Warming Reduces Parasitoid Success and Narrows Their Diet Breadth
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
20-30690S
Grantová Agentura České Republiky
PubMed
41589589
PubMed Central
PMC12836454
DOI
10.1111/ele.70322
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, community, food web, redundancy, specificity, top‐down control,
- MeSH
- deštný prales MeSH
- dieta * MeSH
- Drosophila * parazitologie fyziologie MeSH
- globální oteplování * MeSH
- interakce hostitele a parazita * MeSH
- sršňovití * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A significant area of current research is the impact of warming on trophic networks. However, few interactions per network are typically studied, which limits generalisation and precludes evaluation of impact on consumer diet breadth and redundancy of top-down control. Here we show that experimental warming strongly decreased the success of parasitoid development across 28 Drosophila-parasitoid interactions from a tropical rainforest network. Parasitoids responded consistently despite deep evolutionary divergence. Moreover, warming strongly narrowed the diversity of hosts that the parasitoids could use. Host developmental success was much less affected. In contrast, experimental cooling had only a mild effect on parasitoids and hosts. Our findings suggest that the top-down control exerted by parasitoids is likely to weaken due to warming. The range of hosts that parasitoids can use will become more limited, potentially threatening the sustainability of parasitoid populations and changing the balance between trophic levels.
College of Science and Engineering James Cook University Townsville Queensland Australia
Department of Biology Hood College Frederick Maryland USA
Department of Biology Utah State University Logan Utah USA
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Bestion, E. , Soriano‐Redondo A., Cucherousset J., et al. 2019. “Altered Trophic Interactions in Warming Climates: Consequences for Predator Diet Breadth and Fitness.” Proceedings of the Royal Society B: Biological Sciences 286: 20192227. PubMed PMC
Biggs, C. R. , Yeager L. A., Bolser D. G., et al. 2020. “Does Functional Redundancy Affect Ecological Stability and Resilience? A Review and Meta‐Analysis.” Ecosphere 11: e03184.
Blaimer, B. B. , Santos B. F., Cruaud A., et al. 2023. “Key Innovations and the Diversification of Hymenoptera.” Nature Communications 14: 1212. PubMed PMC
Bonnaffé, W. , Danet A., Leclerc C., Frossard V., Edeline E., and Sentis A.. 2024. “The Interaction Between Warming and Enrichment Accelerates Food‐Web Simplification in Freshwater Systems.” Ecology Letters 27: e14480. PubMed
Boukal, D. S. , Bideault A., Carreira B. M., and Sentis A.. 2019. “Species Interactions Under Climate Change: Connecting Kinetic Effects of Temperature on Individuals to Community Dynamics.” Current Opinion in Insect Science 35: 88–95. PubMed
Bright, N. L. , Chen J., and Terry J. C. D.. 2025. “Transgenerational Effects Increase the Vulnerability of a Host–Parasitoid System to Rising Temperatures.” Journal of Animal Ecology 94: 2089–2102. PubMed PMC
Broski, S. A. , and King B. H.. 2015. “Drilling‐In and Chewing‐Out of Hosts by the Parasitoid Wasp PubMed
Bürkner, P.‐C. 2017. “Brms: An R Package for Bayesian Multilevel Models Using
Cavigliasso, F. , Gatti J.‐L., Colinet D., and Poirié M.. 2021. “Impact of Temperature on the Immune Interaction Between a Parasitoid Wasp and PubMed PMC
Chao, A. , Chiu C.‐H., and Jost L.. 2014. “Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers.” Annual Review of Ecology, Evolution, and Systematics 45: 297–324.
Chen, J. , and Lewis O. T.. 2024. “Limits to Species Distributions on Tropical Mountains Shift From High Temperature to Competition as Elevation Increases.” Ecological Monographs 94: e1597.
Cohen, J. , Agel L., Barlow M., Garfinkel C. I., and White I.. 2021. “Linking Arctic Variability and Change With Extreme Winter Weather in the United States.” Science 373: 1116–1121. PubMed
Colinet, H. , Boivin G., and Hance T.. 2007. “Manipulation of Parasitoid Size Using the Temperature‐Size Rule: Fitness Consequences.” Oecologia 152: 425–433. PubMed
de Sassi, C. , and Tylianakis J. M.. 2012. “Climate Change Disproportionately Increases Herbivore Over Plant or Parasitoid Biomass.” PLoS One 7: e40557. PubMed PMC
Derocles, S. A. P. , Lunt D. H., Berthe S. C. F., Nichols P. C., Moss E. D., and Evans D. M.. 2018. “Climate Warming Alters the Structure of Farmland Tritrophic Ecological Networks and Reduces Crop Yield.” Molecular Ecology 27: 4931–4946. PubMed
Furlong, M. J. , and Zalucki M. P.. 2017. “Climate Change and Biological Control: The Consequences of Increasing Temperatures on Host–Parasitoid Interactions.” Current Opinion in Insect Science 20: 39–44. PubMed
Gilman, S. E. , Urban M. C., Tewksbury J., Gilchrist G. W., and Holt R. D.. 2010. “A Framework for Community Interactions Under Climate Change.” Trends in Ecology & Evolution 25: 325–331. PubMed
González‐Tokman, D. , Córdoba‐Aguilar A., Dáttilo W., Lira‐Noriega A., Sánchez‐Guillén R. A., and Villalobos F.. 2020. “Insect Responses to Heat: Physiological Mechanisms, Evolution and Ecological Implications in a Warming World.” Biological Reviews 95: 802–821. PubMed
Hallam, J. , and Harris N. C.. 2023. “What's Going to be on the Menu With Global Environmental Changes?” Global Change Biology 29: 5744–5759. PubMed
Harvey, J. A. , Heinen R., Gols R., and Thakur M. P.. 2020. “Climate Change‐Mediated Temperature Extremes and Insects: From Outbreaks to Breakdowns.” Global Change Biology 26: 6685–6701. PubMed PMC
Hu, X. , Wu X., Zhou Q., et al. 2024. “Warming Causes Contrasting Spider Behavioural Responses by Changing Their Prey Size Spectra.” Nature Climate Change 14: 190–197.
IPCC . 2023. “Summary for Policymakers.” In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Core Writing Team , Lee H., and Romero J., 34. IPCC.
Jeffs, C. T. , and Lewis O. T.. 2013. “Effects of Climate Warming on Host‐Parasitoid Interactions.” Ecological Entomology 38: 209–218.
Jeffs, C. T. , Terry J. C. D., Higgie M., et al. 2021. “Molecular Analyses Reveal Consistent Food Web Structure With Elevation in Rainforest
Jorge, L. R. , Novotny V., Segar S. T., et al. 2017. “Phylogenetic Trophic Specialization: A Robust Comparison of Herbivorous Guilds.” Oecologia 185: 551–559. PubMed
Jorge, L. R. , Prado P. I., Almeida‐Neto M., and Lewinsohn T. M.. 2014. “An Integrated Framework to Improve the Concept of Resource Specialisation.” Ecology Letters 17: 1341–1350. PubMed
Kellermann, V. , Overgaard J., Hoffmann A. A., Fløjgaard C., Svenning J.‐C., and Loeschcke V.. 2012. “Upper Thermal Limits of PubMed PMC
Kim, B. Y. , Gellert H. R., Church S. H., et al. 2024. “Single‐Fly Genome Assemblies Fill Major Phylogenomic Gaps Across the Drosophilidae Tree of Life.” PLoS Biology 22: e3002697. PubMed PMC
König, S. , Krauss J., Keller A., Bofinger L., and Steffan‐Dewenter I.. 2022. “Phylogenetic Relatedness of Food Plants Reveals Highest Insect Herbivore Specialization at Intermediate Temperatures Along a Broad Climatic Gradient.” Global Change Biology 28: 4027–4040. PubMed
Lemaitre, B. , and Hoffmann J.. 2007. “The Host Defense of PubMed
Lenth, R. 2024. emmeans: Estimated Marginal Means, aka Least‐Squares Means. R Package Version 1.10.2. https://CRAN.R‐project.org/package=emmeans.
Li, D. 2018. “hillR: Taxonomic, Functional, and Phylogenetic Diversity and Similarity Through Hill Numbers.” Journal of Open Source Software 3: 1041.
Lue, C. , Buffington M. L., Scheffer S., et al. 2021. “DROP: Molecular Voucher Database for Identification of PubMed
Lue, C.‐H. , Thierry M. J., Jorge L. R., Pardikes N., Higgie M., and Hrcek J.. 2025. “leorjorge/LueDietBreadth: Lue et al. 2025 Warming Reduces Parasitoid Success and Narrows Their Diet Breadth.” 10.5281/zenodo.16317124. DOI
Malinski, K. H. , Elizabeth Moore M., and Kingsolver J. G.. 2024. “Heat Stress and Host–Parasitoid Interactions: Lessons and Opportunities in a Changing Climate.” Current Opinion in Insect Science 64: 101225. PubMed
Nouhaud, P. , Mallard F., Poupardin R., Barghi N., and Schlötterer C.. 2018. “High‐Throughput Fecundity Measurements in Drosophila.” Scientific Reports 8: 4469. PubMed PMC
Pardikes, N. , Revilla T., Lue C.‐H., Thierry M., Souto‐Villaros D., and Hrcek J.. 2022. “Effects of Phenological Mismatch Under Warming Are Modified by Community Context.” Global Change Biology 28: 4013–4026. PubMed
Prevost, G. 2009. Parasitoids of Drosophila. Advances in Parasitology. Elsevier. PubMed
Rasmann, S. , Alvarez N., and Pellissier L.. 2014. “The Altitudinal Niche‐Breadth Hypothesis in Insect‐Plant Interactions.” In Annual Plant Reviews, edited by Voelckel C. and Jander G., 339–359. Wiley.
Rooney, N. , McCann K., Gellner G., and Moore J. C.. 2006. “Structural Asymmetry and the Stability of Diverse Food Webs.” Nature 442: 265–269. PubMed
Roslin, T. , Hardwick B., Novotny V., et al. 2017. “Higher Predation Risk for Insect Prey at Low Latitudes and Elevations.” Science 356: 742–744. PubMed
Salazar‐Jaramillo, L. , Paspati A., Van De Zande L., Vermeulen C. J., Schwander T., and Wertheim B.. 2014. “Evolution of a Cellular Immune Response in PubMed PMC
Sanders, D. , Thébault E., Kehoe R., and van Frank Veen F. J.. 2018. “Trophic Redundancy Reduces Vulnerability to Extinction Cascades.” Proceedings of the National Academy of Sciences 115: 2419–2424. PubMed PMC
Sentis, A. , Gémard C., Jaugeon B., and Boukal D. S.. 2017. “Predator Diversity and Environmental Change Modify the Strengths of Trophic and Nontrophic Interactions.” Global Change Biology 23: 2629–2640. PubMed
Sheng, Y. , Xu Z., Li Y., et al. 2025. “Fruit Flies Exploit Behavioral Fever as a Defense Strategy Against Parasitic Insects.” Science Advances 11: eadw0191. PubMed PMC
Suvorov, A. , Kim B. Y., Wang J., et al. 2022. “Widespread Introgression Across a Phylogeny of 155 Drosophila Genomes.” Current Biology 32: 111–123.e5. PubMed PMC
Thierry, M. , Hrček J., and Lewis O. T.. 2019. “Mechanisms Structuring Host–Parasitoid Networks in a Global Warming Context: A Review.” Ecological Entomology 44: 581–592.
Thierry, M. , Pardikes N. A., Rosenbaum B., Ximénez‐Embún M. G., and Hrcek J.. 2022. “The Presence of Multiple Parasitoids Decreases Host Survival Under Warming, but Parasitoid Performance Also Decreases.” Proceedings of the Royal Society B: Biological Sciences 289: 20220121. PubMed PMC
Thierry, M. , Pardikes N. A., Ximénez‐Embún M. G., Proudhom G., and Hrček J.. 2022. “Multiple Parasitoid Species Enhance Top‐Down Control, but Parasitoid Performance is Context Dependent.” Journal of Animal Ecology 91: 1929–1939. PubMed
Tylianakis, J. M. , and Binzer A.. 2014. “Effects of Global Environmental Changes on Parasitoid–Host Food Webs and Biological Control.” Biological Control 75: 77–86.
Tylianakis, J. M. , Didham R. K., Bascompte J., and Wardle D. A.. 2008. “Global Change and Species Interactions in Terrestrial Ecosystems.” Ecology Letters 11: 1351–1363. PubMed
Valdovinos, F. S. , Ramos‐Jiliberto R., Garay‐Narváez L., Urbani P., and Dunne J. A.. 2010. “Consequences of Adaptive Behaviour for the Structure and Dynamics of Food Webs: Adaptive Behaviour in Food Webs.” Ecology Letters 13: 1546–1559. PubMed
Vehtari, A. , Gabry J., Magnusson M., et al. 2024. loo: Efficient Leave‐One‐Out Cross‐Validation and WAIC for Bayesian Models. R Package Version 2.8.0.9000. https://mc‐stan.org/loo.
Voigt, W. , Perner J., Davis A. J., et al. 2003. “Trophic Levels Are Differentially Sensitive to Climate.” Ecology 84: 2444–2453.
Wenda, C. , Gaitán‐Espitia J. D., Solano‐Iguaran J. J., Nakamura A., Majcher B. M., and Ashton L. A.. 2023. “Heat Tolerance Variation Reveals Vulnerability of Tropical Herbivore–Parasitoid Interactions to Climate Change.” Ecology Letters 26: 278–290. PubMed