A Perspective on Unintentional Fragments and Their Impact on the Dark Metabolome, Untargeted Profiling, Molecular Networking, Public Data, and Repository Scale Analysis

. 2025 Dec 22 ; 5 (12) : 5828-5850. [epub] 20251201

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41450660

In/postsource fragments (ISFs) arise during electrospray ionization or ion transfer in mass spectrometry when molecular bonds break, generating ions that can complicate data interpretation. Although ISFs have been recognized for decades, their contribution to untargeted metabolomicsparticularly in the context of the so-called "dark matter" (unannotated MS or MS/MS spectra) and the "dark metabolome" (unannotated molecules)remains unsettled. This ongoing debate reflects a central tension: while some caution against overinterpreting unidentified signals lacking biological evidence, others argue that dismissing them too quickly risks overlooking genuine molecular discoveries. These discussions also raise a deeper question: what exactly should be considered part of the metabolome? As metabolomics advances toward large-scale data mining and high-throughput computational analysis, resolving these conceptual and methodological ambiguities has become essential. In this perspective, we propose a refined definition of the "dark metabolome" and present a systematic overview of ISFs and related ion forms, including adducts and multimers. We examine their impact on metabolite annotation, experimental design, statistical analysis, computational workflows, and repository-scale data mining. Finally, we provide practical recommendationsincluding a set of dos and do nots for researchers and reviewersand discuss the broader implications of ISFs for how the field explores unknown molecular space. By embracing a more nuanced understanding of ISFs, metabolomics can achieve greater rigor, reduce misinterpretation, and unlock new opportunities for discovery.

Zobrazit více v PubMed

Giera M., Aisporna A., Uritboonthai W., Siuzdak G.. The hidden impact of in-source fragmentation in metabolic and chemical mass spectrometry data interpretation. Nat. Metab. 2024;6:1647. doi: 10.1038/s42255-024-01076-x. PubMed DOI PMC

El Abiead Y.. et al. Discovery of metabolites prevails amid in-source fragmentation. Nat. Metab. 2025;7:435–437. doi: 10.1038/s42255-025-01239-4. PubMed DOI

Chi Y., Mitchell J. M., Zheng S., Li S.. Systematic pre-annotation explains the ‘dark matter’ in LC-MS metabolomics. bioRxiv. 2025:2025.02.04.636472. doi: 10.1101/2025.02.04.636472. DOI

Strachan, J. The Dark Metabolome: A Figment of Our Fragmentation? The Analytical Scientist. 2024, https://theanalyticalscientist.com/fields-applications/the-dark-metabolome-a-figment-of-our-fragmentation.

Strachan, J. Dark Metabolome Debate: A Call for Context. The Analytical Scientist. 2025, https://theanalyticalscientist.com/issues/2025/articles/june/dark-metabolome-debate-a-call-for-context/.

Strachan, J. The Dark Metabolome Debate Continues: Siuzdak and Giera Respond. The Analytical Scientist. 2025, https://theanalyticalscientist.com/issues/2025/articles/june/the-dark-metabolome-debate-continues-siuzdak-and-giera-respond/.

Strachan, J. The Dark Metabolome: No Mere Figment? The Analytical Scientist. 2025, https://theanalyticalscientist.com/issues/2025/articles/june/the-dark-metabolome-no-mere-figment/.

Strachan, J. Gary Patti: Metabolomics Is Not in Crisis. The Analytical Scientist. 2025, https://theanalyticalscientist.com/issues/2025/articles/june/gary-patti-metabolomics-is-not-in-crisis/.

Strachan, J. The Past, Present, and Future of the ‘Dark Metabolome’. The Analytical Scientist. 2025, https://theanalyticalscientist.com/issues/2025/articles/september/the-past-present-and-future-of-the-dark-metabolome/?md5=ff77e58d7a81fe20f621192b49e3e7fe&mktId=23257088&utm_medium=email&utm_campaign=eNews&utm_source=TEX-TAS-MASSSPEC-NEWSLETTER-09-25-25&mkt_tok=ODI0LVhPRy0wNTQAAAGdH-O6yLym89xuMmfy946QLUFa5fBXqitTAwn05XvPWwxwwLT3SHRR-WAhq87eQMkv658FmUroTNdOluly0FQr1nuvf8HE2ygZQz2srbPyuvW77xQp.

Strachan, J. Does In-Source Fragmentation Require a Soft Touch? The Analytical Scientist. 2025, https://www.theanalyticalscientist.com/issues/2025/articles/september/does-insource-fragmentation-require-a-soft-touch.

da Silva R. R., Dorrestein P. C., Quinn R. A.. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. U.S.A. 2015;112:12549–12550. doi: 10.1073/pnas.1516878112. PubMed DOI PMC

Little J. L., Cleven C. D., Brown S. D.. Identification of ‘known unknowns’ utilizing accurate mass data and chemical abstracts service databases. J. Am. Soc. Mass Spectrom. 2011;22:348–359. doi: 10.1007/s13361-010-0034-3. PubMed DOI

Mitchell Crow J.. Canada’s scientists are elucidating the dark metabolome. Nature. 2021;599:S14–S15. doi: 10.1038/d41586-021-03062-9. DOI

Peisl B. Y. L., Schymanski E. L., Wilmes P.. Dark matter in host-microbiome metabolomics: Tackling the unknowns-A review. Anal. Chim. Acta. 2018;1037:13–27. doi: 10.1016/j.aca.2017.12.034. PubMed DOI

Baker E. S., Patti G. J.. Perspectives on data analysis in metabolomics: Points of agreement and disagreement from the 2018 ASMS fall Workshop. J. Am. Soc. Mass Spectrom. 2019;30:2031–2036. doi: 10.1007/s13361-019-02295-3. PubMed DOI PMC

El Abiead Y.. et al. Heterogeneous multimeric metabolite ion species observed in LC-MS based metabolomics data sets. Anal. Chim. Acta. 2022;1229:340352. doi: 10.1016/j.aca.2022.340352. PubMed DOI

Mahieu N. G., Spalding J. L., Gelman S. J., Patti G. J.. Defining and detecting complex peak relationships in mass spectral data: The mz. Unity algorithm. Anal. Chem. 2016;88:9037–9046. doi: 10.1021/acs.analchem.6b01702. PubMed DOI PMC

Nash W. J., Ngere J. B., Najdekr L., Dunn W. B.. Characterization of electrospray ionization complexity in untargeted metabolomic studies. Anal. Chem. 2024;96:10935–10942. doi: 10.1021/acs.analchem.4c00966. PubMed DOI PMC

Xu Y.-F., Lu W., Rabinowitz J. D.. Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics. Anal. Chem. 2015;87:2273–2281. doi: 10.1021/ac504118y. PubMed DOI PMC

Edwards-Hicks J., Mitterer M., Pearce E. L., Buescher J. M.. Metabolic dynamics of in vitro CD8+ T cell activation. Metabolites. 2021;11:12. doi: 10.3390/metabo11010012. PubMed DOI PMC

Atanasov A. G., Zotchev S. B., Dirsch V. M., Orhan I. E., Barreca D., Weckwerth W., Bauer R., Bayer E. A., BanachRollinger M. J. M. C. T.. et al. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discovery. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC

Wolfender J.-L., Marti G., Thomas A., Bertrand S.. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A. 2015;1382:136–164. doi: 10.1016/j.chroma.2014.10.091. PubMed DOI

Wolfender J.-L., Nuzillard J.-M., van der Hooft J. J. J., Renault J.-H., Bertrand S.. Accelerating metabolite identification in natural product research: Toward an ideal combination of liquid chromatography-high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal. Chem. 2019;91:704–742. doi: 10.1021/acs.analchem.8b05112. PubMed DOI

Allard P.-M., Genta-Jouve G., Wolfender J.-L.. Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr. Opin. Chem. Biol. 2017;36:40–49. doi: 10.1016/j.cbpa.2016.12.022. PubMed DOI

Pye C. R., Bertin M. J., Lokey R. S., Gerwick W. H., Linington R. G.. Retrospective analysis of natural products provides insights for future discovery trends. Proc. Natl. Acad. Sci. U.S.A. 2017;114:5601–5606. doi: 10.1073/pnas.1614680114. PubMed DOI PMC

Skinnider M. A., Magarvey N. A.. Statistical reanalysis of natural products reveals increasing chemical diversity. Proc. Natl. Acad. Sci. U.S.A. 2017;114:E6271–E6272. doi: 10.1073/pnas.1708560114. PubMed DOI PMC

Palazzolo A. M. E., Simons C. L. W., Burke M. D.. The natural productome. Proc. Natl. Acad. Sci. U.S.A. 2017;114:5564–5566. doi: 10.1073/pnas.1706266114. PubMed DOI PMC

Foster M.. et al. Uncovering PFAS and other xenobiotics in the dark metabolome using ion mobility spectrometry, mass defect analysis, and machine learning. Environ. Sci. Technol. 2022;56:9133–9143. doi: 10.1021/acs.est.2c00201. PubMed DOI PMC

Jones O. A. H.. Illuminating the dark metabolome to advance the molecular characterisation of biological systems. Metabolomics. 2018;14:101. doi: 10.1007/s11306-018-1396-y. PubMed DOI

Carpenter, S. Putting a spotlight on the dark metabolome. Open Access Government. 2020, https://www.openaccessgovernment.org/putting-a-spotlight-on-the-dark-metabolome/82464/.

Janda M.. et al. Determination of abundant metabolite matrix adducts illuminates the dark metabolome of MALDI-mass spectrometry imaging datasets. Anal. Chem. 2021;93:8399–8407. doi: 10.1021/acs.analchem.0c04720. PubMed DOI PMC

Monge M. E., Dodds J. N., Baker E. S., Edison A. S., Fernández F. M.. Challenges in identifying the dark molecules of life. Annu. Rev. Anal. Chem. 2019;12:177–199. doi: 10.1146/annurev-anchem-061318-114959. PubMed DOI PMC

Stein S.. Mass spectral reference libraries: an ever-expanding resource for chemical identification. Anal. Chem. 2012;84:7274–7282. doi: 10.1021/ac301205z. PubMed DOI

Wang X.. et al. MS-RT: A method for evaluating MS/MS clustering performance for metabolomics data. J. Proteome Res. 2025;24:1778–1790. doi: 10.1021/acs.jproteome.4c00881. PubMed DOI PMC

Heuckeroth S.. et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat. Protoc. 2024;19:2597. doi: 10.1038/s41596-024-00996-y. PubMed DOI

Gloaguen Y., Kirwan J. A., Beule D.. Deep learning-assisted peak curation for large-scale LC-MS metabolomics. Anal. Chem. 2022;94:4930–4937. doi: 10.1021/acs.analchem.1c02220. PubMed DOI PMC

El Abiead Y.. et al. Power of mzRAPP-based performance assessments in MS1-based nontargeted feature detection. Anal. Chem. 2022;94:8588–8595. doi: 10.1021/acs.analchem.1c05270. PubMed DOI PMC

Lawson T. N.. et al. MsPurity: Automated evaluation of precursor ion purity for mass spectrometry-based fragmentation in metabolomics. Anal. Chem. 2017;89:2432–2439. doi: 10.1021/acs.analchem.6b04358. PubMed DOI

Stancliffe E., Schwaiger-Haber M., Sindelar M., Patti G. J.. DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution. Nat. Methods. 2021;18:779–787. doi: 10.1038/s41592-021-01195-3. PubMed DOI PMC

Baran R.. Untargeted metabolomics suffers from incomplete raw data processing. Metabolomics. 2017;13:107. doi: 10.1007/s11306-017-1246-3. DOI

Vanderstraeten S., Searle A.. Biology’s dark matter: From galaxies to microbes. Theor. Cult. Soc. 2025;42:75–94. doi: 10.1177/02632764241304719. DOI

Najjar, D. Most Microbial Species Are ‘Dark Matter’. In Scientific American, 2019. PubMed

Osburn E. D., McBride S. G., Strickland M. S.. Microbial dark matter could add uncertainties to metagenomic trait estimations. Nat. Microbiol. 2024;9:1427–1430. doi: 10.1038/s41564-024-01687-w. PubMed DOI

Bellali S., Lagier J. C., Million M., Anani H., Haddad G., Francis R., Kuete Yimagou E., Khelaifia S., Levasseur A., Raoult D.. et al. Running after ghosts: are dead bacteria the dark matter of the human gut microbiota? Gut Microbes. 2021;13:1897208. doi: 10.1080/19490976.2021.1897208. PubMed DOI PMC

Solden L., Lloyd K., Wrighton K.. The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr. Opin. Microbiol. 2016;31:217–226. doi: 10.1016/j.mib.2016.04.020. PubMed DOI

Lynch M. D. J., Neufeld J. D.. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015;13:217–229. doi: 10.1038/nrmicro3400. PubMed DOI

Zhan A., Xiong W., He S., Macisaac H. J.. Influence of artifact removal on rare species recovery in natural complex communities using high-throughput sequencing. PLoS One. 2014;9:e96928. doi: 10.1371/journal.pone.0096928. PubMed DOI PMC

Huse S. M., Welch D. M., Morrison H. G., Sogin M. L.. Ironing out the wrinkles in the rare biosphere through improved OTU clustering: Ironing out the wrinkles in the rare biosphere. Environ. Microbiol. 2010;12:1889–1898. doi: 10.1111/j.1462-2920.2010.02193.x. PubMed DOI PMC

Samusevich R.. et al. Discovery and characterization of terpene synthases powered by machine learning. bioRxiv. 2024:2024.01.29.577750. doi: 10.1101/2024.01.29.577750. DOI

Lowe, D. Phantom Metabolites? Science. 2024, https://www.science.org/content/blog-post/phantom-metabolites.

Chen L., Pan H., Zhai G., Luo Q., Li Y., Fang C., Shi F.. Widespread occurrence of in-source fragmentation in the analysis of natural compounds by liquid chromatography-electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2023;37:e9519. doi: 10.1002/rcm.9519. PubMed DOI

Guo J., Shen S., Xing S., Yu H., Huan T.. ISFrag: De Novo recognition of in-source fragments for liquid chromatography-mass spectrometry data. Anal. Chem. 2021;93:10243–10250. doi: 10.1021/acs.analchem.1c01644. PubMed DOI

Houriet J.. et al. Multilaboratory untargeted mass spectrometry metabolomics collaboration to identify bottlenecks and comprehensively annotate A single dataset. Anal. Chem. 2025;97:16110. doi: 10.1021/acs.analchem.4c05577. PubMed DOI PMC

Uritboonthai W., Hoang L., Aisporna A., Giera M., Siuzdak G.. The dark metabolome/lipidome and in-source fragmentation. Anal. Sci. Adv. 2025;6:e70012. doi: 10.1002/ansa.70012. PubMed DOI PMC

Criscuolo A., Zeller M., Fedorova M.. Evaluation of lipid in-source fragmentation on different Orbitrap-based mass spectrometers. J. Am. Soc. Mass Spectrom. 2020;31:463–466. doi: 10.1021/jasms.9b00061. PubMed DOI

Gabelica V., Pauw E. D.. Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 2005;24:566–587. doi: 10.1002/mas.20027. PubMed DOI

Abrankó L., García-Reyes J. F., Molina-Díaz A.. In-source fragmentation and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-of-flight mass spectrometry. J. Mass Spectrom. 2011;46:478–488. doi: 10.1002/jms.1914. PubMed DOI

Hoang C.. et al. Tandem mass spectrometry across platforms. Anal. Chem. 2024;96:5478–5488. doi: 10.1021/acs.analchem.3c05576. PubMed DOI PMC

Rappaport S. M.. Genetic factors are not the major causes of chronic diseases. PLoS One. 2016;11:e0154387. doi: 10.1371/journal.pone.0154387. PubMed DOI PMC

Blanco, A. ; Blanco, G. . Amino Acid Metabolism. In Medical Biochemistry; Elsevier, 2017; pp 367–399.

Li G., Li Z., Liu J.. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr. Metab. 2024;21:41. doi: 10.1186/s12986-024-00820-0. PubMed DOI PMC

Reddy, P. ; Jialal, I. . Biochemistry, fat soluble vitamins. In StatPearls; StatPearls Publishing: Treasure Island, FL, 2025. PubMed

Saini R. K., Keum Y.-S.. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sci. 2018;203:255–267. doi: 10.1016/j.lfs.2018.04.049. PubMed DOI

Ansari N. A., Rasheed Z.. Non-enzymatic glycation of proteins: From diabetes to cancer. Biochem. Moscow Suppl. Ser. B. 2009;3:335–342. doi: 10.1134/S1990750809040027. PubMed DOI

Lapolla A., Traldi P., Fedele D.. Importance of measuring products of non-enzymatic glycation of proteins. Clin. Biochem. 2005;38:103–115. doi: 10.1016/j.clinbiochem.2004.09.007. PubMed DOI

Mohanty I.. et al. The underappreciated diversity of bile acid modifications. Cell. 2024;187:1801–1818.e20. doi: 10.1016/j.cell.2024.02.019. PubMed DOI PMC

Hu C.-W.. et al. A Novel Adductomics Workflow Incorporating FeatureHunter Software: Rapid Detection of Nucleic Acid Modifications for Studying the Exposome. Environ. Sci. Technol. 2024;58:75–89. doi: 10.1021/acs.est.3c04674. PubMed DOI PMC

Mohanty I.. et al. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat. Rev. Gastroenterol. Hepatol. 2024;21:493. doi: 10.1038/s41575-024-00914-3. PubMed DOI PMC

Nie Q.. et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell. 2024;187:2717–2734.e33. doi: 10.1016/j.cell.2024.03.034. PubMed DOI

Mullowney M. W., Fiebig A., Schnizlein M. K., McMillin M., Rose A. R., Koval J., Rubin D., Dalal S., Sogin M. L., Chang E. B.. et al. Microbially catalyzed conjugation of GABA and tyramine to bile acids. J. Bacteriol. 2024;206:e00426-23. doi: 10.1128/jb.00426-23. PubMed DOI PMC

Agongo J.. et al. Discovery and identification of three homocysteine metabolites by chemical derivatization and mass spectrometry fragmentation. Anal. Chem. 2024;96:11639–11643. doi: 10.1021/acs.analchem.4c01706. PubMed DOI PMC

Wang X., Yu N., Jiao Z., Li L., Yu H., Wei S.. Machine learning-enhanced molecular network reveals global exposure to hundreds of unknown PFAS. Sci. Adv. 2024;10:eadn1039. doi: 10.1126/sciadv.adn1039. PubMed DOI PMC

Jansen R. S.. et al. N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proc. Natl. Acad. Sci. U.S.A. 2015;112:6601–6606. doi: 10.1073/pnas.1424638112. PubMed DOI PMC

Elloumi A., Mas-Normand L., Bride J., Reversat G., Bultel-Poncé V., Guy A., Oger C., Demion M., Le Guennec J. Y., Durand T.. et al. From MS/MS library implementation to molecular networks: Exploring oxylipin diversity with NEO-MSMS. Sci. Data. 2024;11:193. doi: 10.1038/s41597-024-03034-4. PubMed DOI PMC

Yuan B.. et al. Discovery of N-acyl amino acids and novel related N-, O-acyl lipids by integrating molecular networking and an extended in silico spectral library. Anal. Chem. 2023;95:8443–8451. doi: 10.1021/acs.analchem.2c04822. PubMed DOI

Ferrell M.. et al. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat. Med. 2024;30:424–434. doi: 10.1038/s41591-023-02793-8. PubMed DOI PMC

Elmassry M. M.. et al. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. Cell Host Microbe. 2025;33:218–234.e12. doi: 10.1016/j.chom.2025.01.002. PubMed DOI PMC

Liu C.. et al. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat. Microbiol. 2024;9:434–450. doi: 10.1038/s41564-023-01570-0. PubMed DOI

Qiang H.. et al. Language model-guided anticipation and discovery of unknown metabolites. bioRxiv. 2024:2024.11.13.623458. doi: 10.1101/2024.11.13.623458. DOI

Mannochio-Russo H.. et al. The microbiome diversifies N-acyl lipid pools - including short-chain fatty acid-derived compounds. bioRxiv. 2024:2024.10.31.621412. doi: 10.1101/2024.10.31.621412. DOI

Nijdam F. B.. et al. Pharmacometabolomics enables real-world drug metabolism sciences. Metabolites. 2025;15:39. doi: 10.3390/metabo15010039. PubMed DOI PMC

Cho S.. et al. Discovery of unprecedented human stercobilin conjugates. Drug Metab. Dispos. 2024;52:981–987. doi: 10.1124/dmd.124.001725. PubMed DOI

Sheokand P. K., James A. M., Jenkins B., K. Lysyganicz P., Lacabanne D., King M. S., Kunji E. R. S., Siniossoglou S., Koulman A., Murphy M. P.. et al. TRAM-LAG1-CLN8 family proteins are acyltransferases regulating phospholipid composition. Sci. Adv. 2025;11:eadr3723. doi: 10.1126/sciadv.adr3723. PubMed DOI PMC

Swainston N., Smallbone K., Hefzi H., Dobson P. D., Brewer J., Hanscho M., Zielinski D. C., Ang K. S., Gardiner N. J., Gutierrez J. M.. et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics. 2016;12:109. doi: 10.1007/s11306-016-1051-4. PubMed DOI PMC

Orth J. D., Conrad T. M., Na J., Lerman J. A., Nam H., Feist A. M., Palsson B. Ø.. A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Mol. Syst. Biol. 2011;7:535. doi: 10.1038/msb.2011.65. PubMed DOI PMC

El Abiead Y., Strobel M., Payne T., Fahy E., O’Donovan C., Subramamiam S., Vizcaíno J. A., Yurekten O., Deleray V., Zuffa S.. et al. Enabling pan-repository reanalysis for big data science of public metabolomics data. Nat. Commun. 2025;16:4838. doi: 10.1038/s41467-025-60067-y. PubMed DOI PMC

Clark T. N.. et al. Interlaboratory comparison of untargeted mass spectrometry data uncovers underlying causes for variability. J. Nat. Prod. 2021;84:824–835. doi: 10.1021/acs.jnatprod.0c01376. PubMed DOI PMC

Gao Y., Luo M., Wang H., Zhou Z., Yin Y., Wang R., Xing B., Yang X., Cai Y., Zhu Z. J.. Charting unknown metabolic reactions by mass spectrometry-resolved stable-isotope tracing metabolomics. Nat. Commun. 2025;16:5059. doi: 10.1038/s41467-025-60258-7. PubMed DOI PMC

Mahieu N. G., Patti G. J.. Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. Anal. Chem. 2017;89:10397–10406. doi: 10.1021/acs.analchem.7b02380. PubMed DOI PMC

Wang L.. et al. Peak Annotation and Verification Engine for untargeted LC-MS metabolomics. Anal. Chem. 2019;91:1838–1846. doi: 10.1021/acs.analchem.8b03132. PubMed DOI PMC

Pandya C., Farelli J. D., Dunaway-Mariano D., Allen K. N.. Enzyme promiscuity: engine of evolutionary innovation. J. Biol. Chem. 2014;289:30229–30236. doi: 10.1074/jbc.R114.572990. PubMed DOI PMC

Khersonsky O., Roodveldt C., Tawfik D. S.. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr. Opin. Chem. Biol. 2006;10:498–508. doi: 10.1016/j.cbpa.2006.08.011. PubMed DOI

Chi Y.. et al. Constructing a consensus serum metabolome. bioRxiv. 2025:2025.05.07.652782. doi: 10.1101/2025.05.07.652782. DOI

Koppel N., Maini Rekdal V., Balskus E. P.. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017;356:eaag2770. doi: 10.1126/science.aag2770. PubMed DOI PMC

Bishai J. D., Palm N. W.. Small molecule metabolites at the host-Microbiota interface. J. Immunol. 2021;207:1725–1733. doi: 10.4049/jimmunol.2100528. PubMed DOI PMC

Steed A. L.. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357:498–502. doi: 10.1126/science.aam5336. PubMed DOI PMC

Hsiao E. Y.. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463. doi: 10.1016/j.cell.2013.11.024. PubMed DOI PMC

Nakatsuji T., Chen T. H., Narala S., Chun K. A., Two A. M., Yun T., Shafiq F., Kotol P. F., Bouslimani A., Melnik A. V.. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 2017;9:eaah4680. doi: 10.1126/scitranslmed.aah4680. PubMed DOI PMC

Claesen J., Spagnolo J. B., Ramos S. F., Kurita K. L., Byrd A. L., Aksenov A. A., Melnik A. V., Wong W. R., Wang S., Hernandez R. D.. et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl. Med. 2020;12:eaay5445. doi: 10.1126/scitranslmed.aay5445. PubMed DOI PMC

Jain A.. et al. Comparison of two arylsulfatases for targeted mass spectrometric analysis of microbiota-derived metabolites. J. Pharm. Biomed. Anal. 2021;195:113818. doi: 10.1016/j.jpba.2020.113818. PubMed DOI

Pascal Andreu V., Roel-Touris J., Dodd D., Fischbach M. A., Medema M. H.. The gutSMASH web server: automated identification of primary metabolic gene clusters from the gut microbiota. Nucleic Acids Res. 2021;49:W263–W270. doi: 10.1093/nar/gkab353. PubMed DOI PMC

Guo C.-J.. et al. Discovery of reactive Microbiota-derived metabolites that inhibit host proteases. Cell. 2017;168:517–526.e18. doi: 10.1016/j.cell.2016.12.021. PubMed DOI PMC

Kim J. Y., Whon T. W., Lim M. Y., Kim Y. B., Kim N., Kwon M. S., Kim J., Lee S. H., Choi H. J., Nam I. H.. et al. The human gut archaeome: identification of diverse haloarchaea in Korean subjects. Microbiome. 2020;8:114. doi: 10.1186/s40168-020-00894-x. PubMed DOI PMC

Chibani C. M.. et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 2022;7:48–61. doi: 10.1038/s41564-021-01020-9. PubMed DOI PMC

Gaci N., Borrel G., Tottey W., O’Toole P. W., Brugère J.-F.. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 2014;20:16062–16078. doi: 10.3748/wjg.v20.i43.16062. PubMed DOI PMC

Robey M. T., Caesar L. K., Drott M. T., Keller N. P., Kelleher N. L.. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proc. Natl. Acad. Sci. U.S.A. 2021;118:e2020230118. doi: 10.1073/pnas.2020230118. PubMed DOI PMC

Mogilnicka I., Ufnal M.. Gut mycobiota and fungal metabolites in human homeostasis. Curr. Drug Targets. 2018;20:232–240. doi: 10.2174/1389450119666180724125020. PubMed DOI

Llinás-Caballero K., Caraballo L.. Helminths and bacterial Microbiota: The interactions of two of humans’ ‘old friends’. Int. J. Mol. Sci. 2022;23:13358. doi: 10.3390/ijms232113358. PubMed DOI PMC

Walusimbi B., Lawson M. A. E., Nassuuna J., Kateete D. P., Webb E. L., Grencis R. K., Elliott A. M.. The effects of helminth infections on the human gut microbiome: a systematic review and meta-analysis. Front. Microbiomes. 2023;2:1174034. doi: 10.3389/frmbi.2023.1174034. DOI

Dragoš A.. et al. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr. Biol. 2021;31:3479–3489.e5. doi: 10.1016/j.cub.2021.05.046. PubMed DOI

Jamet A., Touchon M., Ribeiro-Gonçalves B., Carriço J. A., Charbit A., Nassif X., Ramirez M., Rocha E. P. C.. A widespread family of polymorphic toxins encoded by temperate phages. BMC Biol. 2017;15:75. doi: 10.1186/s12915-017-0415-1. PubMed DOI PMC

Guengerich F. P.. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 2008;21:70–83. doi: 10.1021/tx700079z. PubMed DOI

Alonso A.. et al. AStream: an R package for annotating LC/MS metabolomic data. Bioinformatics. 2011;27:1339–1340. doi: 10.1093/bioinformatics/btr138. PubMed DOI

Brown M.. et al. Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics. 2011;27:1108–1112. doi: 10.1093/bioinformatics/btr079. PubMed DOI PMC

Kuhl C., Tautenhahn R., Böttcher C., Larson T. R., Neumann S.. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012;84:283–289. doi: 10.1021/ac202450g. PubMed DOI PMC

Kachman M.. et al. Deep annotation of untargeted LC-MS metabolomics data with Binner. Bioinformatics. 2020;36:1801–1806. doi: 10.1093/bioinformatics/btz798. PubMed DOI PMC

Senan O.. et al. CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network. Bioinformatics. 2019;35:4089–4097. doi: 10.1093/bioinformatics/btz207. PubMed DOI PMC

Kouřil S. ˇ., de Sousa J., Václavík J., Friedecký D., Adam T.. CROP: correlation-based reduction of feature multiplicities in untargeted metabolomic data. Bioinformatics. 2020;36:2941–2942. doi: 10.1093/bioinformatics/btaa012. PubMed DOI

DeFelice B. C.. et al. Mass Spectral Feature List Optimizer (MS-FLO): A tool to minimize false positive peak reports in untargeted liquid chromatography-mass spectroscopy (LC-MS) data processing. Anal. Chem. 2017;89:3250–3255. doi: 10.1021/acs.analchem.6b04372. PubMed DOI PMC

Schmid R., Petras D., Nothias L. F., Wang M., Aron A. T., Jagels A., Tsugawa H., Rainer J., Garcia-Aloy M., Dührkop K.. et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat. Commun. 2021;12:3832. doi: 10.1038/s41467-021-23953-9. PubMed DOI PMC

Li S., Zheng S.. Generalized Tree Structure to Annotate Untargeted Metabolomics and Stable Isotope Tracing Data. Anal. Chem. 2023;95:6212–6217. doi: 10.1021/acs.analchem.2c05810. PubMed DOI PMC

Yu H., Ding J., Shen T., Liu M., Li Y., Fiehn O.. MassCube improves accuracy for metabolomics data processing from raw files to phenotype classifiers. Nat. Commun. 2025;16:5487. doi: 10.1038/s41467-025-60640-5. PubMed DOI PMC

Gaquerel E., Kuhl C., Neumann S.. Computational annotation of plant metabolomics profiles via a novel network-assisted approach. Metabolomics. 2013;9:904–918. doi: 10.1007/s11306-013-0504-2. DOI

Broeckling C. D., Afsar F. A., Neumann S., Ben-Hur A., Prenni J. E.. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal. Chem. 2014;86:6812–6817. doi: 10.1021/ac501530d. PubMed DOI

Domingo-Almenara X.. et al. Autonomous METLIN-guided in-source fragment annotation for untargeted metabolomics. Anal. Chem. 2019;91:3246–3253. doi: 10.1021/acs.analchem.8b03126. PubMed DOI PMC

Su X.. et al. In-source CID ramping and covariant ion analysis of hydrophilic interaction chromatography metabolomics. Anal. Chem. 2020;92:4829–4837. doi: 10.1021/acs.analchem.9b04181. PubMed DOI PMC

Lu W.. et al. Improved annotation of untargeted metabolomics data through buffer modifications that shift adduct mass and intensity. Anal. Chem. 2020;92:11573–11581. doi: 10.1021/acs.analchem.0c00985. PubMed DOI PMC

Aron A. T.. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020;15:1954–1991. doi: 10.1038/s41596-020-0317-5. PubMed DOI

Wang M.. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC

Watrous J., Roach P., Alexandrov T., Heath B. S., Yang J. Y., Kersten R. D., van der Voort M., Pogliano K., Gross H., Raaijmakers J. M.. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. U.S.A. 2012;109:E1743–E1752. doi: 10.1073/pnas.1203689109. PubMed DOI PMC

Treen D. G. C., Wang M., Xing S., Louie K. B., Huan T., Dorrestein P. C., Northen T. R., Bowen B. P.. SIMILE enables alignment of tandem mass spectra with statistical significance. Nat. Commun. 2022;13:2510. doi: 10.1038/s41467-022-30118-9. PubMed DOI PMC

Li Y.. et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat. Methods. 2021;18:1524–1531. doi: 10.1038/s41592-021-01331-z. PubMed DOI PMC

Aisporna A.. et al. Neutral loss mass spectral data enhances molecular similarity analysis in METLIN. J. Am. Soc. Mass Spectrom. 2022;33:530–534. doi: 10.1021/jasms.1c00343. PubMed DOI PMC

Abramson F. P.. Automated identification of mass spectra by the reverse search. Anal. Chem. 1975;47:45–49. doi: 10.1021/ac60351a028. DOI

Huber F.. et al. Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships. PLoS Comput. Biol. 2021;17:e1008724. doi: 10.1371/journal.pcbi.1008724. PubMed DOI PMC

Huber F., van der Burg S., van der Hooft J. J. J., Ridder L.. MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra. J. Cheminform. 2021;13:84. doi: 10.1186/s13321-021-00558-4. PubMed DOI PMC

Engler Hart C., Kind T., Dorrestein P. C., Healey D., Domingo-Fernández D.. Weighting low-intensity MS/MS ions and m/z frequency for spectral library annotation. J. Am. Soc. Mass Spectrom. 2024;35:266–274. doi: 10.1021/jasms.3c00353. PubMed DOI PMC

Bolyen E.. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC

de Jonge N. F., Hecht H., Strobel M., Wang M., van der Hooft J. J. J., Huber F.. Reproducible MS/MS library cleaning pipeline in matchms. J. Cheminform. 2024;16:88. doi: 10.1186/s13321-024-00878-1. PubMed DOI PMC

Chen L.. et al. Metabolite discovery through global annotation of untargeted metabolomics data. Nat. Methods. 2021;18:1377–1385. doi: 10.1038/s41592-021-01303-3. PubMed DOI PMC

Shen X., Wang R., Xiong X., Yin Y., Cai Y., Ma Z., Liu N., Zhu Z. J.. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat. Commun. 2019;10:1516. doi: 10.1038/s41467-019-09550-x. PubMed DOI PMC

Zhou Z., Luo M., Zhang H., Yin Y., Cai Y., Zhu Z. J.. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat. Commun. 2022;13:6656. doi: 10.1038/s41467-022-34537-6. PubMed DOI PMC

Wang X.. et al. Enhanced structure-guided molecular networking annotation method for untargeted metabolomics data from Orbitrap Astral mass spectrometer. Anal. Chem. 2025;97:11506–11514. doi: 10.1021/acs.analchem.5c00314. PubMed DOI

Tsugawa H.. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Olivon F.. et al. MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal. Chem. 2018;90:13900–13908. doi: 10.1021/acs.analchem.8b03099. PubMed DOI

Bazzano C. F.. et al. NP3MS Workflow: An open-source software system to empower natural product-based drug discovery using untargeted metabolomics. Anal. Chem. 2024;96:7460–7469. doi: 10.1021/acs.analchem.3c05829. PubMed DOI PMC

The R Project for Statistical Computing. https://www.R-project.org/ (accessed 10/20/2025).

Research Portal. https://hdl.handle.net/10863/44744 (accessed 10/20/2025).

van Rijswijk M., Beirnaert C., Caron C., Cascante M., Dominguez V., Dunn W. B., Ebbels T. M. D., Giacomoni F., Gonzalez-Beltran A., Hankemeier T.. et al. The future of metabolomics in ELIXIR. F1000Res. 2017;6:1649. doi: 10.12688/f1000research.12342.2. PubMed DOI PMC

Guitton Y.. et al. Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int. J. Biochem. Cell Biol. 2017;93:89–101. doi: 10.1016/j.biocel.2017.07.002. PubMed DOI

Rainer J.. et al. A modular and expandable ecosystem for metabolomics data annotation in R. Metabolites. 2022;12:173. doi: 10.3390/metabo12020173. PubMed DOI PMC

Van Rossum, G. ; Drake, F. L., Jr. . Python 3 Reference Manual; Createspace, 2009.

Liu B., Tang Z., Huan T.. Adduct-induced variability in tandem mass spectrometry. Anal. Chem. 2025;97:17058. doi: 10.1021/acs.analchem.5c02792. PubMed DOI

Reher R., Aron A. T., Fajtová P., Stincone P., Wagner B., Pérez-Lorente A. I., Liu C., Shalom I. Y. B., Bittremieux W., Wang M.. et al. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat. Commun. 2022;13:4619. doi: 10.1038/s41467-022-32016-6. PubMed DOI PMC

Aron A. T.. et al. Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nat. Chem. 2022;14:100–109. doi: 10.1038/s41557-021-00803-1. PubMed DOI PMC

Leney A. C., Heck A. J. R.. Native Mass Spectrometry: What is in the Name? J. Am. Soc. Mass Spectrom. 2017;28:5–13. doi: 10.1007/s13361-016-1545-3. PubMed DOI PMC

Savitski M. M., Kjeldsen F., Nielsen M. L., Zubarev R. A.. Relative specificities of water and ammonia losses from backbone fragments in collision-activated dissociation. J. Proteome Res. 2007;6:2669–2673. doi: 10.1021/pr070121z. PubMed DOI

NIST23 . NIST23. https://www.nist.gov/programs-projects/nist20-updates-nist-tandem-and-electron-ionization-spectral-libraries (accessed 10/20/2025).

MassBank of North America. https://mona.fiehnlab.ucdavis.edu/ (accessed 10/20/2025).

mzCloud – Advanced Mass Spectral Database. https://www.mzcloud.org/ (accessed 10/20/2025).

Horai H.. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010;45:703–714. doi: 10.1002/jms.1777. PubMed DOI

Zhou Y.. et al. Bottom-up structural analysis of amides by identifying collision-induced dissociation fragment ions: An application in bile acid-amino acid conjugates-targeted sub-metabolome profiling. Anal. Chim. Acta. 2025;1367:344314. doi: 10.1016/j.aca.2025.344314. PubMed DOI

Baygi S. F., Kumar Y., Barupal D. K.. IDSL.CSA: Composite spectra analysis for chemical annotation of untargeted metabolomics datasets. Anal. Chem. 2023;95:9480–9487. doi: 10.1021/acs.analchem.3c00376. PubMed DOI PMC

Xue J.. et al. EISA-EXPOSOME: One highly sensitive and autonomous exposomic platform with enhanced in-source fragmentation/annotation. Anal. Chem. 2023;95:17228–17237. doi: 10.1021/acs.analchem.3c02697. PubMed DOI

Wang X.-C.. et al. AntDAS-DDA: A new platform for data-dependent acquisition mode-based untargeted metabolomic profiling analysis with advantage of recognizing insource fragment ions to improve compound identification. Anal. Chem. 2023;95:638–649. doi: 10.1021/acs.analchem.2c01795. PubMed DOI

Seitzer P. M., Searle B. C.. Incorporating in-source fragment information improves metabolite identification accuracy in untargeted LC-MS data sets. J. Proteome Res. 2019;18:791–796. doi: 10.1021/acs.jproteome.8b00601. PubMed DOI

Xing S.. et al. Structural annotation of full-scan MS data: A unified solution for LC-MS and MS imaging analyses. bioRxiv. 2025:2024.10.14.618269. doi: 10.1101/2024.10.14.618269. DOI

Baquer G., Sementé L., Ràfols P., Martín-Saiz L., Bookmeyer C., Fernández J. A., Correig X., García-Altares M.. rMSIfragment: improving MALDI-MSI lipidomics through automated in-source fragment annotation. J. Cheminform. 2023;15:80. doi: 10.1186/s13321-023-00756-2. PubMed DOI PMC

Xue J.. et al. Enhanced in-source fragmentation annotation enables novel data independent acquisition and autonomous METLIN molecular identification. Anal. Chem. 2020;92:6051–6059. doi: 10.1021/acs.analchem.0c00409. PubMed DOI PMC

Xing S., Charron-Lamoureux V., El Abiead Y., Dorrestein P. C.. Annotating full-scan MS data using tandem MS libraries. bioRxiv. 2024:2024.10.14.618269. doi: 10.1101/2024.10.14.618269. DOI

Palmer A., Alexandrov T.. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods. 2017;14:57–60. doi: 10.1038/nmeth.4072. PubMed DOI

Barker M., Rayens W.. Partial least squares for discrimination. J. Chemom. 2003;17:166–173. doi: 10.1002/cem.785. DOI

Ho, T. K. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition; IEEE Computer Society Press, 2002; Vol. 1, pp 278–282.

Li Q.. et al. GMSimpute: a generalized two-step Lasso approach to impute missing values in label-free mass spectrum analysis. Bioinformatics. 2020;36:257–263. doi: 10.1093/bioinformatics/btz488. PubMed DOI PMC

Xu Y., Goodacre R.. Mind your Ps and Qs – Caveats in metabolomics data analysis. Trends Anal. Chem. 2025;183:118064. doi: 10.1016/j.trac.2024.118064. DOI

Sun J., Xia Y.. Pretreating and normalizing metabolomics data for statistical analysis. Genes Dis. 2024;11:100979. doi: 10.1016/j.gendis.2023.04.018. PubMed DOI PMC

Benjamini Y., Hochberg Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc., B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Sands C. J.. et al. Representing the metabolome with high fidelity: Range and response as quality control factors in LC-MS-based global profiling. Anal. Chem. 2021;93:1924–1933. doi: 10.1021/acs.analchem.0c03848. PubMed DOI

Suvitaival T., Rogers S., Kaski S.. Stronger findings from mass spectral data through multi-peak modeling. BMC Bioinf. 2014;15:208. doi: 10.1186/1471-2105-15-208. PubMed DOI PMC

Mahalanobis P. C.. Reprint of Mahalanobis, P.c. 1936 ‘on the generalised distance in statistics.’. Sankhya, Ser. A. 2018;80:1–7. doi: 10.1007/s13171-019-00164-5. DOI

Gregorutti B., Michel B., Saint-Pierre P.. Correlation and variable importance in random forests. Stat. Comput. 2017;27:659–678. doi: 10.1007/s11222-016-9646-1. DOI

Avalon N. E.. et al. Leptochelins A-C, cytotoxic metallophores produced by geographically dispersed Leptothoe strains of marine Cyanobacteria. J. Am. Chem. Soc. 2024;146:18626–18638. doi: 10.1021/jacs.4c05399. PubMed DOI PMC

Houriet J., Vidar W. S., Manwill P. K., Todd D. A., Cech N. B.. How low can you go? Selecting intensity thresholds for untargeted metabolomics data preprocessing. Anal. Chem. 2022;94:17964–17971. doi: 10.1021/acs.analchem.2c04088. PubMed DOI

Woodall D. W.. et al. Melting of Hemoglobin in Native Solutions as measured by IMS-MS. Anal. Chem. 2020;92:3440–3446. doi: 10.1021/acs.analchem.9b05561. PubMed DOI PMC

Frańska M., Stȩżycka O., Jankowski W., Hoffmann M.. Gas-phase internal ribose residue loss from Mg-ATP and Mg-ADP complexes: Experimental and theoretical evidence for phosphate-Mg-adenine interaction. J. Am. Soc. Mass Spectrom. 2022;33:1474–1479. doi: 10.1021/jasms.2c00071. PubMed DOI PMC

Ganapathy V., Thangaraju M., Gopal E., Martin P. M., Itagaki S., Miyauchi S., Prasad P. D.. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 2008;10:193–199. doi: 10.1208/s12248-008-9022-y. PubMed DOI PMC

Giné R.. et al. HERMES: a molecular-formula-oriented method to target the metabolome. Nat. Methods. 2021;18:1370–1376. doi: 10.1038/s41592-021-01307-z. PubMed DOI PMC

Yurekten O.. et al. MetaboLights: open data repository for metabolomics. Nucleic Acids Res. 2024;52:D640–D646. doi: 10.1093/nar/gkad1045. PubMed DOI PMC

Sud M.. et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016;44:D463–D470. doi: 10.1093/nar/gkv1042. PubMed DOI PMC

Chae W., Cho J.-Y., Kang K. B.. Metabolomics Data Curation Center (MDCC) Introducing Korea metabolomics data repository (KMAP): bridging Korean metabolomics data to global data sharing infrastructure. Metabolomics. 2025;21:86. doi: 10.1007/s11306-025-02285-5. PubMed DOI PMC

European Organization for Nuclear Research & OpenAIRE; Zenodo, 2013.

MetaboBank. https://www.ddbj.nig.ac.jp/metabobank/index-e.html (accessed 10/20/2025).

Jasny B. R.. Realities of data sharing using the genome wars as case study - an historical perspective and commentary. EPJ Data Sci. 2013;2:1. doi: 10.1140/epjds13. DOI

Maxson Jones K., Ankeny R. A., Cook-Deegan R.. The Bermuda triangle: The pragmatics, policies, and principles for data sharing in the history of the Human Genome Project. J. Hist. Biol. 2018;51:693–805. doi: 10.1007/s10739-018-9538-7. PubMed DOI PMC

Kaye J., Heeney C., Hawkins N., de Vries J., Boddington P.. Data sharing in genomics–re-shaping scientific practice. Nat. Rev. Genet. 2009;10:331–335. doi: 10.1038/nrg2573. PubMed DOI PMC

Goeddel L. C., Patti G. J.. Maximizing the value of metabolomic data. Bioanalysis. 2012;4:2199–2201. doi: 10.4155/bio.12.210. PubMed DOI

Gentry E. C.. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature. 2024;626:419–426. doi: 10.1038/s41586-023-06906-8. PubMed DOI PMC

Mannochio-Russo H.. et al. The microbiome diversifies long- to short-chain fatty acid-derived N-acyl lipids. Cell. 2025;188:4154–4169.e19. doi: 10.1016/j.cell.2025.05.015. PubMed DOI PMC

Bushuiev R., Bushuiev A., Samusevich R., Brungs C., Sivic J., Pluskal T.. Self-supervised learning of molecular representations from millions of tandem mass spectra using DreaMS. Nat. Biotechnol. 2025:1–11. doi: 10.1038/s41587-025-02663-3. PubMed DOI

Witting M.. (Re-)­use and (re-)­analysis of publicly available metabolomics data. Proteomics. 2023;23:e2300032. doi: 10.1002/pmic.202300032. PubMed DOI

Ding J., Ji J., Rabow Z., Shen T., Folz J., Brydges C. R., Fan S., Lu X., Mehta S., Showalter M. R.. et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 2021;12:6021. doi: 10.1038/s41467-021-26310-y. PubMed DOI PMC

Yu D.. et al. A multi-tissue metabolome atlas of primate pregnancy. Cell. 2024;187:764–781.e14. doi: 10.1016/j.cell.2023.11.043. PubMed DOI

Bae H., Jung S., Le J., Tamburini I., Kim J., Wang E., Song W. S., Jang K. H., Kang T., Lopez M.. et al. An atlas of inter-organ metabolite trafficking in health and atherogenic conditions. Soc. Sci. Res. Netw. 2024:ssrn.4869929. doi: 10.2139/ssrn.4869929. DOI

Zuffa S.. et al. microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data. Nat. Microbiol. 2024;9:336–345. doi: 10.1038/s41564-023-01575-9. PubMed DOI PMC

West K. A., Schmid R., Gauglitz J. M., Wang M., Dorrestein P. C.. foodMASST a mass spectrometry search tool for foods and beverages. npj Sci. Food. 2022;6:22. doi: 10.1038/s41538-022-00137-3. PubMed DOI PMC

Zhao H. N.. et al. Empirically establishing drug exposure records directly from untargeted metabolomics data. bioRxiv. 2024:2024.10.07.617109. doi: 10.1101/2024.10.07.617109. PubMed DOI PMC

Zuffa S., Allaband C., Charron-Lamoureux V., Caraballo-Rodriguez A. M., Patan A., Mohanty I., Agongo J., Bostick J. W., Connerly T. J., Thron T.. et al. A multi-organ Murine metabolomics atlas reveals molecular dysregulations in Alzheimer’s Disease. bioRxiv. 2025:2025.04.28.651123. doi: 10.1101/2025.04.28.651123. DOI

Damiani T.. et al. A universal language for finding mass spectrometry data patterns. Nat. Methods. 2025;22:1247–1254. doi: 10.1038/s41592-025-02660-z. PubMed DOI PMC

Mongia M.. et al. Fast mass spectrometry search and clustering of untargeted metabolomics data. Nat. Biotechnol. 2024;42:1672–1677. doi: 10.1038/s41587-023-01985-4. PubMed DOI

Wang M.. et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 2020;38:23–26. doi: 10.1038/s41587-019-0375-9. PubMed DOI PMC

Charron-Lamoureux V., Mannochio-Russo H., Lamichhane S., Xing S., Patan A., Portal Gomes P. W., Rajkumar P., Deleray V., Caraballo-Rodríguez A. M., Chua K. V.. et al. A guide to reverse metabolomics-a framework for big data discovery strategy. Nat. Protoc. 2025;20:2960–2993. doi: 10.1038/s41596-024-01136-2. PubMed DOI PMC

Deutsch E. W.. et al. Universal Spectrum Identifier for mass spectra. Nat. Methods. 2021;18:768–770. doi: 10.1038/s41592-021-01184-6. PubMed DOI PMC

Bittremieux W., Chen C., Dorrestein P. C., Schymanski E. L., Schulze T., Neumann S., Meier R., Rogers S., Wang M.. Universal MS/MS visualization and retrieval with the Metabolomics Spectrum Resolver web service. bioRxiv. 2020:2020.05.09.086066. doi: 10.1101/2020.05.09.086066. DOI

Li Y., Fiehn O.. Flash entropy search to query all mass spectral libraries in real time. Nat. Methods. 2023;20:1475–1478. doi: 10.1038/s41592-023-02012-9. PubMed DOI PMC

McClendon S., Zhadin N., Callender R.. The approach to the Michaelis complex in lactate dehydrogenase: the substrate binding pathway. Biophys. J. 2005;89:2024–2032. doi: 10.1529/biophysj.105.062604. PubMed DOI PMC

Grant L. K., Ftouni S., Nijagal B., De Souza D. P., Tull D., McConville M. J., Rajaratnam S. M. W., Lockley S. W., Anderson C.. Circadian and wake-dependent changes in human plasma polar metabolites during prolonged wakefulness: A preliminary analysis. Sci. Rep. 2019;9:4428. doi: 10.1038/s41598-019-40353-8. PubMed DOI PMC

Brunmair J., Gotsmy M., Niederstaetter L., Neuditschko B., Bileck A., Slany A., Feuerstein M. L., Langbauer C., Janker L., Zanghellini J.. et al. Finger sweat analysis enables short interval metabolic biomonitoring in humans. Nat. Commun. 2021;12:5993. doi: 10.1038/s41467-021-26245-4. PubMed DOI PMC

Li Z.. et al. Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem. Res. Toxicol. 2012;25:1452–1461. doi: 10.1021/tx300108e. PubMed DOI PMC

Truver M. T.. et al. Urinary pharmacokinetics of immediate and controlled release oxycodone and its phase I and II metabolites using LC-MS-MS. J. Anal. Toxicol. 2023;46:1025–1031. doi: 10.1093/jat/bkab123. PubMed DOI PMC

Yang H.. et al. Determination of ten antipsychotics in blood, hair and nails: Validation of a LC-MS/MS method and forensic application of keratinized matrix analysis. J. Pharm. Biomed. Anal. 2023;234:115557. doi: 10.1016/j.jpba.2023.115557. PubMed DOI

Jiang S.. et al. UPLC-MS/MS method for the simultaneous quantification of caffeine and illicit psychoactive drugs in hair using a single-step high-speed grinding extraction - Insights into a cut-off value for caffeine abuse. J. Pharm. Biomed. Anal. 2022;209:114489. doi: 10.1016/j.jpba.2021.114489. PubMed DOI

Kuwayama K.. et al. Time-course measurements of drug concentrations in hair and toenails after single administrations of pharmaceutical products: Time-course measurements of drug concentrations in hair and toenails. Drug Test. Anal. 2017;9:571–577. doi: 10.1002/dta.1991. PubMed DOI

Palmeri A., Pichini S., Pacifici R., Zuccaro P., Lopez A.. Drugs in nails: physiology, pharmacokinetics and forensic toxicology: Physiology, pharmacokinetics and forensic toxicology. Clin. Pharmacokinet. 2000;38:95–110. doi: 10.2165/00003088-200038020-00001. PubMed DOI

Jarmusch A. K.. et al. Enhanced characterization of drug metabolism and the influence of the intestinal microbiome: A pharmacokinetic, microbiome, and untargeted metabolomics study: Drug metabolism and the intestinal microbiome. Clin. Transl. Sci. 2020;13:972–984. doi: 10.1111/cts.12785. PubMed DOI PMC

Quinn R. A.. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–129. doi: 10.1038/s41586-020-2047-9. PubMed DOI PMC

Linington R. G.. An assessment of chemical diversity in microbial natural products. ACS Cent. Sci. 2025;11:1536. doi: 10.1021/acscentsci.5c00804. PubMed DOI PMC

Hoffmann N.. et al. MzTab-M: A data standard for sharing quantitative results in mass spectrometry metabolomics. Anal. Chem. 2019;91:3302–3310. doi: 10.1021/acs.analchem.8b04310. PubMed DOI PMC

Sumner L. W.. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI): Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI) Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC

Schymanski E. L.. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI

Journal of Cosmology.com. Journal of Cosmology. https://thejournalofcosmology.com/Abiogenesis113.html (accessed 10/20/2025).

Ball P.. Chemistry: what chemists want to know. Nature. 2006;442:500–502. doi: 10.1038/442500a. PubMed DOI

O’Hagan S., Kell D. B.. Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries. Biotechnol. J. 2018;13:1700503. doi: 10.1002/biot.201700503. PubMed DOI

Liu X.. et al. DrugLLM: Open large language model for few-shot molecule generation. arXiv. 2024:arXiv:2405.06690. doi: 10.48550/arXiv.2405.06690. DOI

Ding Y.. et al. NaFM: Pre-training a foundation model for small-molecule natural products. arXiv. 2025:arXiv:2503.17656. doi: 10.48550/arXiv.2503.17656. DOI

Sakano K., Furui K., Ohue M.. NPGPT: Natural product-like compound generation with GPT-based chemical language models. arXiv. 2024:arXiv:2411.12886. doi: 10.48550/arXiv.2411.12886. DOI

Athersuch T.. Metabolome analyses in exposome studies: Profiling methods for a vast chemical space. Arch. Biochem. Biophys. 2016;589:177–186. doi: 10.1016/j.abb.2015.10.007. PubMed DOI

Uppal K.. et al. Computational metabolomics: A framework for the million metabolome. Chem. Res. Toxicol. 2016;29:1956–1975. doi: 10.1021/acs.chemrestox.6b00179. PubMed DOI PMC

Tierney B. T.. et al. The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe. 2019;26:283–295.e8. doi: 10.1016/j.chom.2019.07.008. PubMed DOI PMC

Zimmerman S., Tierney B. T., Patel C. J., Kostic A. D.. Quantifying shared and unique gene content across 17 microbial ecosystems. mSystems. 2023;8:e00118-23. doi: 10.1128/msystems.00118-23. PubMed DOI PMC

Pasolli E.. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176:649–662.e20. doi: 10.1016/j.cell.2019.01.001. PubMed DOI PMC

Barupal D. K., Fiehn O.. Generating the Blood Exposome Database using a comprehensive text mining and database fusion approach. Environ. Health Perspect. 2019;127:097008. doi: 10.1289/ehp4713. PubMed DOI PMC

Wishart D. S.. et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022;50:D622–D631. doi: 10.1093/nar/gkab1062. PubMed DOI PMC

Petras D.. et al. GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nat. Methods. 2022;19:134–136. doi: 10.1038/s41592-021-01339-5. PubMed DOI PMC

Bittremieux W., Avalon N. E., Thomas S. P., Kakhkhorov S. A., Aksenov A. A., Gomes P. W. P., Aceves C. M., Caraballo-Rodríguez A. M., Gauglitz J. M., Gerwick W. H.. et al. Open access repository-scale propagated nearest neighbor suspect spectral library for untargeted metabolomics. Nat. Commun. 2023;14:8488. doi: 10.1038/s41467-023-44035-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...