Sorghum embryos undergoing B chromosome elimination express B-variants of mitotic-related genes

. 2025 Dec 24 ; 27 (1) : 8. [epub] 20251224

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41437077

Grantová podpora
TH 1876/5-2 Deutsch-Französische Hochschule
1876/6-1 Deutsche Forschungsgemeinschaft
HO1779/30-1 and 30-2 Deutsche Forschungsgemeinschaft
23-04887S Grantová Agentura České Republiky
22-02108S Grantová Agentura České Republiky
DAAD-22-02 Akademie Věd České Republiky

Odkazy

PubMed 41437077
PubMed Central PMC12849586
DOI 10.1186/s13059-025-03915-w
PII: 10.1186/s13059-025-03915-w
Knihovny.cz E-zdroje

BACKGROUND: Selective DNA elimination occurs across diverse species and plays a crucial role in evolution and development. This process encompasses small deletions, complete removal of chromosomes, or even the elimination of entire parental genomes. Despite its importance, the molecular mechanisms governing selective DNA elimination remain poorly understood. Our study focuses on the tissue-specific elimination of Sorghum purpureosericeum B chromosomes during embryo development. RESULTS: In situ B chromosome visualisation, complemented by transcriptomic profiling and gene-enrichment analysis, allows us to identify 28 candidate genes potentially linked to chromosome elimination. We show that elimination is a developmentally programmed process, peaking during mid-embryogenesis and nearly completed at later stages, leaving B chromosomes only in restricted meristematic regions. Genome sequencing reveals that the sorghum B chromosome is of multi-A chromosomal origin, has reduced gene density, is enriched in repetitive sequences, and carries a novel centromeric repeat, SpuCL166. Transcriptome analyses identify B-specific variants of kinetochore, cohesion, and checkpoint genes that are expressed during active elimination, while structural modeling of CENH3 and CENP-C indicates functional divergence at the kinetochore interface. CONCLUSIONS: Here, we provide the first comprehensive genomic and transcriptomic characterization of B chromosome and its elimination in Sorghum purpureosericeum. Our findings suggest that B chromosomes express modified mitotic machinery to control their own fate. By establishing a framework of candidate genes, this study opens new avenues for dissecting the molecular mechanisms of chromosome elimination and provides a critical foundation for understanding how genomes evolve to regulate and tolerate supernumerary chromosomal elements.

Zobrazit více v PubMed

Boveri T. Über Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 1887;(vol. 2):688–693.

Wang J, Davis RE. Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev. 2014;27:26–34. PubMed DOI PMC

Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev. 2022;97(1):195–216. 10.1111/brv.12796. PubMed DOI PMC

Kloc M, Kubiak JZ, Ghobrial RM. Natural genetic engineering: a programmed chromosome/DNA elimination. Dev Biol. 2022;486:15–25. PubMed DOI

Grishanin A. Chromatin diminution as a tool to study some biological problems. Comp Cytogenet. 2024;18:27–49. PubMed DOI PMC

Zagoskin MV, Wang J. Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells. Biochem Soc Trans. 2021;49(5):1891–903. PubMed DOI PMC

Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A. 2011. 10.1073/pnas.1103190108. PubMed DOI PMC

Kopecký D, Horáková L, Duchoslav M, Doležel J. Selective elimination of parental chromatin from introgression cultivars of xFestulolium ( DOI

Gerbi SA. Non-random chromosome segregation and chromosome eliminations in the fly PubMed DOI PMC

Zhang X, Ferree PM. PSRs: selfish chromosomes that manipulate reproductive development. Semin Cell Dev Biol. 2024;159–160:66–73. PubMed DOI

Janaki-Ammal EK. Chromosome diminuition in a plant. Nature. 1940;146:839–40. DOI

Nygren A.

Baenziger H. Supernumerary chromosomes in diploid and tetraploid forms of crested wheatgrass. Can J Bot. 1962;40(4):549–61. DOI

Mendelson D, Zohary D. Behaviour and transmission of supernumerary chromosomes in DOI

Ruban A, Schmutzer T, Wu DD, Fuchs J, Boudichevskaia A, Rubtsova M, et al. Supernumerary B chromosomes of PubMed DOI PMC

D’Ambrosio U, Pilar Alonso-Lifante M, Barros K, Kovařík A, de Mas Xaxars G, Sònia Garcia G. B-chrom: a database on B-chromosomes of plants, animals and fungi. New Phytol. 2017;216:635–42. PubMed DOI

Mochizuki A. B chromosomes in Aegilops mutica Boiss. Wheat Inf Serv. 1957;5:9–11.

Karafiátová M, Bojdová T, Stejskalová M, Harnádková N, Kumar V, Houben A, et al. Unravelling the unusual: chromosome elimination, nondisjunction and extra pollen mitosis characterize the B chromosome in wild sorghum. New Phytol. 2024;243(5):1840–54. 10.1111/nph.19954. PubMed DOI

Hodson CN, Ross L, Dion-Côté AM. Evolutionary Perspectives on Germline-Restricted Chromosomes in Flies (Diptera). Genome Biol Evol. 2021;13(6). https://doi.org/10.1093/gbe/evab072/6247764. PubMed PMC

Borodin P, Chen A, Forstmeier W, Fouché S, Malinovskaya L, Pei Y, et al. Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res. 2022;30(2–3):255–72. 10.1007/s10577-022-09688-3. PubMed DOI PMC

Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell. 2002;110(6):689–99. PubMed DOI

Mochizuki K, Gorovsky MA. Small RNAs in genome rearrangement in PubMed DOI

Mochizuki K. DNA rearrangements directed by non-coding RNAs in ciliates. WIREs RNA. 2010;1(3):376–87. 10.1002/wrna.34. PubMed DOI PMC

Fang W, Wang X, Bracht JR, Nowacki M, Landweber LF. Piwi-interacting RNAs protect DNA against loss during PubMed DOI PMC

Schoenmakers S, Wassenaar E, Laven JSE, Grootegoed JA, Baarends WM. Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch. Chromosoma. 2010;119(3):311–24. 10.1007/s00412-010-0258-9. PubMed DOI PMC

del Priore L, Pigozzi MI. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma. 2014;123(3):293–302. 10.1007/s00412-014-0451-3. PubMed DOI

Timoshevskiy VA, Herdy JR, Keinath MC, Smith JJ, Carbone L. Cellular and Molecular Features of Developmentally Programmed Genome Rearrangement in a Vertebrate (Sea Lamprey: Petromyzon marinus). PLOS Genetics. 2016;12(6). 10.1371/journal.pgen.1006103. PubMed PMC

Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482(7383):53–8. PubMed DOI PMC

Boudichevskaia A, Ruban A, Thiel J, Fiebig A, Houben A. Tissue-specific transcriptome analysis reveals candidate transcripts associated with the process of programmed B chromosome elimination in PubMed DOI PMC

Karafiátová M, Bednářová M, Said M, Čížková J, Holušová K, Blavet N, et al. The B chromosome of PubMed DOI PMC

McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, et al. The PubMed DOI

Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, Schmutzer T, et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci U S A. 2012;109(33):13343–6. PubMed DOI PMC

Blavet N, Yang H, Su H, Solanský P, Douglas RN, Karafiátová M, et al. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc Natl Acad Sci U S A. 2021. 10.1073/pnas.2104254118. PubMed DOI PMC

Chen J, Bartoš J, Boudichevskaia A, Voigt A, Rabanus-Wallace MT, Dreissig S, et al. The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly. Nat Commun. 2024. 10.1038/s41467-024-53799-w. PubMed DOI PMC

Li D, Ruban A, Fuchs J, Kang H, Houben A. B-A Chromosome Translocations Possessing an A Centromere Partly Overcome the Root-Restricted Process of Chromosome Elimination in Aegilops speltoides. Front Cell Develop Biol. 2022;10.10.3389/fcell.2022.875523/full. PubMed PMC

Roman H. Factors affecting mitotic non-disjunction in maize. Genetics. 1950;35:132.

Lin BY. Regional control of nondisjunction of the B chromosome in maize. Genetics. 1978;90(3):613–27. PubMed DOI PMC

Ward EJ. Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics. 1973;73(3):387–91. PubMed DOI PMC

Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, et al. The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024;52(W1):W521–5. PubMed DOI PMC

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. PubMed DOI PMC

Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002;14(11):2825–36. PubMed DOI PMC

Song K, Gronemeyer B, Lu W, Eugster E, Tomkiel JE. Mutational analysis of the central centromere targeting domain of human centromere protein C, (CENP-C). Exp Cell Res. 2002;275(1):81–91. PubMed DOI

Carroll CW, Milks KJ, Straight AF. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol. 2010;189(7):1143–55. PubMed DOI PMC

Chan GK, Liu ST, Yen TJ. Kinetochore structure and function. Trends Cell Biol. 2005;15(11):589–98. PubMed DOI

Ochs F, Green C, Szczurek AT, Pytowski L, Kolesnikova S, Brown J, et al. Sister chromatid cohesion is mediated by individual cohesin complexes. Science. 2024;383(6687):1122–30. 10.1126/science.adl4606. PubMed DOI

Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature. 2014;513(7518):388–93. PubMed DOI PMC

Goday C, Esteban MR. Chromosome elimination in sciarid flies. Bioessays. 2001;23(3):242–50. PubMed DOI

Staiber W. Germ line-limited and somatic chromosomes of PubMed DOI

Ravi M, Chan SWL. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464(7288):615–8. PubMed DOI

Majka J, Glombik M, Doležalová A, Kneřová J, Ferreira MTM, Zwierzykowski Z, et al. Both male and female meiosis contribute to non-Mendelian inheritance of parental chromosomes in interspecific plant hybrids ( PubMed DOI

Ishii T, Karimi-Ashtiyani R, Houben A. Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol. 2016;67(1):421–38. 10.1146/annurev-arplant-043014-114714. PubMed DOI

Dedukh D, Marta A, Myung RY, Ko MH, Choi DS, Won YJ, et al. A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level. Commun Biol. 2024. 10.1038/s42003-024-05948-6. PubMed DOI PMC

Peters JM, Tedeschi A, Schmitz J. The cohesin complex and its roles in chromosome biology. Genes Dev. 2008;22(22):3089–114. PubMed DOI

Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci. 2024. 10.1007/s00018-024-05122-5. PubMed DOI PMC

Pati D. Oncogenic activity of separase. Cell Cycle. 2008;7(22):3481–2. 10.4161/cc.7.22.7048. PubMed DOI PMC

Zhang N, Ge G, Meyer R, Sethi S, Basu D, Pradhan S, et al. Overexpression of separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci USA. 2008;105(35):13033–8. 10.1073/pnas.0801610105. PubMed DOI PMC

Barbero JL. Sister chromatid cohesion control and aneuploidy. Cytogenet Genome Res. 2011;133(2–4):223–33. 10.1159/000323507. PubMed DOI

Zhang N, Pati D. Biology and insights into the role of cohesin protease separase in human malignancies. Biol Rev. 2017;92(4):2070–83. 10.1111/brv.12321. PubMed DOI

Waldman T. Emerging themes in cohesin cancer biology. Nat Rev Cancer. 2020;20(9):504–15. PubMed DOI

Kim JS, He X, Orr B, Wutz G, Hill V, Peters JM, et al. Intact cohesion, anaphase, and chromosome segregation in human cells harboring tumor-derived mutations in STAG2. PLoS Genet. 2016. 10.1371/journal.pgen.1005865. PubMed DOI PMC

Leylek TR, Jeusset LM, Lichtensztejn Z, McManus KJ. Reduced expression of genes regulating cohesion induces chromosome instability that may promote cancer and impact patient outcomes. Sci Rep. 2020. 10.1038/s41598-020-57530-9. PubMed DOI PMC

Mansfeld J, Collin P, Collins MO, Choudhary JS, Pines J. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol. 2011;13(10):1234–43. PubMed DOI PMC

Uzunova K, Dye BT, Schutz H, Ladurner R, Petzold G, Toyoda Y, et al. Apc15 mediates CDC20 autoubiquitylation by APC/CMCC and disassembly of the mitotic checkpoint complex. Nat Struct Mol Biol. 2012;19(11):1116–23. PubMed DOI PMC

Jones RN, Rees H. B chromosomes. New York: Academic Press; 1982.

Camacho JPM, Sharbel TF, Beukeboom LW. B-chromosome evolution. Philos Trans R Soc Lond B Biol Sci. 2000;355(1394):163–78. 10.1098/rstb.2000.0556. PubMed DOI PMC

Dhar MK, Friebe B, Koul AK, Gill BS. Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma. 2002;111(5):332–40. 10.1007/s00412-002-0214-4. PubMed DOI

Marques A, Klemme S, Houben A. Evolution of plant B chromosome enriched sequences. Genes. 2018. 10.3390/genes9100515. PubMed DOI PMC

Houben A, Fuchs J, Banaei-Moghaddam AM, Chen J, Kim G, Liu T. Does chromoanagenesis play a role in the origin of B chromosomes? Heredity (Edinb). 2025 Apr 19. https://doi.org/10.1038/s41437-025-00758-w. PubMed

Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci. 2014;71(3):467–78. 10.1007/s00018-013-1437-7. PubMed DOI PMC

Wilkes TM, Francki MG, Langridge P, Karp A, Jones RN, Forster JW. Analysis of rye B-chromosome structure using fluorescencein situ hybridization (FISH). Chromosom Res. 1995;3(8):466–72. 10.1007/BF00713960. PubMed DOI

Ebrahimzadegan R, Houben A, Mirzaghaderi G. Repetitive DNA landscape in essential A and supernumerary B chromosomes of PubMed DOI PMC

Valente GT, Conte MA, Fantinatti BEA, Cabral-de-Mello DC, Carvalho RF, Vicari MR, et al. Origin and evolution of B chromosomes in the cichlid fish PubMed DOI

Zhao Y, Yu F, Liu R, Dou Q. Isolation and characterization of chromosomal markers in PubMed DOI PMC

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed DOI PMC

De Coster W, Rademakers R, Alkan C. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics. 2023;39(5). 10.1093/bioinformatics/btad311/7160911. PubMed PMC

Liu H, Wu S, Li A, Ruan J. Smartdenovo: a de novo assembler using long noisy reads. Gigabyte. 2021;2021:1–9. PubMed DOI PMC

Medaka. Available from: https://github.com/nanoporetech/medaka.

Hu J, Fan J, Sun Z, Liu S, Berger B. Nextpolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics. 2020;36(7):2253–5. PubMed DOI

Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5. PubMed DOI PMC

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM, Kelley J. Busco update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54. PubMed DOI PMC

Novák P, Hoštáková N, Neumann P, Macas J. DANTE and DANTE_LTR: lineage-centric annotation pipelines for long terminal repeat retrotransposons in plant genomes. NAR Genomics and Bioinformatics. 2024;6(3). 10.1093/nargab/lqae113/7744946. PubMed PMC

Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0.. 2013–2015. Available from: http://www.repeatmasker.org.

Gabriel L, Brůna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. Genome Res. bioRxiv [Preprint]. 2024;34(5):769–777. 1101/2023.06.10.544449v4. PubMed PMC

Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 2023;51(D1):D445–51. PubMed DOI PMC

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. PubMed DOI PMC

Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. 10.1101/gr.092759.109. PubMed DOI PMC

Kovacik M, Nowicka A, Zwyrtková J, Strejčková B, Vardanega I, Esteban E, et al. The transcriptome landscape of developing barley seeds. Plant Cell. 2024;36(7):2512–30. PubMed DOI PMC

Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–3. PubMed DOI

Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. Tarean: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45(12):e111–e111. PubMed DOI PMC

Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91. PubMed DOI

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115–e115. 10.1093/nar/gks596. PubMed DOI PMC

Kõressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M, et al. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics. 2018;34(11):1937–8. PubMed DOI

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. PubMed DOI PMC

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 2011. 10.1186/1471-2105-12-323. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. 10.1186/s13059-014-0550-8. PubMed DOI PMC

OmicsBox – Bioinformatics Made Easy, BioBam Bioinformatics. 2019. Available from: https://www.biobam.com/omicsbox.

Alexa A, Rahnenfuhrer J. TopGO: Enrichment Analysis for Gene Ontology. R package version 2.56.0. 2024. Available from: https://bioconductor.org/packages/release/bioc/html/topGO.html

Brandt R, Mascher M, Thiel J. Laser capture microdissection-based RNA-seq of barley grain tissues. Laser Capture Microdissection. 2018;1723:397–409. 10.1007/978-1-4939-7558-7_23. PubMed DOI

AlphaFold Server. 2024. Available from: https://golgi.sandbox.google.com.

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. PubMed DOI

Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF chimeraX: tools for structure building and analysis. Protein Sci. 2023. 10.1002/pro.4792. PubMed DOI PMC

TransDecoder. GitHub. 2018. Available from: https://github.com/TransDecoder/TransDecoder.

Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou L-P, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31(1):8–22. 10.1002/pro.4218. PubMed DOI PMC

Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9(4):286–98. PubMed DOI

Gouy M, Guindon S, Gascuel O. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221–4. PubMed DOI

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. PubMed DOI

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25(7):1307–20. PubMed DOI

Anisimova M, Gascuel O, Sullivan J. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55(4):539–52. PubMed DOI

Bojdová, T. Sorghum purpureosericeum genome assembly. Dataset. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB83623 (2024).

Bojdová, T. Gene Identification in B Chromosome Elimination of Sorghum purpureosericeum. Datasets. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB83179 (2024).

Bojdová, T. Sorghum purpureosericeum genome assembly. Datasets. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/GCA_964647645 (2024).

Karafiátová M, Bojdová T. Sorghum purpureosericeum high resolution embryo pictures. 2025. Zenodo. 10.5281/zenodo.17812202. DOI

Bartoš J, Bojdová T. 2024. Sorghum purpureosericeum repeat explorer analysis Zenodo. 10.5281/zenodo.14197239. DOI

Bartoš J, Bojdová T. Sorghum purpureosericeum B contigs sorting custom code. 2025. Zenodo. 10.5281/zenodo.17812555. DOI

Bojdová T, Hřibová E. CENH3 phylogeny analysis. 2024. Zenodo. 10.5281/zenodo.14504968. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...