Sorghum embryos undergoing B chromosome elimination express B-variants of mitotic-related genes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH 1876/5-2
Deutsch-Französische Hochschule
1876/6-1
Deutsche Forschungsgemeinschaft
HO1779/30-1 and 30-2
Deutsche Forschungsgemeinschaft
23-04887S
Grantová Agentura České Republiky
22-02108S
Grantová Agentura České Republiky
DAAD-22-02
Akademie Věd České Republiky
PubMed
41437077
PubMed Central
PMC12849586
DOI
10.1186/s13059-025-03915-w
PII: 10.1186/s13059-025-03915-w
Knihovny.cz E-zdroje
- Klíčová slova
- B chromosome, B chromosome origin, B chromosome-specific (peri)centromere repeat, CENH3, Chromosome elimination, Cohesion, Kinetochore, Micronuclei, Sorghum,
- MeSH
- chromozomy rostlin * genetika MeSH
- mitóza * genetika MeSH
- regulace genové exprese u rostlin MeSH
- semena rostlinná genetika MeSH
- Sorghum * genetika embryologie MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Selective DNA elimination occurs across diverse species and plays a crucial role in evolution and development. This process encompasses small deletions, complete removal of chromosomes, or even the elimination of entire parental genomes. Despite its importance, the molecular mechanisms governing selective DNA elimination remain poorly understood. Our study focuses on the tissue-specific elimination of Sorghum purpureosericeum B chromosomes during embryo development. RESULTS: In situ B chromosome visualisation, complemented by transcriptomic profiling and gene-enrichment analysis, allows us to identify 28 candidate genes potentially linked to chromosome elimination. We show that elimination is a developmentally programmed process, peaking during mid-embryogenesis and nearly completed at later stages, leaving B chromosomes only in restricted meristematic regions. Genome sequencing reveals that the sorghum B chromosome is of multi-A chromosomal origin, has reduced gene density, is enriched in repetitive sequences, and carries a novel centromeric repeat, SpuCL166. Transcriptome analyses identify B-specific variants of kinetochore, cohesion, and checkpoint genes that are expressed during active elimination, while structural modeling of CENH3 and CENP-C indicates functional divergence at the kinetochore interface. CONCLUSIONS: Here, we provide the first comprehensive genomic and transcriptomic characterization of B chromosome and its elimination in Sorghum purpureosericeum. Our findings suggest that B chromosomes express modified mitotic machinery to control their own fate. By establishing a framework of candidate genes, this study opens new avenues for dissecting the molecular mechanisms of chromosome elimination and provides a critical foundation for understanding how genomes evolve to regulate and tolerate supernumerary chromosomal elements.
Zobrazit více v PubMed
Boveri T. Über Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 1887;(vol. 2):688–693.
Wang J, Davis RE. Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev. 2014;27:26–34. PubMed DOI PMC
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev. 2022;97(1):195–216. 10.1111/brv.12796. PubMed DOI PMC
Kloc M, Kubiak JZ, Ghobrial RM. Natural genetic engineering: a programmed chromosome/DNA elimination. Dev Biol. 2022;486:15–25. PubMed DOI
Grishanin A. Chromatin diminution as a tool to study some biological problems. Comp Cytogenet. 2024;18:27–49. PubMed DOI PMC
Zagoskin MV, Wang J. Programmed DNA elimination: silencing genes and repetitive sequences in somatic cells. Biochem Soc Trans. 2021;49(5):1891–903. PubMed DOI PMC
Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A. 2011. 10.1073/pnas.1103190108. PubMed DOI PMC
Kopecký D, Horáková L, Duchoslav M, Doležel J. Selective elimination of parental chromatin from introgression cultivars of xFestulolium ( DOI
Gerbi SA. Non-random chromosome segregation and chromosome eliminations in the fly PubMed DOI PMC
Zhang X, Ferree PM. PSRs: selfish chromosomes that manipulate reproductive development. Semin Cell Dev Biol. 2024;159–160:66–73. PubMed DOI
Janaki-Ammal EK. Chromosome diminuition in a plant. Nature. 1940;146:839–40. DOI
Nygren A.
Baenziger H. Supernumerary chromosomes in diploid and tetraploid forms of crested wheatgrass. Can J Bot. 1962;40(4):549–61. DOI
Mendelson D, Zohary D. Behaviour and transmission of supernumerary chromosomes in DOI
Ruban A, Schmutzer T, Wu DD, Fuchs J, Boudichevskaia A, Rubtsova M, et al. Supernumerary B chromosomes of PubMed DOI PMC
D’Ambrosio U, Pilar Alonso-Lifante M, Barros K, Kovařík A, de Mas Xaxars G, Sònia Garcia G. B-chrom: a database on B-chromosomes of plants, animals and fungi. New Phytol. 2017;216:635–42. PubMed DOI
Mochizuki A. B chromosomes in Aegilops mutica Boiss. Wheat Inf Serv. 1957;5:9–11.
Karafiátová M, Bojdová T, Stejskalová M, Harnádková N, Kumar V, Houben A, et al. Unravelling the unusual: chromosome elimination, nondisjunction and extra pollen mitosis characterize the B chromosome in wild sorghum. New Phytol. 2024;243(5):1840–54. 10.1111/nph.19954. PubMed DOI
Hodson CN, Ross L, Dion-Côté AM. Evolutionary Perspectives on Germline-Restricted Chromosomes in Flies (Diptera). Genome Biol Evol. 2021;13(6). https://doi.org/10.1093/gbe/evab072/6247764. PubMed PMC
Borodin P, Chen A, Forstmeier W, Fouché S, Malinovskaya L, Pei Y, et al. Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res. 2022;30(2–3):255–72. 10.1007/s10577-022-09688-3. PubMed DOI PMC
Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell. 2002;110(6):689–99. PubMed DOI
Mochizuki K, Gorovsky MA. Small RNAs in genome rearrangement in PubMed DOI
Mochizuki K. DNA rearrangements directed by non-coding RNAs in ciliates. WIREs RNA. 2010;1(3):376–87. 10.1002/wrna.34. PubMed DOI PMC
Fang W, Wang X, Bracht JR, Nowacki M, Landweber LF. Piwi-interacting RNAs protect DNA against loss during PubMed DOI PMC
Schoenmakers S, Wassenaar E, Laven JSE, Grootegoed JA, Baarends WM. Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch. Chromosoma. 2010;119(3):311–24. 10.1007/s00412-010-0258-9. PubMed DOI PMC
del Priore L, Pigozzi MI. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma. 2014;123(3):293–302. 10.1007/s00412-014-0451-3. PubMed DOI
Timoshevskiy VA, Herdy JR, Keinath MC, Smith JJ, Carbone L. Cellular and Molecular Features of Developmentally Programmed Genome Rearrangement in a Vertebrate (Sea Lamprey: Petromyzon marinus). PLOS Genetics. 2016;12(6). 10.1371/journal.pgen.1006103. PubMed PMC
Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482(7383):53–8. PubMed DOI PMC
Boudichevskaia A, Ruban A, Thiel J, Fiebig A, Houben A. Tissue-specific transcriptome analysis reveals candidate transcripts associated with the process of programmed B chromosome elimination in PubMed DOI PMC
Karafiátová M, Bednářová M, Said M, Čížková J, Holušová K, Blavet N, et al. The B chromosome of PubMed DOI PMC
McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, et al. The PubMed DOI
Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, Schmutzer T, et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci U S A. 2012;109(33):13343–6. PubMed DOI PMC
Blavet N, Yang H, Su H, Solanský P, Douglas RN, Karafiátová M, et al. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc Natl Acad Sci U S A. 2021. 10.1073/pnas.2104254118. PubMed DOI PMC
Chen J, Bartoš J, Boudichevskaia A, Voigt A, Rabanus-Wallace MT, Dreissig S, et al. The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly. Nat Commun. 2024. 10.1038/s41467-024-53799-w. PubMed DOI PMC
Li D, Ruban A, Fuchs J, Kang H, Houben A. B-A Chromosome Translocations Possessing an A Centromere Partly Overcome the Root-Restricted Process of Chromosome Elimination in Aegilops speltoides. Front Cell Develop Biol. 2022;10.10.3389/fcell.2022.875523/full. PubMed PMC
Roman H. Factors affecting mitotic non-disjunction in maize. Genetics. 1950;35:132.
Lin BY. Regional control of nondisjunction of the B chromosome in maize. Genetics. 1978;90(3):613–27. PubMed DOI PMC
Ward EJ. Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics. 1973;73(3):387–91. PubMed DOI PMC
Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, et al. The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024;52(W1):W521–5. PubMed DOI PMC
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. PubMed DOI PMC
Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002;14(11):2825–36. PubMed DOI PMC
Song K, Gronemeyer B, Lu W, Eugster E, Tomkiel JE. Mutational analysis of the central centromere targeting domain of human centromere protein C, (CENP-C). Exp Cell Res. 2002;275(1):81–91. PubMed DOI
Carroll CW, Milks KJ, Straight AF. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol. 2010;189(7):1143–55. PubMed DOI PMC
Chan GK, Liu ST, Yen TJ. Kinetochore structure and function. Trends Cell Biol. 2005;15(11):589–98. PubMed DOI
Ochs F, Green C, Szczurek AT, Pytowski L, Kolesnikova S, Brown J, et al. Sister chromatid cohesion is mediated by individual cohesin complexes. Science. 2024;383(6687):1122–30. 10.1126/science.adl4606. PubMed DOI
Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature. 2014;513(7518):388–93. PubMed DOI PMC
Goday C, Esteban MR. Chromosome elimination in sciarid flies. Bioessays. 2001;23(3):242–50. PubMed DOI
Staiber W. Germ line-limited and somatic chromosomes of PubMed DOI
Ravi M, Chan SWL. Haploid plants produced by centromere-mediated genome elimination. Nature. 2010;464(7288):615–8. PubMed DOI
Majka J, Glombik M, Doležalová A, Kneřová J, Ferreira MTM, Zwierzykowski Z, et al. Both male and female meiosis contribute to non-Mendelian inheritance of parental chromosomes in interspecific plant hybrids ( PubMed DOI
Ishii T, Karimi-Ashtiyani R, Houben A. Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol. 2016;67(1):421–38. 10.1146/annurev-arplant-043014-114714. PubMed DOI
Dedukh D, Marta A, Myung RY, Ko MH, Choi DS, Won YJ, et al. A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level. Commun Biol. 2024. 10.1038/s42003-024-05948-6. PubMed DOI PMC
Peters JM, Tedeschi A, Schmitz J. The cohesin complex and its roles in chromosome biology. Genes Dev. 2008;22(22):3089–114. PubMed DOI
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci. 2024. 10.1007/s00018-024-05122-5. PubMed DOI PMC
Pati D. Oncogenic activity of separase. Cell Cycle. 2008;7(22):3481–2. 10.4161/cc.7.22.7048. PubMed DOI PMC
Zhang N, Ge G, Meyer R, Sethi S, Basu D, Pradhan S, et al. Overexpression of separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci USA. 2008;105(35):13033–8. 10.1073/pnas.0801610105. PubMed DOI PMC
Barbero JL. Sister chromatid cohesion control and aneuploidy. Cytogenet Genome Res. 2011;133(2–4):223–33. 10.1159/000323507. PubMed DOI
Zhang N, Pati D. Biology and insights into the role of cohesin protease separase in human malignancies. Biol Rev. 2017;92(4):2070–83. 10.1111/brv.12321. PubMed DOI
Waldman T. Emerging themes in cohesin cancer biology. Nat Rev Cancer. 2020;20(9):504–15. PubMed DOI
Kim JS, He X, Orr B, Wutz G, Hill V, Peters JM, et al. Intact cohesion, anaphase, and chromosome segregation in human cells harboring tumor-derived mutations in STAG2. PLoS Genet. 2016. 10.1371/journal.pgen.1005865. PubMed DOI PMC
Leylek TR, Jeusset LM, Lichtensztejn Z, McManus KJ. Reduced expression of genes regulating cohesion induces chromosome instability that may promote cancer and impact patient outcomes. Sci Rep. 2020. 10.1038/s41598-020-57530-9. PubMed DOI PMC
Mansfeld J, Collin P, Collins MO, Choudhary JS, Pines J. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol. 2011;13(10):1234–43. PubMed DOI PMC
Uzunova K, Dye BT, Schutz H, Ladurner R, Petzold G, Toyoda Y, et al. Apc15 mediates CDC20 autoubiquitylation by APC/CMCC and disassembly of the mitotic checkpoint complex. Nat Struct Mol Biol. 2012;19(11):1116–23. PubMed DOI PMC
Jones RN, Rees H. B chromosomes. New York: Academic Press; 1982.
Camacho JPM, Sharbel TF, Beukeboom LW. B-chromosome evolution. Philos Trans R Soc Lond B Biol Sci. 2000;355(1394):163–78. 10.1098/rstb.2000.0556. PubMed DOI PMC
Dhar MK, Friebe B, Koul AK, Gill BS. Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma. 2002;111(5):332–40. 10.1007/s00412-002-0214-4. PubMed DOI
Marques A, Klemme S, Houben A. Evolution of plant B chromosome enriched sequences. Genes. 2018. 10.3390/genes9100515. PubMed DOI PMC
Houben A, Fuchs J, Banaei-Moghaddam AM, Chen J, Kim G, Liu T. Does chromoanagenesis play a role in the origin of B chromosomes? Heredity (Edinb). 2025 Apr 19. https://doi.org/10.1038/s41437-025-00758-w. PubMed
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci. 2014;71(3):467–78. 10.1007/s00018-013-1437-7. PubMed DOI PMC
Wilkes TM, Francki MG, Langridge P, Karp A, Jones RN, Forster JW. Analysis of rye B-chromosome structure using fluorescencein situ hybridization (FISH). Chromosom Res. 1995;3(8):466–72. 10.1007/BF00713960. PubMed DOI
Ebrahimzadegan R, Houben A, Mirzaghaderi G. Repetitive DNA landscape in essential A and supernumerary B chromosomes of PubMed DOI PMC
Valente GT, Conte MA, Fantinatti BEA, Cabral-de-Mello DC, Carvalho RF, Vicari MR, et al. Origin and evolution of B chromosomes in the cichlid fish PubMed DOI
Zhao Y, Yu F, Liu R, Dou Q. Isolation and characterization of chromosomal markers in PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed DOI PMC
De Coster W, Rademakers R, Alkan C. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics. 2023;39(5). 10.1093/bioinformatics/btad311/7160911. PubMed PMC
Liu H, Wu S, Li A, Ruan J. Smartdenovo: a de novo assembler using long noisy reads. Gigabyte. 2021;2021:1–9. PubMed DOI PMC
Medaka. Available from: https://github.com/nanoporetech/medaka.
Hu J, Fan J, Sun Z, Liu S, Berger B. Nextpolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics. 2020;36(7):2253–5. PubMed DOI
Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM, Kelley J. Busco update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54. PubMed DOI PMC
Novák P, Hoštáková N, Neumann P, Macas J. DANTE and DANTE_LTR: lineage-centric annotation pipelines for long terminal repeat retrotransposons in plant genomes. NAR Genomics and Bioinformatics. 2024;6(3). 10.1093/nargab/lqae113/7744946. PubMed PMC
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0.. 2013–2015. Available from: http://www.repeatmasker.org.
Gabriel L, Brůna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. Genome Res. bioRxiv [Preprint]. 2024;34(5):769–777. 1101/2023.06.10.544449v4. PubMed PMC
Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 2023;51(D1):D445–51. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. PubMed DOI PMC
Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. 10.1101/gr.092759.109. PubMed DOI PMC
Kovacik M, Nowicka A, Zwyrtková J, Strejčková B, Vardanega I, Esteban E, et al. The transcriptome landscape of developing barley seeds. Plant Cell. 2024;36(7):2512–30. PubMed DOI PMC
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–3. PubMed DOI
Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. Tarean: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45(12):e111–e111. PubMed DOI PMC
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91. PubMed DOI
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115–e115. 10.1093/nar/gks596. PubMed DOI PMC
Kõressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M, et al. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics. 2018;34(11):1937–8. PubMed DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. PubMed DOI PMC
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 2011. 10.1186/1471-2105-12-323. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. 10.1186/s13059-014-0550-8. PubMed DOI PMC
OmicsBox – Bioinformatics Made Easy, BioBam Bioinformatics. 2019. Available from: https://www.biobam.com/omicsbox.
Alexa A, Rahnenfuhrer J. TopGO: Enrichment Analysis for Gene Ontology. R package version 2.56.0. 2024. Available from: https://bioconductor.org/packages/release/bioc/html/topGO.html
Brandt R, Mascher M, Thiel J. Laser capture microdissection-based RNA-seq of barley grain tissues. Laser Capture Microdissection. 2018;1723:397–409. 10.1007/978-1-4939-7558-7_23. PubMed DOI
AlphaFold Server. 2024. Available from: https://golgi.sandbox.google.com.
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. PubMed DOI
Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF chimeraX: tools for structure building and analysis. Protein Sci. 2023. 10.1002/pro.4792. PubMed DOI PMC
TransDecoder. GitHub. 2018. Available from: https://github.com/TransDecoder/TransDecoder.
Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou L-P, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31(1):8–22. 10.1002/pro.4218. PubMed DOI PMC
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9(4):286–98. PubMed DOI
Gouy M, Guindon S, Gascuel O. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221–4. PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. PubMed DOI
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25(7):1307–20. PubMed DOI
Anisimova M, Gascuel O, Sullivan J. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55(4):539–52. PubMed DOI
Bojdová, T. Sorghum purpureosericeum genome assembly. Dataset. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB83623 (2024).
Bojdová, T. Gene Identification in B Chromosome Elimination of Sorghum purpureosericeum. Datasets. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB83179 (2024).
Bojdová, T. Sorghum purpureosericeum genome assembly. Datasets. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/GCA_964647645 (2024).
Karafiátová M, Bojdová T. Sorghum purpureosericeum high resolution embryo pictures. 2025. Zenodo. 10.5281/zenodo.17812202. DOI
Bartoš J, Bojdová T. 2024. Sorghum purpureosericeum repeat explorer analysis Zenodo. 10.5281/zenodo.14197239. DOI
Bartoš J, Bojdová T. Sorghum purpureosericeum B contigs sorting custom code. 2025. Zenodo. 10.5281/zenodo.17812555. DOI
Bojdová T, Hřibová E. CENH3 phylogeny analysis. 2024. Zenodo. 10.5281/zenodo.14504968. DOI