshop (HLDA11), new CD nomenclature has been assigned to thirteen GPCR cell-surface molecules expressed on immune cells: CD198 (CCR8), CD199 (CCR9), CD372 (CCR10), CD373 (CX3CR1), CD374 (XCR1), CD375 (GPR15), CDw376 (GPR26), CD377 (SSTR3), CD378 (C3AR1), CDw379 (FPR2), CD380 (LTB4R), CDw381 (GPR183), and CDw382 (F2RL1). In this article, we introduce the newly established CD nomenclature for mAbs targeting the GPCR family. We detail the quantitative expression profiles of these molecules on various subsets of leukocytes and provide validation data for these mAbs. The implications of these expression profiles are discussed for the potential therapeutic targeting of immune-mediated diseases and cancer.

Zobrazit více v PubMed

Luster A. D., Alon R., and von Andrian U. H., “Immune Cell Migration in Inflammation: Present and Future Therapeutic Targets,” Nature Immunology 6 (2005): 1182–1190, 10.1038/ni1275. PubMed DOI

Shilts J., Severin Y., Galaway F., et al., “A Physical Wiring Diagram for the Human Immune System,” Nature 608 (2022): 397–404, 10.1038/s41586-022-05028-x. PubMed DOI PMC

Engel P., Boumsell L., Balderas R., et al., “CD Nomenclature 2015: Human Leukocyte Differentiation Antigen Workshops as a Driving Force in Immunology,” Journal of Immunology 195 (2015): 4555–4563, 10.4049/jimmunol.1502033. PubMed DOI

Clark G., Stockinger H., Balderas R., et al., “Nomenclature of CD Molecules From the Tenth Human Leucocyte Differentiation Antigen Workshop,” Clinical & Translational Immunology Jan5 (2016): e57, 10.1038/cti.2015.38. PubMed DOI PMC

Hafeez U., Gan H. K., and Scott A. M., “Monoclonal Antibodies as Immunomodulatory Therapy Against Cancer and Autoimmune Diseases,” Current Opinion in Pharmacology 41 (2018): 114–121, 10.1016/j.coph.2018.05.010. PubMed DOI

Paul S., Konig M. F., Pardoll D. M., et al., “Cancer Therapy With Antibodies,” Nature Reviews Cancer 24 (2024): 399, 10.1038/s41568-024-00690-x. PubMed DOI PMC

Kalina T., Lundsten K., and Engel P., “Relevance of Antibody Validation for Flow Cytometry,” Cytometry Part A 97 (2020): 126–136, 10.1002/cyto.a.23895. PubMed DOI

Díaz‐Ramos M. C., Engel P., and Bastos R., “Towards a Comprehensive Human Cell‐Surface Immunome Database,” Immunology Letters 134 (2011): 183–187, 10.1016/j.imlet.2010.09.016. PubMed DOI

Zhang B., Feng H., Lin H., and Li R., “Somatostatin‐SSTR3‐GSK3 Modulates Human T‐Cell Responses by Inhibiting OXPHOS,” Frontiers in Immunology 15 (2024): 1322670, 10.3389/fimmu.2024.1322670. PubMed DOI PMC

Sallusto F., Mackay C. R., and Lanzavecchia A., “The Role of Chemokine Receptors in Primary, Effector, and Memory Immune Responses,” Annual Review of Immunology 18 (2000): 593–620, 10.1146/annurev.immunol.18.1.593. PubMed DOI

Griffith J. W., Sokol C. L., and Luster A. D., “Chemokines and Chemokine Receptors: Positioning Cells for Host Defense and Immunity,” Annual Review of Immunology 32 (2014): 659–702, 10.1146/annurev-immunol-032713-120145. PubMed DOI

Zhang Y., Devries M. E., and Skolnick J., “Structure Modeling of all Identified G Protein‐Coupled Receptors in the Human Genome,” Plos Computational Biology 2 (2006): e13, 10.1371/journal.pcbi.0020013. PubMed DOI PMC

Yang D., Zhou Q., Labroska V., et al., “G Protein‐Coupled Receptors: Structure‐ and Function‐Based Drug Discovery,” Signal Transduction Targeted Therapy 6 (2021): 7, 10.1038/s41392-020-00435-w. PubMed DOI PMC

Liu S., Anderson P. J., Rajagopal S., Lefkowitz R. J., and Rockman H. A., “G Protein‐Coupled Receptors: A Century of Research and Discovery,” Circulation Research 135 (2024): 174–197, 10.1161/CIRCRESAHA.124.323067. PubMed DOI PMC

Rosenbaum D. M., Rasmussen S. G., and Kobilka B. K., “The Structure and Function of G‐Protein‐Coupled Receptors,” Nature 459 (2009): 356–363, 10.1038/nature08144. PubMed DOI PMC

Lin H. H. and Stacey M., “G Protein‐Coupled Receptors in Macrophages,” Microbiology Spectrum 4 (2016): 10, 10.1128/microbiolspec.MCHD-0028-2016. PubMed DOI

Zhang M., Chen T., Lu X., Lan X., Chen Z., and Lu S., “G Protein‐Coupled Receptors (GPCRs): Advances in Structures, Mechanisms, and Drug Discovery,” Signal Transduct Target Ther 9 (2024): 88, 10.1038/s41392-024-01803-6. PubMed DOI PMC

Bobkov V., Arimont M., Zarca A., et al., “Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3,” Molecular Pharmacology 96 (2019): 753–764, 10.1124/mol.119.116954. PubMed DOI

Calado M., Matoso P., Santos‐Costa Q., et al., “Coreceptor Usage by HIV‐1 and HIV‐2 Primary Isolates: The Relevance of CCR8 Chemokine Receptor as an Alternative Coreceptor,” Virology 408 (2010): 174–182, 10.1016/j.virol.2010.09.020. PubMed DOI

Tsutsumi N., Kildedal D. F., Hansen O. K., et al., “Insight Into Structural Properties of Viral G Protein‐Coupled Receptors and Their Role in the Viral Infection: IUPHAR Review 41,” British Journal of Pharmacology 182 (2025): 26–51, 10.1111/bph.17379. PubMed DOI

Cosmi L., Liotta F., Lazzeri E., et al., “Human CD8+CD25+ Thymocytes Share Phenotypic and Functional Features With CD4+CD25+ Regulatory Thymocytes,” Blood 102 (2003): 4107–4114, 10.1182/blood-2003-04-1320. PubMed DOI

Moser B., “Chemokine Receptor‐Targeted Therapies: Special Case for CCR8,” Cancers (Basel) 14 (2022): 511, 10.3390/cancers14030511. PubMed DOI PMC

Sokol C. L., Camire R. B., Jones M. C., and Luster A. D., “The Chemokine Receptor CCR8 Promotes the Migration of Dendritic Cells Into the Lymph Node Parenchyma to Initiate the Allergic Immune Response,” Immunity 49 (2018): 449–4, 10.1016/j.immuni.2018.07.012. PubMed DOI PMC

Heymann F., Hammerich L., Storch D., et al., “Hepatic Macrophage Migration and Differentiation Critical for Liver Fibrosis Is Mediated by the Chemokine Receptor C‐C Motif Chemokine Receptor 8 in Mice,” Hepatology 55 (2012): 898–909, 10.1002/hep.24764. PubMed DOI PMC

Nagira Y., Nagira M., Nagai R., et al., “S‐ 531011, a Novel Anti‐Human CCR8 Antibody, Induces Potent Antitumor Responses Through Depletion of Tumor‐Infiltrating CCR8‐Expressing Regulatory T Cells,” Molecular Cancer Therapeutics 22 (2023): 1063–1072, 10.1158/1535-7163.MCT-22-0570. PubMed DOI PMC

Zheng D., Wang X., Cheng L., et al., “The Chemokine Receptor CCR8 Is a Target of Chimeric Antigen T Cells for Treating T Cell Malignancies,” Frontiers in Immunology 13 (2022): 808347, 10.3389/fimmu.2022.808347. PubMed DOI PMC

Wurbel M. A., Philippe J. M., Nguyen C., et al., “The Chemokine TECK Is Expressed by Thymic and Intestinal Epithelial Cells and Attracts Double‐ and Single‐positive Thymocytes Expressing the TECK Receptor CCR9,” European Journal of Immunology Jan30 (2000): 262–271 , 10.1002/1521-4141(200001)30:1<262::AID-IMMU262>3.0.CO;2-0. PubMed DOI

Papadakis K. A., Landers C., Prehn J., et al., “CC Chemokine Receptor 9 Expression Defines a Subset of Peripheral Blood Lymphocytes With Mucosal T Cell Phenotype and Th1 or T‐regulatory 1 Cytokine Profile,” Journal of Immunology 171 (2003): 159–165, 10.4049/jimmunol.171.1.159. PubMed DOI

Uehara S., Song K., Farber J. M., and Love P. E., “Characterization of CCR9 Expression and CCL25/thymus‐expressed Chemokine Responsiveness During T Cell Development: CD3(high)CD69+ Thymocytes and gammadeltaTCR+ Thymocytes Preferentially Respond to CCL25,” Journal of Immunology 168 (2002): 134–142, 10.4049/jimmunol.168.1.134. PubMed DOI

Qiuping Z., Qun L., Chunsong H., et al., “Selectively Increased Expression and Functions of Chemokine Receptor CCR9 on CD4+ T Cells From Patients With T‐cell Lineage Acute Lymphocytic Leukemia,” Cancer Research 63 (2003): 6469–6477. PubMed

Tu Z., Xiao R., Xiong J., et al., “CCR9 in Cancer: Oncogenic Role and Therapeutic Targeting,” Journal of Hematology & Oncology 9 (2016): 10, 10.1186/s13045-016-0236-7. PubMed DOI PMC

Santamaria S., Delgado M., Botas M., et al., “Therapeutic Potential of an Anti‐CCR9 mAb Evidenced in Xenografts of Human CCR9+ Tumors,” Frontiers in Immunology 13 (2022): 825635, 10.3389/fimmu.2022.825635. PubMed DOI PMC

Wendt E. and Keshav S., “CCR9 Antagonism: Potential in the Treatment of Inflammatory Bowel Disease,” Clinical and Experimental Gastroenterology 8 (2015): 119–130. PubMed PMC

Maciocia P. M., Wawrzyniecka P. A., Maciocia N. C., et al., “Anti‐CCR9 Chimeric Antigen Receptor T Cells for T‐Cell Acute Lymphoblastic Leukemia,” Blood 140 (2022): 25–37, 10.1182/blood.2021013648. PubMed DOI

Homey B., Alenius H., Müller A., et al., “CCL27‐CCR10 interactions Regulate T Cell‐mediated Skin Inflammation,” Nature Medicine 8 (2002): 157–165, 10.1038/nm0202-157. PubMed DOI

Mohan T., Deng L., and Wang B. Z., “CCL28 chemokine: An Anchoring Point Bridging Innate and Adaptive Immunity,” International Immunopharmacology 51 (2017): 165–170, 10.1016/j.intimp.2017.08.012. PubMed DOI PMC

Ferguson I. D., Patiño‐Escobar B., Tuomivaara S. T., et al., “The Surfaceome of Multiple Myeloma Cells Suggests Potential Immunotherapeutic Strategies and Protein Markers of Drug Resistance,” Nature Communications 13 (2022): 4121, 10.1038/s41467-022-31810-6. PubMed DOI PMC

Lin H. Y., Sun S. M., Lu X. F., et al., “CCR10 activation Stimulates the Invasion and Migration of Breast Cancer Cells Through the ERK1/2/MMP‐7 Signaling Pathway,” International Immunopharmacology 51 (2017): 124–130, 10.1016/j.intimp.2017.07.018. PubMed DOI

Willuveit A. L., Stefanini A., Buzzo C., Matozo T., and Cavalheiro M. L., “CCR10: A Comprehensive Review of Its Function, Phylogeny, Role in Immune Cell Trafficking and Disease Pathogenesis,” Frontiers in Immunology (2025): 16. PubMed PMC

Zhao L., Hu S., Davila M. L., et al., “Coordinated co‐migration of CCR10 PubMed DOI PMC

Muthuswamy R. V., Sundström P., Börjesson L., Gustavsson B., and Quiding‐Järbrink M., “Impaired Migration of IgA‐Secreting Cells to Colon Adenocarcinomas,” Cancer Immunology, Immunotherapy 62 (2013): 989–997, 10.1007/s00262-013-1410-1. PubMed DOI PMC

Xiong N., Fu Y., Hu S., Xia M., and Yang J., “CCR10 and Its Ligands in Regulation of Epithelial Immunity and Diseases,” Protein Cell 38 (2012): 571–580, 10.1007/s13238-012-2927-3. PubMed DOI PMC

Ferguson I. D., Patiño‐Escobar B., Tuomivaara S. T., et al., “The Surfaceome of Multiple Myeloma Cells Suggests Potential Immunotherapeutic Strategies and Protein Markers of Drug Resistance,” Nature Communications 13 (2022): 4121, 10.1038/s41467-022-31810-6. PubMed DOI PMC

Patiño‐Escobar B., Ferguson I. D., and Wiita A. P., “Unraveling the Surface Proteomic Profile of Multiple Myeloma to Reveal New Immunotherapeutic Targets and Markers of Drug Resistance,” Cell Stress 6 (2022): 89–92. PubMed PMC

Szukiewicz D., “CX3CL1 (Fractalkine)‐CX3CR1 Axis in Inflammation‐Induced Angiogenesis and Tumorigenesis,” International Journal of Molecular Sciences 25 (2024): 4679, 10.3390/ijms25094679. PubMed DOI PMC

Mei N., Su H., Gong S., et al., “High CX3CR1 Expression Predicts Poor Prognosis in Paediatric Acute Myeloid Leukaemia Undergoing Hyperleukocytosis,” International Journal of Laboratory Hematology 45 (2023): 53–63, 10.1111/ijlh.13963. PubMed DOI PMC

Molczyk C. and Singh R. K., “CXCR1: A Cancer Stem Cell Marker and Therapeutic Target in Solid Tumors,” Biomedicines 11 (2023): 576, 10.3390/biomedicines11020576. PubMed DOI PMC

Lee M., Lee Y., Song J., Lee J., and Chang S. Y., “Tissue‐Specific Role of CX3CR1 Expressing Immune Cells and Their Relationships With Human Disease,” Immune Netw 18 (2018): e5, 10.4110/in.2018.18.e5. PubMed DOI PMC

Fuhrmann M., Bittner T., Jung C. K., et al., “Microglial Cx3cr1 Knockout Prevents Neuron Loss in a Mouse Model of Alzheimer's disease,” Nature Neuroscience 13 (2010): 411–413, 10.1038/nn.2511. PubMed DOI PMC

Komissarov A., Potashnikova D., Freeman M. L., et al., “Driving T Cells to human Atherosclerotic Plaques: CCL3/CCR5 and CX3CL1/CX3CR1 Migration Axes,” European Journal of Immunology 51 (2021): 1857–1859, 10.1002/eji.202049004. PubMed DOI

Apostolakis S. and Spandidos D., “Chemokines and Atherosclerosis: Focus on the CX3CL1/CX3CR1 Pathway,” Acta Pharmacologica Sinica 34 (2013): 1251–1256, 10.1038/aps.2013.92. PubMed DOI PMC

Lu X., “Structure and Function of Ligand CX3CL1 and Its Receptor CX3CR1 in Cancer,” Current Medicinal Chemistry 29 (2022): 6228–6246, 10.2174/0929867329666220629140540. PubMed DOI

Urban J., Suchankova M., Ganovska M., et al., “The Role of CX3CL1 and ADAM17 in Pathogenesis of Diffuse Parenchymal Lung Diseases,” Diagnostics (Basel) 11 (1074). PubMed PMC

Audsley K. M., McDonnell A. M., and Waithman J., “Cross‐Presenting XCR1+ Dendritic Cells as Targets for Cancer Immunotherapy,” Cells 9 (2020): 565, 10.3390/cells9030565. PubMed DOI PMC

Dorner B. G., Dorner M. B., Zhou X., et al., “Selective Expression of the Chemokine Receptor XCR1 on Cross‐Presenting Dendritic Cells Determines Cooperation With CD8+ T Cells,” Immunity 31 (2009): 823–833, 10.1016/j.immuni.2009.08.027. PubMed DOI

Bachem A., Güttler S., Hartung E., et al., “Superior Antigen Cross‐Presentation and XCR1 Expression Define Human CD11c+CD141+ Cells as Homologues of Mouse CD8+ Dendritic Cells,” Journal of Experimental Medicine 207 (2010): 1273–1281, 10.1084/jem.20100348. PubMed DOI PMC

Crozat K., Guiton R., Contreras V., et al., “The XC Chemokine Receptor 1 Is a Conserved Selective Marker of Mammalian Cells Homologous to Mouse CD8alpha+ Dendritic Cells,” Journal of Experimental Medicine 207 (2010): 1283–1292, 10.1084/jem.20100223. PubMed DOI PMC

Heger L., Hatscher L., Liang C., et al., “XCR1 expression Distinguishes human Conventional Dendritic Cell Type 1 With Full Effector Functions From Their Immediate Precursors,” Proceedings National Academy of Science USA 120 (2023): e2300343120, 10.1073/pnas.2300343120. PubMed DOI PMC

Domenjo‐Vila E., Casella V., Iwabuchi R., et al., “XCR1+ DCs Are Critical for T Cell‐Mediated Immunotherapy of Chronic Viral Infections,” Cell Reports 42 (2023): 112123, 10.1016/j.celrep.2023.112123. PubMed DOI

Zhang X., Schlimgen R. R., Singh S., Tomani M. P., Volkman B. F., and Zhang C., “Molecular Basis for Chemokine Recognition and Activation of XCR1,” Proceedings National Academy of Science USA 121 (2024): e2405732121, 10.1073/pnas.2405732121. PubMed DOI PMC

Okamoto Y. and Shikano S., “Emerging Roles of a Chemoattractant Receptor GPR15 and Ligands in Pathophysiology,” Frontiers in immunology 14 (2023): 1179456, 10.3389/fimmu.2023.1179456. PubMed DOI PMC

Bauer M., “The Role of GPR15 Function in Blood and Vasculature,” International Journal of Molecular Sciences 22 (2021): 10824, 10.3390/ijms221910824. PubMed DOI PMC

Adamczyk A., Gageik D., Frede A., et al., “Differential Expression of GPR15 on T Cells During Ulcerative Colitis,” JCI Insight 2 (2017): e90585, 10.1172/jci.insight.90585. PubMed DOI PMC

Ammitzbøll C., von Essen M. R., Börnsen L., et al., “GPR15+ T Cells Are Th17 Like, Increased in Smokers and Associated With Multiple Sclerosis,” Journal of Autoimmunity 97 (2019): 114–121, 10.1016/j.jaut.2018.09.005. PubMed DOI

Fischer A., Zundler S., Atreya R., et al., “Differential Effects of α4β7 and GPR15 on Homing of Effector and Regulatory T Cells From Patients With UC to the Inflamed Gut in Vivo,” Gut 65 (2016): 1642–1664, 10.1136/gutjnl-2015-310022. PubMed DOI PMC

Ocón B., Pan J., Dinh T. T., et al., “A Mucosal and Cutaneous Chemokine Ligand for the Lymphocyte Chemoattractant Receptor GPR15,” Frontiers in Immunology 8 (2017): 1111. PubMed PMC

Fernández‐Ruiz J. C., Ochoa‐González F. L., Zapata‐Zúñiga M., et al., “GPR15 Expressed in T Lymphocytes From RA Patients Is Involved in Leukocyte Chemotaxis to the Synovium,” Journal of Leukocyte Biology 112 (2022): 1209–1221, 10.1002/JLB.3MA0822-263RR. PubMed DOI

Namkoong H., Lee B., Swaminathan G., et al., “GPR15 in Colon Cancer Development and Anti‐Tumor Immune Responses,” Frontiers in Oncology 13 (2023): 1254307, 10.3389/fonc.2023.1254307. PubMed DOI PMC

Kichi Z. A., Natarelli L., Sadeghian S., Boroumand M. A., Behmanesh M., and Weber C., “Orphan GPR26 Counteracts Early Phases of Hyperglycemia‐Mediated Monocyte Activation and Is Suppressed in Diabetic Patients,” Biomedicines 10 (2022): 1736, 10.3390/biomedicines10071736. PubMed DOI PMC

Alavi M. S., Shamsizadeh A., Azhdari‐Zarmehri H., and Roohbakhsh A., “Orphan G Protein‐Coupled Receptors: The Role in CNS Disorders,” Biomedicine & Pharmacotherapy 98 (2018): 222–232, 10.1016/j.biopha.2017.12.056. PubMed DOI

Jones P. G., Nawoschik S. P., Sreekumar K., et al., “Tissue Distribution and Functional Analyses of the Constitutively Active Orphan G Protein Coupled Receptors, GPR26 and GPR78,” Biochimica Et Biophysica Acta 1770 (2007): 890–901, 10.1016/j.bbagen.2007.01.013. PubMed DOI

Talme T., Ivanoff J., Hägglund M., Van Neerven R. J., Ivanoff A., and Sundqvist K. G., “Somatostatin Receptor (SSTR) Expression and Function in Normal and Leukaemic T‐Cells. Evidence for Selective Effects on Adhesion to Extracellular Matrix Components via SSTR2 and/or 3,” Clinical and Experimental Immunology 125 (2001): 71–79, 10.1046/j.1365-2249.2001.01577.x. PubMed DOI PMC

Imhof A. K., Glück L., Gajda M., et al., “Differential Antiinflammatory and Antinociceptive Effects of the Somatostatin Analogs Octreotide and Pasireotide in a Mouse Model of Immune‐mediated Arthritis,” Arthritis and Rheumatism 63 (2011): 2352–2362, 10.1002/art.30410. PubMed DOI

Rodriguez P., Laskowski L. J., Pallais J. P., et al., “Functional Profiling of the G Protein‐Coupled Receptor C3aR1 Reveals Ligand‐Mediated Biased Agonism,” Journal of Biological Chemistry 300 (2024): 105549, 10.1016/j.jbc.2023.105549. PubMed DOI PMC

Li K., Fazekasova H., Wang N., et al., “Functional Modulation of Human Monocytes Derived DCs by Anaphylatoxins C3a and C5a,” Immunobiology 217 (2012): 65–73, 10.1016/j.imbio.2011.07.033. PubMed DOI PMC

Asgari E., Le Friec G., Yamamoto H., et al., “C3a modulates IL‐1β Secretion in Human Monocytes by Regulating ATP Efflux and Subsequent NLRP3 Inflammasome Activation,” Blood 122 (2013): 3473–3481, 10.1182/blood-2013-05-502229. PubMed DOI

Gao S., Cui Z., and Zhao M. H., “The Complement C3a and C3a Receptor Pathway in Kidney Diseases,” Frontiers in Immunology 11 (2020): 1875, 10.3389/fimmu.2020.01875. PubMed DOI PMC

Zhang M., Gao J. L., Chen K., et al., “A Critical Role of Formyl Peptide Receptors in Host Defense Against Escherichia coli,” Journal of Immunology 204 (2020): 2464–2473, 10.4049/jimmunol.1900430. PubMed DOI PMC

von Palffy S., Thorsson H., Peña‐Martínez P., et al., “The Complement Receptor C3AR Constitutes a Novel Therapeutic Target in NPM1‐mutated AML,” Blood Advances 7 (2023): 1204–1218. PubMed PMC

Qin C. X., Norling L. V., Vecchio E. A., et al., “Formylpeptide Receptor 2: Nomenclature, Structure, Signalling and Translational Perspectives: IUPHAR Review 35,” British Journal of Pharmacology 179 (2022): 4617, 10.1111/bph.15919. PubMed DOI PMC

Chen K., Gong W., Huang J., Yoshimura T., and Ming‐Wang J., “Developmental and Homeostatic Signaling Transmitted by the G‐Protein Coupled Receptor FPR2,” International Immunopharmacology 118 (2023): 110052, 10.1016/j.intimp.2023.110052. PubMed DOI PMC

Dahlgren C., Forsman H., Sundqvist M., Björkman L., and Mårtensson J., “Signaling by Neutrophil G Protein‐Coupled Receptors That Regulate the Release of Superoxide Anions,” Journal of Leukocyte Biology 116 (2024): 1334–1351. PubMed

Migeotte I., Communi D., and Parmentier M., “Formyl Peptide Receptors: A Promiscuous Subfamily of G Protein‐coupled Receptors Controlling Immune Responses,” Cytokine & Growth Factor Reviews 17 (2006): 501–519, 10.1016/j.cytogfr.2006.09.009. PubMed DOI

Basil M. C. and Levy B. D., “Specialized Pro‐resolving Mediators: Endogenous Regulators of Infection and Inflammation,” Nature Reviews Immunology 16 (2016): 51–67, 10.1038/nri.2015.4. PubMed DOI PMC

Maciuszek M., Cacace A., Brennan E., Godson C., and Chapman T. M., “Recent Advances in the Design and Development of Formyl Peptide Receptor 2 (FPR2/ALX) Agonists as Pro‐Resolving Agents With Diverse Therapeutic Potential,” European Journal of Medicinal Chemistry 213 (2021): 113167, 10.1016/j.ejmech.2021.113167. PubMed DOI

Yang W. S., Wang J. L., Wu W., et al., “Formyl Peptide Receptor 2 as a Potential Therapeutic Target for Inflammatory Bowel Disease,” Acta Pharmacologica Sinica 44 (2023): 19–31, 10.1038/s41401-022-00944-0. PubMed DOI PMC

Tager A. M. and Luster A. D., “BLT1 and BLT2: The Leukotriene B(4) Receptors,” Prostaglandins, Leukotrienes & Essential Fatty Acids 69 (2003): 123–134, 10.1016/S0952-3278(03)00073-5. PubMed DOI

Yokomizo T., “Two Distinct Leukotriene B4 Receptors, BLT1 and BLT2,” Journal of Biochemistry 157 (2015): 65–71, 10.1093/jb/mvu078. PubMed DOI

Islam S. A., Thomas S. Y., Hess C., et al., “The Leukotriene B4 Lipid Chemoattractant Receptor BLT1 Defines Antigen‐Primed T Cells in Humans,” Blood 107 (2006): 444–453, 10.1182/blood-2005-06-2362. PubMed DOI PMC

Watanabe S., Yamasaki A., Hashimoto K., et al., “Expression of Functional Leukotriene B4 Receptors on Human Airway Smooth Muscle Cells,” Journal of Allergy and Clinical Immunology 124 (2009): 59–65, 10.1016/j.jaci.2009.03.024. PubMed DOI PMC

Goodarzi K., Goodarzi M., Tager A. M., Luster A. D., and von Andrian U. H., “Leukotriene B4 and BLT1 Control Cytotoxic Effector T Cell Recruitment to Inflamed Tissues,” Nature Immunology 4 (2003): 965–973, 10.1038/ni972. PubMed DOI

Bhatt L., Roinestad K., Van T., and Springman E. B., “Recent Advances in Clinical Development of Leukotriene B4 Pathway Drugs,” Seminars in Immunology 33 (2017): 65–73, 10.1016/j.smim.2017.08.007. PubMed DOI

Sáez‐de‐Guinoa J., Barrio L., Mellado M., and Carrasco Y. R., “CXCL13/CXCR5 signaling Enhances BCR‐Triggered B‐Cell Activation by Shaping Cell Dynamics,” Blood 118 (2011): 1560–1569. PubMed

Barroso R., Martínez‐Muñoz L., Barrondo S., et al., “EBI2 Regulates CXCL13‐Mediated Responses by Heterodimerization With CXCR5,” Faseb Journal 26 (2012): 4841–4854, 10.1096/fj.12-208876. PubMed DOI

Hannedouche S., Zhang J., Yi T., et al., “Oxysterols Direct Immune Cell Migration via EBI2,” Nature 475 (2011): 524–527, 10.1038/nature10280. PubMed DOI PMC

Pereira J. P., Kelly L. M., Xu Y., and Cyster J. G., “EBI2 mediates B Cell Segregation Between the Outer and Centre Follicle,” Nature 460 (2009): 1122–1126, 10.1038/nature08226. PubMed DOI PMC

Barington L., Wanke F., Niss‐Arfelt K., Holst P. J., Kurschus F. C., and Rosenkilde M. M., “EBI2 in Splenic and Local Immune Responses and in Autoimmunity,” Journal of Leukocyte Biology 104 (2018): 313–322, 10.1002/JLB.2VMR1217-510R. PubMed DOI

Gatto D., Wood K., Caminschi I., et al., “The Chemotactic Receptor EBI2 Regulates the Homeostasis, Localization and Immunological Function of Splenic Dendritic Cells,” Nature Immunology 14 (2013): 446–453, 10.1038/ni.2555. PubMed DOI

Zhuang H., Li F., Pei R., et al., “High Expression of GPR183 Predicts Poor Survival in Cytogenetically Normal Acute Myeloid Leukemia,” Biochemical Genetics (2025). Epub ahead of print. PubMed

Xi J., Gong H., Li Z., et al., “Discovery of a First‐in‐Class GPR183 Antagonist for the Potential Treatment of Rheumatoid Arthritis,” Journal of Medicinal Chemistry 66 (2023): 15926–15943, 10.1021/acs.jmedchem.3c01364. PubMed DOI

Deng Q., Wei J., Zou P., et al., “Transcriptome Analysis and Emerging Driver Identification of CD8+ T Cells in Patients With Vitiligo,” Oxidative Medicine and Cellular Longevity 2019 (2019): 2503924, 10.1155/2019/2503924. PubMed DOI PMC

Ramelli G., Fuertes S., Narayan S., Busso N., Acha‐Orbea H., and So A., “Protease‐Activated Receptor 2 Signalling Promotes Dendritic Cell Antigen Transport and T‐Cell Activation in Vivo,” Immunology 129 (2010): 20–27, 10.1111/j.1365-2567.2009.03144.x. PubMed DOI PMC

Ge‐Xue J. M., Yang L. T., Yang G., et al., “Protease‐activated Receptor‐2 Suppresses Interleukin (IL)‐10 Expression in B Cells via Upregulating Bcl2L12 in Patients With Allergic Rhinitis,” Allergy 72 (2017): 1704–1712. PubMed

Fan M., Fan X., Lai Y., et al., “Protease‐Activated Receptor 2 in Inflammatory Skin Disease: Current Evidence and Future Perspectives,” Frontiers in Immunology 15 (2024): 1448952, 10.3389/fimmu.2024.1448952. PubMed DOI PMC

Xu K., Wang L., Lin M., and He G., “Update on Protease‐activated Receptor 2 in Inflammatory and Autoimmune Dermatological Diseases,” Frontiers in Immunology 15 (2024): 1449126, 10.3389/fimmu.2024.1449126. PubMed DOI PMC

Peach C. J., Edgington‐Mitchell L. E., Bunnett N. W., and Schmidt B. L., “Protease‐Activated Receptors in Health and Disease,” Physiological Reviews 2023. 103:717–785. PubMed PMC

Kužílková D., Puñet‐Ortiz J., Aui P. M., et al., “Standardization of Workflow and Flow Cytometry Panels for Quantitative Expression Profiling of Surface Antigens on Blood Leukocyte Subsets: An HCDM CDMaps Initiative,” Frontiers in Immunology 13 (2022): 827898. PubMed PMC

Kalina T., Flores‐Montero J., van der Velden V. H., et al., “EuroFlow Consortium (EU‐FP6, LSHB‐CT‐2006‐018708). EuroFlow Standardization of Flow Cytometer Instrument Settings and Immunophenotyping Protocols,” Leukemia 26 (2012): 1986–2010, 10.1038/leu.2012.122. PubMed DOI PMC

Hedin F., Konstantinou M., and Cosma A., “Data Integration and Visualization Techniques for Post‐Cytometric Analysis of Complex Datasets,” Cytometry Part A 99 (2021): 930–938, 10.1002/cyto.a.24359. PubMed DOI

Glier H. and Holada K., “Blood Storage Affects the Detection of Cellular Prion Protein on Peripheral Blood Leukocytes and Circulating Dendritic Cells in Part by Promoting Platelet Satellitism,” Journal of Immunological Methods 380 (2012): 65–72, 10.1016/j.jim.2012.04.002. PubMed DOI

Cossarizza A., Chang H. D., Radbruch A., et al., “Guidelines for the Use of Flow Cytometry and Cell Sorting in Immunological Studies,” European Journal of Immunology 49 (2019): 1457–1973, 10.1002/eji.201970107. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...