Recent advances in plant stress analysis using chlorophyll a fluorescence
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41551680
PubMed Central
PMC12805462
DOI
10.32615/ps.2025.037
PII: PS63359
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll fluorescence, knowledge mapping, noninvasive detection, photosynthesis, plant stresses,
- MeSH
- chlorofyl a * metabolismus MeSH
- chlorofyl * metabolismus MeSH
- fluorescence MeSH
- fotosyntéza MeSH
- fyziologický stres * MeSH
- fyziologie rostlin MeSH
- období sucha MeSH
- rostliny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chlorofyl a * MeSH
- chlorofyl * MeSH
Chlorophyll fluorescence (ChlF), a sensitive, real-time, and nondestructive indicator of photosynthesis, enables noninvasive elucidation of the complex physiological and biochemical processes of plants. It plays a unique and important role in plant research, ecological evaluation, and agriculture. To provide a holistic picture of research on ChlF applications over the past decade, a knowledge map was first conducted, which revealed six major areas of ChlF applications in plant stress evaluation and reduction, including drought stress, temperature stress, salt stress, water stress, toxicity stress, and nitrogen stress. This work then systematically summarized the literature in each of the six areas. Finally, we examined practical application bottlenecks and outlined key challenges and frontiers in future ChlF research.
Academy of Biology and Biotechnology Southern Federal University Rostov on Don Russia
Department of Chemical and Biomedical Engineering University of Missouri Columbia MO USA
School of Electrical Engineering and Automation Suzhou University of Technology Suzhou China
Zobrazit více v PubMed
Athar H.-u.-R., Zafar Z.U., Ashraf M.: Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. – J. Agron. Crop Sci. 201: 428-442, 2015.
Azam F.I., Chang X., Jing R.: Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. – Euphytica 202: 245-258, 2015. 10.1007/s10681-014-1283-1 DOI
Badr A., Brüggemann W.: Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. – Photosynthetica 58: 638-645, 2020. 10.32615/ps.2020.014 DOI
Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis PubMed DOI
Bano H., Athar H.-u.-R., Zafar Z.U. et al. : Linking changes in chlorophyll PubMed DOI
Barboričová M., Filaček A., Mlynáriková Vysoká D. et al. : Sensitivity of fast chlorophyll fluorescence parameters to combined heat and drought stress in wheat genotypes. – Plant Soil Environ. 68: 309-316, 2022. 10.17221/87/2022-PSE DOI
Bayçu G., Gevrek-Kürüm N., Moustaka J. et al. : Cadmium–zinc accumulation and photosystem II responses of PubMed DOI
Bresson J., Vasseur F., Dauzat M. et al. : Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. – Plant Methods 11: 23, 2015. 10.1186/s13007-015-0067-5 PubMed DOI PMC
Bu M., Li Y., Wang S. et al. : Nitrogen stress alters trade-off strategies between reproduction and vegetative growth in soybean. – Braz. J. Bot. 46: 269-279, 2023. 10.1007/s40415-023-00883-y DOI
Cen H., Jiang J., Han G. et al. : Applying deep learning in the prediction of chlorophyll- DOI
Cen H.Y., Weng H.Y., Yao J.N. et al. : Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus Huanglongbing. – Front. Plant Sci. 8: 1509, 2017. 10.3389/fpls.2017.01509 PubMed DOI PMC
Chen K., Ma T., Ding J. et al. : Effects of straw return with nitrogen fertilizer reduction on rice ( DOI
Chen Y.-E., Liu W.-J., Su Y.-Q. et al. : Different response of photosystem II to short and long-term drought stress in PubMed DOI
Chowaniec K., Żukowska-Trebunia A., Rola K.: Combined effect of acute salt and nitrogen stress on the physiology of lichen symbiotic partners. – Environ. Sci. Pollut. R. 30: 28192-28205, 2023. 10.1007/s11356-022-24115-0 PubMed DOI PMC
Dąbrowski P., Baczewska A.H., Pawluśkiewicz B. et al. : Prompt chlorophyll PubMed DOI
Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M. et al. : Exploration of chlorophyll PubMed DOI PMC
Dąbrowski P., Jełowicki Ł., Jaszczuk Z.M. et al. : Photosynthetic performance and yield losses of winter rapeseed ( PubMed DOI PMC
Dąbrowski P., Keutgen A.J., Keutgen N. et al. : Photosynthetic efficiency of perennial ryegrass ( PubMed DOI PMC
Das A., Pal M., Taria S. et al. : Multivariate analysis and genome wide association mapping for chlorophyll fluorescence and grain number per panicle under high temperature stress in rice. – Plant Physiol. Rep. 29: 598-613, 2024. 10.1007/s40502-024-00808-1 DOI
Deng Y., Xin N., Zhao L. et al. : Precision detection of salt stress in soybean seedlings based on deep learning and chlorophyll fluorescence imaging. – Plants-Basel 13: 2089, 2024. 10.3390/plants13152089 PubMed DOI PMC
Doğru A.: Effects of heat stress on photosystem II activity and antioxidant enzymes in two maize cultivars. – Planta 253: 85, 2021. 10.1007/s00425-021-03611-6 PubMed DOI
Enyew M., Carlsson A.S., Geleta M. et al. : Novel sources of drought tolerance in sorghum landraces revealed PubMed DOI PMC
Esser-Skala W., Fortelny N.: Reliable interpretability of biology-inspired deep neural networks. – npj Syst. Biol. Appl. 9: 50, 2023. 10.1038/s41540-023-00310-8 PubMed DOI PMC
Fang X., Wang K., Sun X. et al. : Characteristics of chlorophyll fluorescence in ten garden shrub species under flooding stress. – Biologia 77: 339-350, 2022. 10.1007/s11756-021-00947-y DOI
Faseela P., Sinisha A.K., Brestič M., Puthur J.T.: Chlorophyll DOI
Gan T., Zhao N., Yin G. et al. : Construction of a new response index for sensitive detection of the toxicity of photosynthetic inhibitory herbicides to photosynthesis of DOI
Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. 10.1016/S0304-4165(89)80016-9 DOI
Ghassemi-Golezani K., Lotfi R.: The impact of salicylic acid and silicon on chlorophyll DOI
Gill T., Gill S.K., Saini D.K. et al. : A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. – Phenomics 2: 156-183, 2022. 10.1007/s43657-022-00048-z PubMed DOI PMC
Grasso G., Cocco G., Zane D. et al. : Microalgae-based fluorimetric bioassays for studying interferences on photosynthesis induced by environmentally relevant concentrations of the herbicide diuron. – Biosensors 12: 67, 2022. 10.3390/bios12020067 PubMed DOI PMC
Grishina A., Sherstneva O., Mysyagin S. et al. : Detecting plant infections: prospects for chlorophyll fluorescence imaging. – Agronomy 14: 2600, 2024. 10.3390/agronomy14112600 DOI
Guidi L., Lo Piccolo E., Landi M.: Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C PubMed DOI PMC
Guo Y., Tan J.L.: Kinetic Monte Carlo simulation of the initial phases of chlorophyll fluorescence from photosystem II. – Biosystems 115: 1-4, 2014. 10.1016/j.biosystems.2013.10.004 PubMed DOI
Guo Y., Tan J.L.: Recent advances in the application of chlorophyll PubMed DOI
Gururani M.A., Venkatesh J., Ganesan M. et al. : PubMed DOI PMC
Hájek J., Barták M., Hazdrová J., Forbelská M.: Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. – Cryobiology 73: 329-334, 2016. 10.1016/j.cryobiol.2016.10.002 PubMed DOI
Harbinson J.: Improving the accuracy of chlorophyll fluorescence measurements. – Plant Cell Environ. 36: 1751-1754, 2013. 10.1111/pce.12111 PubMed DOI
Hassannejad S., Lotfi R., Ghafarbi S.P. et al. : Early identification of herbicide modes of action by the use of chlorophyll fluorescence measurements. – Plants-Basel 9: 529, 2020. 10.3390/plants9040529 PubMed DOI PMC
Hu X., Liu S., Gu W. et al. : Exogenous brassinolide improves the low nitrogen tolerance of sorghum seedling by increasing the photosynthetic capacity. – S. Afr. J. Bot. 178: 89-100, 2025. 10.1016/j.sajb.2025.01.023 DOI
Huang M., Ai H., Xu X. et al. : Nitric oxide alleviates toxicity of hexavalent chromium on tall fescue and improves performance of photosystem II. – Ecotox. Environ. Safe. 164: 32-40, 2018. 10.1016/j.ecoenv.2018.07.118 PubMed DOI
Jain N., Singh G.P., Pandey R. et al. : Chlorophyll fluorescence kinetics and response of wheat (
Jedmowski C., Ashoub A., Momtaz O., Brüggemann W.: Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley ( DOI
Ji S., Zhang Y., Xu M. et al. : Characterization of low-temperature sensitivity and chlorophyll fluorescence in yellow leaf mutants of tomato. – Agronomy 14: 2382, 2024. 10.3390/agronomy14102382 DOI
Jiang Y., Tan Y., Ji F. et al. : CFIHL: a variety of chlorophyll PubMed DOI PMC
Kalaji H.M., Rastogi A., Živčák M. et al. : Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. – Photosynthetica 56: 953-961, 2018. 10.1007/s11099-018-0766-z DOI
Kalaji H.M., Jajoo A., Oukarroum A. et al. : Chlorophyll DOI
Kalisz A., Jezdinský A., Pokluda R. et al. : Impacts of chilling on photosynthesis and chlorophyll pigment content in juvenile basil cultivars. – Hortic. Environ. Biote. 57: 330-339, 2016. 10.1007/s13580-016-0095-8 DOI
Kalisz A., Kornaś A., Skoczowski A. et al. : Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles. – BMC Plant Biol. 23: 329, 2023. 10.1186/s12870-023-04305-9 PubMed DOI PMC
Kautsky H., Hirsch A.: Neue versuche zur Kohlensäureassimilation. – Naturwissenschaften 19: 964, 1931. [In German] 10.1007/BF01516164 DOI
Keller J., Geier U., Tran N.T.: In-depth analysis of chlorophyll fluorescence rise kinetics reveals interference effects of a radiofrequency electromagnetic field (RF-EMF) on plant hormetic responses to drought stress. – Int. J. Mol. Sci. 26: 7038, 2025. 10.3390/ijms26157038 PubMed DOI PMC
Khatibi S.M.H., Ali J.: Harnessing the power of machine learning for crop improvement and sustainable production. – Front. Plant Sci. 15: 1417912, 2024. 10.3389/fpls.2024.1417912 PubMed DOI PMC
Killi D., Raschi A., Bussotti F.: Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C PubMed DOI PMC
Kong X., Wang R., Jia P. et al. : Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut ( PubMed DOI
Legendre R., Basinger N.T., van Iersel M.W.: Low-cost chlorophyll fluorescence imaging for stress detection. – Sensors 21: 2055, 2021. 10.3390/s21062055 PubMed DOI PMC
Li S., Rao L.: Response of growth and chlorophyll fluorescence parameters of mulberry seedlings to waterlogging stress. – Sci. Rep.-UK 14: 25078, 2024. 10.1038/s41598-024-76455-1 PubMed DOI PMC
Li X., Riaz M., Song B., Liu H.: Phytotoxicity response of sugar beet ( PubMed DOI
Li Z.J., Ji W., Hong E. et al. : Study on heat resistance of peony using photosynthetic indexes and rapid fluorescence kinetics. – Horticulturae 9: 100, 2023. 10.3390/horticulturae9010100 DOI
Lin H.-H., Lin K.-H., Huang M.-Y., Su Y.-R.: Use of non-destructive measurements to identify cucurbit species ( PubMed DOI PMC
Lin Z.-H., Zhong Q.-S., Chen C.-S. et al. : Carbon dioxide assimilation and photosynthetic electron transport of tea leaves under nitrogen deficiency. – Bot. Stud. 57: 37, 2016. 10.1186/s40529-016-0152-8 PubMed DOI PMC
Liu S., Sun B., Cao B. et al. : Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger ( PubMed DOI
Long Y., Ma M.: Recognition of drought stress state of tomato seedling based on chlorophyll fluorescence imaging. – IEEE Access 10: 48633-48642, 2022. 10.1109/ACCESS.2022.3168862 DOI
Lotfi R., Eslami-Senoukesh F., Mohammadzadeh A. et al. : Identification of key chlorophyll fluorescence parameters as biomarkers for dryland wheat under future climate conditions. – Sci. Rep.-UK 14: 28699, 2024. 10.1038/s41598-024-80164-0 PubMed DOI PMC
Loudari A., Benadis C., Naciri R. et al. : Salt stress affects mineral nutrition in shoots and roots and chlorophyll DOI
Lu M., Gao P., Hu J. et al. : A classification method of stress in plants using unsupervised learning algorithm and chlorophyll fluorescence technology. – Front. Plant Sci. 14: 1202092, 2023. 10.3389/fpls.2023.1202092 PubMed DOI PMC
Lu Y.Z., Lu R.F.: Enhancing chlorophyll fluorescence imaging under structured illumination with automatic vignetting correction for detection of chilling injury in cucumbers. – Comput. Electron. Agr. 168: 105145, 2020. 10.1016/j.compag.2019.105145 DOI
Lukatkin A.S., Semenova A.S., Teixeira da Silva J.A.: Treatment of winter rye ( DOI
Lysenko V., Rajput V.D., Singh R.K. et al. : Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives. – Physiol. Mol. Biol. Plants 28: 2041-2056, 2022. 10.1007/s12298-022-01263-8 PubMed DOI PMC
Ma L., Liu X., Lv W., Yang Y.: Molecular mechanisms of plant responses to salt stress. – Front. Plant Sci. 13: 934877, 2022. 10.3389/fpls.2022.934877 PubMed DOI PMC
Malekzadeh M.R., Roosta H.R., Esmaeilizadeh M. et al. : Improving strawberry plant resilience to salinity and alkalinity through the use of diverse spectra of supplemental lighting. – BMC Plant Biol. 24: 252, 2024. 10.1186/s12870-024-04984-y PubMed DOI PMC
Manghwar H., Hussain A., Alam I. et al. : Waterlogging stress in plants: unraveling the mechanisms and impacts on growth, development, and productivity. – Environ. Exp. Bot. 224: 105824, 2024. 10.1016/j.envexpbot.2024.105824 DOI
Mao L., Mishra D.R., Hawman P.A. et al. : Photosynthetic performance of tidally flooded DOI
Markou G., Dao L.H.T., Muylaert K., Beardall J.: Influence of different degrees of N limitation on photosystem II performance and heterogeneity of DOI
Masseroni D., Ortuani B., Corti M. et al. : Assessing the reliability of thermal and optical imaging techniques for detecting crop water status under different nitrogen levels. – Sustainability 9: 1548, 2017. 10.3390/su9091548 DOI
Mathur S., Seo B., Jajoo A. et al. : Chlorophyll fluorescence is a potential indicator to measure photochemical efficiency in early to late soybean maturity groups under changing day lengths and temperatures. – Front. Plant Sci. 14: 1228464, 2023. 10.3389/fpls.2023.1228464 PubMed DOI PMC
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
McAusland L., Atkinson J.A., Lawson T., Murchie E.H.: High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. – Plant Methods 15: 109, 2019. 10.1186/s13007-019-0485-x PubMed DOI PMC
Meng L.L., Song J.F., Wen J. et al. : Effects of drought stress on fluorescence characteristics of photosystem II in leaves of DOI
Mikulka J., Sen M.K., Košnarová P. et al. : Molecular mechanisms of resistance against PSII-inhibiting herbicides in PubMed DOI PMC
Mostafa S., Mondal D., Panjvani K. et al. : Explainable deep learning in plant phenotyping. – Front. Artif. Intell. 6: 1203546, 2023. 10.3389/frai.2023.1203546 PubMed DOI PMC
Moustaka J., Moustakas M.: Early-stage detection of biotic and abiotic stress on plants by chlorophyll fluorescence imaging analysis. – Biosensors 13: 796, 2023. 10.3390/bios13080796 PubMed DOI PMC
Moustakas M., Calatayud Á., Guidi L.: Chlorophyll fluorescence imaging analysis in biotic and abiotic stress. – Front. Plant Sci. 12: 658500, 2021. 10.3389/fpls.2021.658500 PubMed DOI PMC
Muhammad I., Shalmani A., Ali M. et al. : Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. – Front. Plant Sci. 11: 615942, 2021. 10.3389/fpls.2020.615942 PubMed DOI PMC
Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. – J. Exp. Bot. 64: 3983-3998, 2013. 10.1093/jxb/ert208 PubMed DOI
Najar R., Aydi S., Sassi-Aydi S. et al. : Effect of salt stress on photosynthesis and chlorophyll fluorescence in DOI
Nawaz M., Sun J.F., Shabbir S. et al. : A review of plants strategies to resist biotic and abiotic environmental stressors. – Sci. Total Environ. 900: 165832, 2023. 10.1016/j.scitotenv.2023.165832 PubMed DOI
Noga A., Warchoł M., Czyczyło-Mysza I. et al. : Chlorophyll DOI
Pathak V.M., Verma V.K., Rawat B.S. et al. : Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: a comprehensive review. – Front. Microbiol. 13: 962619, 2022. 10.3389/fmicb.2022.962619 PubMed DOI PMC
Paunov M., Koleva L., Vassilev A. et al. : Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. – Int. J. Mol. Sci. 19: 787, 2018. 10.3390/ijms19030787 PubMed DOI PMC
Qi Z., Xu C., Tang R. et al. : Response of photosynthesis and chlorophyll fluorescence to nitrogen changes in rice with different nitrogen use efficiencies. – Plants-Basel 14: 1465, 2025. 10.3390/plants14101465 PubMed DOI PMC
Sánchez-Moreiras A.M., Graña E., Reigosa M.J., Araniti F.: Imaging of chlorophyll PubMed DOI PMC
Sayyad-Amin P., Jahansooz M.-R., Borzouei A., Ajili F.: Changes in photosynthetic pigments and chlorophyll- PubMed DOI PMC
Sharma S., Bhatt U., Sharma J. et al. : Effect of different waterlogging periods on biochemistry, growth, and chlorophyll PubMed DOI PMC
Singh H., Kumar D., Soni V.: Performance of chlorophyll PubMed DOI PMC
Sommer S.G., Han E., Li X. et al. : The chlorophyll fluorescence parameter F PubMed DOI PMC
Stefanov M.A., Rashkov G.D., Apostolova E.L.: Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P PubMed DOI PMC
Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll DOI
Tantray A.Y., Bashir S.S., Ahmad A.: Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. – Physiol. Mol. Biol. Plants 26: 83-94, 2020. 10.1007/s12298-019-00721-0 PubMed DOI PMC
Tran N.T.: Anomaly detection utilizing one-class classification – a machine learning approach for the analysis of plant fast fluorescence kinetics. – Stresses 4: 773-786, 2024. 10.3390/stresses4040051 DOI
Tseng Y.-C., Chu S.-W.: High spatio-temporal-resolution detection of chlorophyll fluorescence dynamics from a single chloroplast with confocal imaging fluorometer. – Plant Methods 13: 43, 2017. 10.1186/s13007-017-0194-2 PubMed DOI PMC
Urban L., Aarrouf J., Bidel L.P.R.: Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll PubMed DOI PMC
Viljevac Vuletić M., Mihaljević I., Tomaš V. et al. : Physiological response to short-term heat stress in the leaves of traditional and modern plum ( DOI
Waheed A., Zhuo L., Wang M.H. et al. : Integrative mechanisms of plant salt tolerance: biological pathways, phytohormonal regulation, and technological innovations. – Plant Stress 14: 100652, 2024. 10.1016/j.stress.2024.100652 DOI
Wang J., Wang H., Lv X. et al. : Estimating photosynthetic characteristics of forage rape by fusing the sensitive spectral bands to combined stresses of nitrogen and salt. – Front. Plant Sci. 16: 1547832, 2025b. 10.3389/fpls.2025.1547832 PubMed DOI PMC
Wang J., Wang Y., Jin H. et al. : Research progress on responses and regulatory mechanisms of plants under high temperature. – Curr. Issues Mol. Biol. 47: 601, 2025a. 10.3390/cimb47080601 PubMed DOI PMC
Wang L., Xie M., Pan M. et al. : Improved deep learning predictions for chlorophyll fluorescence based on decomposition algorithms: the importance of data preprocessing. – Water 15: 4104, 2023. 10.3390/w15234104 DOI
Wu X.L., Tang Y.L., Li C.S. et al. : Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. – Plant Prod. Sci. 18: 284-294, 2015. 10.1626/pps.18.284 DOI
Wu Y., Ma Q., Zhen Z. et al. : The effect of short-term waterlogging stress on the response mechanism of photosynthetic characteristics, chlorophyll fluorescence, and yield components during the podding stage in peanuts. – Agronomy 14: 2232, 2024. 10.3390/agronomy14102232 DOI
Xia Q., Fu L., Tang H. et al. : Sensing and classification of rice ( PubMed DOI PMC
Xia Q., Tang H., Fu L. et al. : A drought stress-sensing technique based on wavelet entropy of chlorophyll fluorescence excited with pseudo-random binary sequence. – Comput. Electron. Agr. 210: 107933, 2023. 10.1016/j.compag.2023.107933 DOI
Xia Q., Tang H., Tan J.L. et al. : Determination of rice ( PubMed DOI PMC
Zhang F., Zhu K., Wang Y.Q. et al. : Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. – Photosynthetica 57: 1156-1164, 2019. 10.32615/ps.2019.136 DOI
Zhang Z., Cao B., Chen Z., Xu K.: Grafting enhances the photosynthesis and nitrogen absorption of tomato plants under low-nitrogen stress. – J. Plant Growth Regul. 41: 1714-1725, 2022. 10.1007/s00344-021-10414-2 DOI
Zhou L., Zhou L., Wu H. et al. : Application of chlorophyll fluorescence analysis technique in studying the response of lettuce ( PubMed DOI PMC
Zhou R., Hyldgaard B., Yu X. et al. : Phenotyping of faba beans ( DOI
Zhou R., Wu Z., Wang X. et al. : Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. – Hortic. Environ. Biote. 59: 499-509, 2018a. 10.1007/s13580-018-0050-y DOI
Zushi K., Matsuzoe N.: Using of chlorophyll DOI