Role of Perindopril in Mitigating Doxorubicin's Vascular Toxicity in a Rat Model
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
41591661
PubMed Central
PMC12847116
DOI
10.1007/s12012-026-10092-0
PII: 10.1007/s12012-026-10092-0
Knihovny.cz E-zdroje
- Klíčová slova
- 4-hydroxy-2-nonenal, Doxorubicin, Isolated aortic ring, Perindopril, Rat, Vascular toxicity,
- MeSH
- aorta thoracica * účinky léků metabolismus patofyziologie MeSH
- doxorubicin * toxicita MeSH
- inhibitory ACE * farmakologie MeSH
- kardiotoxicita MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- ovarektomie MeSH
- oxidační stres účinky léků MeSH
- perindopril * farmakologie MeSH
- potkani Wistar MeSH
- protinádorová antibiotika * toxicita MeSH
- vazodilatace * účinky léků MeSH
- vazokonstrikce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin * MeSH
- inhibitory ACE * MeSH
- perindopril * MeSH
- protinádorová antibiotika * MeSH
Doxorubicin (DOX), a widely used anthracycline in cancer therapy, is associated with significant cardiovascular toxicity. While its cardiotoxic effects are well documented, the mechanisms and prevention of DOX-induced vascular toxicity remain insufficiently explored. Angiotensin-converting enzyme inhibitors (ACEIs), such as perindopril (PER), are commonly used in cardiovascular disease management and may offer vascular protection during chemotherapy. Female ovariectomized Wistar rats were treated with i.v. DOX and/or p.o. PER over five weeks. Cardiac and vascular function were assessed using high-frequency ultrasound and ECG. Vascular reactivity was evaluated in isolated aortal rings using phenylephrine (PE), acetylcholine (ACh), L-N-Nitro arginine methyl ester hydrochloride (L-NAME), and verapamil (VER). Oxidative stress was assessed via plasma 4-hydroxy-2-nonenal (4-HNE) levels, and structural changes were monitored through intima-media thickness (IMT) measurements. DOX administration significantly impaired vascular reactivity, as evidenced by increased contractile responses to PE and reduced endothelium-dependent relaxation. These functional alterations were accompanied by elevated plasma 4-HNE levels, indicating enhanced oxidative stress. Co-treatment with PER preserved vascular responsiveness, reduced contractile tension, and significantly lowered 4-HNE concentrations. Structurally, IMT increased in control and PER-only groups, likely due to post-ovariectomy remodelling, while DOX-treated groups showed no IMT progression. PER co-treatment appeared to stabilize IMT values. PER mitigates DOX-induced vascular toxicity, likely through endothelial protection and reduction of oxidative stress. These findings support the potential use of ACEIs as prophylactic agents in patients undergoing anthracycline-based chemotherapy and highlight the need for further translational studies in cardio-oncology.
Department of Biochemistry Faculty of Medicine Masaryk University Brno Czech Republic
Department of Pharmacology and Toxicology Faculty of Pharmacy Masaryk University Brno Czech Republic
Zobrazit více v PubMed
ReFaey, K., Tripathi, S., Grewal, S. S., Bhargav, A. G., Quinones, D. J., Chaichana, K. L., Antwi, S. O., Cooper, L. T., Meyer, F. B., Dronca, R. S., Diasio, R. B., & Quinones-Hinojosa, A. (2021). Cancer mortality rates increasing vs cardiovascular disease mortality decreasing in the world: Future implications. PubMed DOI PMC
Tamargo, J., Agewall, S., Borghi, C., Ceconi, C., Cerbai, E., Dan, G. A., Ferdinandy, P., Grove, E. L., Rocca, B., Magavern, E., Sulzgruber, P., Semb, A. G., Sossalla, S., Niessner, A., Kaski, J. C., & Dobrev, D. (2024). New Pharmacological agents and novel cardiovascular pharmacotherapy strategies in 2023. PubMed DOI PMC
Patnaik, J. L., Byers, T., DiGuiseppi, C., Dabelea, D., & Denberg, T. D. (2011). Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. PubMed DOI PMC
Bradshaw, P. T., Stevens, J., Khankari, N., Teitelbaum, S. L., Neugut, A. I., & Gammon, M. D. (2016). Cardiovascular disease mortality among breast cancer survivors. PubMed DOI PMC
Tocchetti, C. G., Ameri, P., de Boer, R. A., D’Alessandra, Y., Russo, M., Sorriento, D., Ciccarelli, M., Kiss, B., Bertrand, L., Dawson, D., Falcao-Pires, I., Giacca, M., Hamdani, N., Linke, W. A., Mayr, M., van der Velden, J., Zacchigna, S., Ghigo, A., Hirsch, E., … and, & Thum, T. (2020). Cardiac dysfunction in cancer patients: Beyond direct cardiomyocyte damage of anticancer drugs: Novel cardio-oncology insights from the joint 2019 meeting of the ESC working groups of myocardial function and cellular biology of the heart. PubMed DOI
Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and Pharmacologic developments in antitumor activity and cardiotoxicity. PubMed DOI
Rawat, P. S., Jaiswal, A., Khurana, A., Bhatti, J. S., & Navik, U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. PubMed DOI
Holanek, M., Selingerova, I., Bilek, O., Kazda, T., Fabian, P., Foretova, L., Zvarikova, M., Obermannova, R., Kolouskova, I., Coufal, O., Petrakova, K., Svoboda, M., & Poprach, A. (2021). Neoadjuvant chemotherapy of Triple-Negative breast cancer: Evaluation of early clinical response, pathological complete response Rates, and addition of platinum salts benefit based on Real-World evidence. Cancers (Basel) 13. PubMed PMC
Navrátil, J., Fabian, P., Palácová, M., Petráková, K., Vyzula, R., & Svoboda, M. (2015). [Triple negative breast Cancer]. PubMed
Qiu, Y., Chen, Y., Shen, H., Yan, S., Li, J., & Wu, W. (2024). Triple-negative breast cancer survival prediction: population-based research using the SEER database and an external validation cohort. PubMed DOI PMC
Garufi, G., Carbognin, L., Schettini, F., Seguí, E., Di Leone, A., Franco, A., Paris, I., Scambia, G., Tortora, G., & Fabi, A. (2022). Updated neoadjuvant treatment landscape for early triple negative breast cancer: Immunotherapy, potential predictive Biomarkers, and novel agents. Cancers (Basel) 14. PubMed PMC
Obidiro, O., Battogtokh, G., & Akala, E. O. (2023). Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 15. PubMed PMC
Han, H. S., Vikas, P., Costa, R. L. B., Jahan, N., Taye, A., & Stringer-Reasor, E. M. (2023). Early-Stage Triple-Negative breast cancer journey: Beginning, End, and everything in between. PubMed DOI
Lee, J. (2023). Current treatment landscape for early Triple-Negative breast cancer (TNBC). PubMed PMC
Dulf, P. L., Mocan, M., Coadă, C. A., Dulf, D. V., Moldovan, R., Baldea, I., Farcas, A. D., Blendea, D., & Filip, A. G. (2023). Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. PubMed DOI PMC
Vitale, R., Marzocco, S., & Popolo, A. (2024). Role of oxidative stress and inflammation in Doxorubicin-Induced cardiotoxicity: A brief account. PubMed PMC
Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. PubMed DOI
Bansal, N., Adams, M. J., Ganatra, S., Colan, S. D., Aggarwal, S., Steiner, R., Amdani, S., Lipshultz, E. R., & Lipshultz, S. E. (2019). Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. PubMed PMC
Curigliano, G., Lenihan, D., Fradley, M., Ganatra, S., Barac, A., Blaes, A., Herrmann, J., Porter, C., Lyon, A. R., Lancellotti, P., Patel, A., DeCara, J., Mitchell, J., Harrison, E., Moslehi, J., Witteles, R., Calabro, M. G., Orecchia, R., & de Azambuja, E. (2020). Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. PubMed DOI PMC
Singh, J., Iqbal, S. A., Gajula, S., Raghavan, P., Rajpal, S., & Khan, A. (2024). Assessment of Chemotherapy-Induced cardiac dysfunction in breast cancer patients: A prospective study. PubMed PMC
Sobczuk, P., Czerwińska, M., Kleibert, M., & Cudnoch-Jędrzejewska, A. (2022). Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. PubMed DOI PMC
Luu, A. Z., Chowdhury, B., Al-Omran, M., Teoh, H., Hess, D. A., & Verma, S. (2018). Role of endothelium in Doxorubicin-Induced cardiomyopathy. PubMed DOI PMC
Koleini, N., Nickel, B. E., Edel, A. L., Fandrich, R. R., Ravandi, A., & Kardami, E. (2019). Oxidized phospholipids in Doxorubicin-induced cardiotoxicity. PubMed DOI
Fojtu, M., Gumulec, J., Stracina, T., Raudenska, M., Skotakova, A., Vaculovicova, M., Adam, V., Babula, P., Novakova, M., & Masarik, M. (2017). Reduction of Doxorubicin-Induced cardiotoxicity using nanocarriers: A review. PubMed DOI
Kala, P., Bartušková, H., Piťha, J., Vaňourková, Z., Kikerlová, S., Jíchová, Š., Melenovský, V., Hošková, L., Veselka, J., Kompanowska-Jezierska, E., Sadowski, J., Gawrys, O., Maxová, H., & Červenka, L. (2020). Deleterious effects of hyperactivity of the Renin-Angiotensin system and hypertension on the course of Chemotherapy-Induced heart failure after doxorubicin administration: A study in Ren-2 Transgenic rat. PubMed PMC
Gulati, G., Heck, S. L., Ree, A. H., Hoffmann, P., Schulz-Menger, J., Fagerland, M. W., Gravdehaug, B., von Knobelsdorff-Brenkenhoff, F., Bratland, Å., Storås, T. H., Hagve, T. A., Røsjø, H., Steine, K., Geisler, J., & Omland, T. (2016). Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. PubMed DOI PMC
Janbabai, G., Nabati, M., Faghihinia, M., Azizi, S., Borhani, S., & Yazdani, J. (2017). Effect of Enalapril on preventing Anthracycline-Induced cardiomyopathy. PubMed DOI
Nakamae, H., Tsumura, K., Terada, Y., Nakane, T., Nakamae, M., Ohta, K., Yamane, T., & Hino, M. (2005). Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. PubMed DOI
Wittayanukorn, S., Qian, J., Westrick, S. C., Billor, N., Johnson, B., & Hansen, R. A. (2018). Prevention of trastuzumab and Anthracycline-induced cardiotoxicity using Angiotensin-converting enzyme inhibitors or β-blockers in older adults with breast cancer. PubMed DOI
Hassani, B., Attar, Z., & Firouzabadi, N. (2023). The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: Foes versus allies. PubMed DOI PMC
George, A. J., Thomas, W. G., & Hannan, R. D. (2010). The renin-angiotensin system and cancer: Old dog, new tricks. PubMed DOI
Al-Biltagi, M., Tolba, A. R. E., & El-Shanshory, O. (2012). M.R., Abd El-Aziz El-Shitany, N. and El-Sayed El-Hawary, E. Strain echocardiography in early detection of Doxorubicin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. ISRN Pediatr 2012: 870549. PubMed PMC
Boucek, R. J., Miracle, A., Anderson, M., Engelman, R., Atkinson, J., & Dodd, D. A. (1999). Persistent effects of doxorubicin on cardiac gene expression. PubMed DOI
Belger, C., Abrahams, C., Imamdin, A., & Lecour, S. (2024). Doxorubicin-induced cardiotoxicity and risk factors. PubMed PMC
Chaulin, A. M. (2023). The essential strategies to mitigate cardiotoxicity caused by doxorubicin. PubMed PMC
Clayton, Z. S., Brunt, V. E., Hutton, D. A., VanDongen, N. S., D’Alessandro, A., Reisz, J. A., Ziemba, B. P., & Seals, D. R. (2020). Doxorubicin-Induced oxidative stress and endothelial dysfunction in conduit arteries is prevented by Mitochondrial-Specific antioxidant treatment. PubMed DOI PMC
Bosman, M., Krüger, D. N., Favere, K., Wesley, C. D., Neutel, C. H. G., Van Asbroeck, B., Diebels, O. R., Faes, B., Schenk, T. J., Martinet, W., De Meyer, G. R. Y., Van Craenenbroeck, E. M., & Guns, P. D. F. (2021). Doxorubicin impairs smooth muscle cell contraction: Novel insights in vascular toxicity. PubMed PMC
Monti, M., Terzuoli, E., Ziche, M., & Morbidelli, L. (2013). The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. PubMed DOI
Szczepaniak, P., Siedlinski, M., Hodorowicz-Zaniewska, D., Nosalski, R., Mikolajczyk,T.P., Dobosz, A.M., Dikalova, A., Dikalov, S., Streb, J., Gara, K., Basta, P., Krolczyk,J., Sulicka-Grodzicka, J., Jozefczuk, E., Dziewulska, A., Saju, B., Laksa, I., Chen,W., Dormer, J., … and Guzik, T.J. (2022). Breast cancer chemotherapy induces vascular dysfunction and hypertension through a NOX4-dependent mechanism. J Clin Invest 132. PubMed PMC
Podyacheva, E., Danilchuk, M., & Toropova, Y. (2023). Molecular mechanisms of endothelial remodeling under doxorubicin treatment. PubMed DOI
Shen, B., Ye, C. L., Ye, K. H., Zhuang, L., & Jiang, J. H. (2009). Doxorubicin-induced vasomotion and [Ca(2+)](i) elevation in vascular smooth muscle cells from C57BL/6 mice. PubMed DOI PMC
Bosman, M., Favere, K., Neutel, C. H. G., Jacobs, G., De Meyer, G. R. Y., Martinet, W., Van Craenenbroeck, E. M., & Guns, P. D. F. (2021). Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. PubMed DOI
Gibson, N. M., Greufe, S. E., Hydock, D. S., & Hayward, R. (2013). Doxorubicin-induced vascular dysfunction and its Attenuation by exercise preconditioning. PubMed DOI
Olukman, M., Can, C., Erol, A., Oktem, G., Oral, O., & Cinar, M. G. (2009). Reversal of doxorubicin-induced vascular dysfunction by Resveratrol in rat thoracic aorta: Is there a possible role of nitric oxide synthase inhibition? PubMed
Bartáková, A., Koloušková, I., Holánek, M., Selingerová, I., Stračina, T., Kazda, T., & Nováková, M. (2023). Cardiovascular Pharmacotherapy in Patients with Triple Negative Breast Cancer Before and After Anthracycline Treatment.,
Netala, V. R., Teertam, S. K., Li, H., & Zhang, Z. (2024). A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 13. PubMed PMC
Yoshino, K., Matsuura, T., Sano, M., Saito, S., & Tomita, I. (1986). Fluorometric liquid chromatographic determination of aliphatic aldehydes arising from lipid peroxides. PubMed DOI
de Boer, R.A., De Keulenaer, G., Bauersachs, J., Brutsaert, D., Cleland, J.G., Diez,J., Du, X.J., Ford, P., Heinzel, F.R., Lipson, K.E., McDonagh, T., Lopez-Andres, N.,Lunde, I.G., Lyon, A.R., Pollesello, P., Prasad, S.K., Tocchetti, C.G., Mayr, M.,Sluijter, J.P.G., … and Heymans, S. (2019). Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 21: 272–285. PubMed PMC
Jin, L., & Conklin, D. J. (2021). A novel evaluation of endothelial dysfunction ex vivo: Teaching an old drug a new trick. PubMed DOI PMC
Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. PubMed DOI
Perez, E. A. (2001). Doxorubicin and Paclitaxel in the treatment of advanced breast cancer: Efficacy and cardiac considerations. PubMed DOI
Jirkovský, E., Jirkovská, A., Bavlovič-Piskáčková, H., Skalická, V., Pokorná, Z., Karabanovich, G., Kollárová-Brázdová, P., Kubeš, J., Lenčová-Popelová, O., Mazurová, Y., Adamcová, M., Lyon, A. R., Roh, J., Šimůnek, T., Štěrbová-Kovaříková, P., & Štěrba, M. (2021). Clinically translatable prevention of anthracycline cardiotoxicity by Dexrazoxane is mediated by topoisomerase II beta and not metal chelation. PubMed DOI
Weiss, R. B. (1992). The anthracyclines: Will we ever find a better doxorubicin? PubMed
Wei, Y., Elahy, M., Friedhuber, A. M., Wong, J. Y., Hughes, J. D., Doschak, M. R., & Dass, C. R. (2019). Triple-threat activity of PEDF in bone tumors: Tumor inhibition, tissue preservation and cardioprotection against doxorubicin. PubMed DOI
Li, K., Sung, R. Y., Huang, W. Z., Yang, M., Pong, N. H., Lee, S. M., Chan, W. Y., Zhao, H., To, M. Y., Fok, T. F., Li, C. K., Wong, Y. O., & Ng, P. C. (2006). Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. PubMed DOI
Abushouk, A. I., Ismail, A., Salem, A. M. A., Afifi, A. M., & Abdel-Daim, M. M. (2017). Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. PubMed DOI
Bast, A., Haenen, G. R., Bruynzeel, A. M., & Van der Vijgh, W. J. (2007). Protection by flavonoids against anthracycline cardiotoxicity: From chemistry to clinical trials. PubMed DOI
Cong, L., Ren, Y., Hou, T., Han, X., Dong, Y., Wang, Y., Zhang, Q., Liu, R., Xu, S., Wang, L., Du, Y., & Qiu, C. (2020). Use of cardiovascular drugs for primary and secondary prevention of cardiovascular disease among Rural-Dwelling older Chinese adults. PubMed DOI PMC
Bosman, M., Krüger, D. N., Favere, K., De Meyer, G. R. Y., Franssen, C., Van Craenenbroeck, E. M., & Guns, P. J. (2023). Dexrazoxane does not mitigate early vascular toxicity induced by doxorubicin in mice. PubMed DOI PMC
Keresteš, V., Kubeš, J., Applová, L., Kollárová, P., Lenčová-Popelová, O., Melnikova, I., Karabanovich, G., Khazeem, M. M., Bavlovič-Piskáčková, H., Štěrbová-Kovaříková, P., Austin, C. A., Roh, J., Štěrba, M., Šimůnek, T., & Jirkovská, A. (2024). Exploring the effects of topoisomerase II inhibitor XK469 on anthracycline cardiotoxicity and DNA damage. PubMed DOI PMC
Jones, I. C., & Dass, C. R. (2022). Doxorubicin-induced cardiotoxicity: Causative factors and possible interventions. PubMed DOI
Cho, H., Lee, S., Sim, S. H., Park, I. H., Lee, K. S., Kwak, M. H., & Kim, H. J. (2020). Cumulative incidence of chemotherapy-induced cardiotoxicity during a 2-year follow-up period in breast cancer patients. PubMed DOI
Komukai, K., Mochizuki, S., & Yoshimura, M. (2010). Gender and the renin-angiotensin-aldosterone system. PubMed DOI
Al Shoyaib, A., Archie, S. R., & Karamyan, V. T. (2019). Intraperitoneal route of drug administration: Should it be used in experimental animal. PubMed DOI PMC
Hurst, M., & Jarvis, B. (2001). Perindopril: An updated review of its use in hypertension. PubMed DOI
Denny, K. H., & Stewart, C. W. (2024). Acute, Subacute, Subchronic, and Chronic General Toxicity Testing for Preclinical Drug Development. In: Faqi, A. S., editor. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. 3rd ed. Academic Press 149–171.
Schubert, R., Gaynullina, D., Shvetsova, A., & Tarasova, O. S. (2023). Myography of isolated blood vessels: Considerations for experimental design and combination with supplementary techniques. PubMed DOI PMC
Rameshrad, M., Babaei, H., Azarmi, Y., & Fouladi, D. F. (2016). Rat aorta as a Pharmacological tool for in vitro and in vivo studies. PubMed DOI
Jeremy, J. Y., Stansby, G., Fuller, B., Rolles, K., & Hamilton, G. (1992). The effect of cold storage of rat thoracic aortic rings in organ preservation solutions–a study of receptor-linked vascular Prostacyclin synthesis. PubMed DOI
Demirel, S. (2022). Effect of Cold Storage in Krebs-Henseleit Solution at + 4°C on Vasoreactivity of the Rat Thoracic Aorta, pp456–461, Balıkesir Sağlık Bilimleri Dergisi.
Bohr, D. F., Goulet, P. L., & Taquini, A. C. (1961). Direct tension recording from smooth muscle of resistance vessels from various organs. PubMed DOI
van Langen, J., Fransen, P., Van Hove, C. E., Schrijvers, D. M., Martinet, W., De Meyer, G. R., & Bult, H. (2012). Selective loss of basal but not receptor-stimulated relaxation by endothelial nitric oxide synthase after isolation of the mouse aorta. PubMed DOI
Furchgott, R. F., & Bhadrakom, S. (1953). Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. PubMed DOI
Nicosia, R. F. (2009). The aortic ring model of angiogenesis: A quarter century of search and discovery. PubMed DOI PMC
Jiang, J., Thorén, P., Caligiuri, G., Hansson, G. K., & Pernow, J. (1999). Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: Relation to Kv channels and nitric oxide. PubMed DOI PMC
Leloup, A., De Moudt, S., Van Hove, C., & Fransen, P. (2017). Cyclic stretch alters vascular reactivity of mouse aortic segments. PubMed DOI PMC
Chang, G. J., Lin, T. P., Ko, Y. S., & Lin, M. S. (2010). Endothelium-dependent and -independent vasorelaxation induced by CIJ-3-2F, a novel benzyl-furoquinoline with antiarrhythmic action, in rat aorta. PubMed DOI
Damiani, C. E., Rossoni, L. V., & Vassallo, D. V. (2003). Vasorelaxant effects of Eugenol on rat thoracic aorta. PubMed DOI
Toba, H., Morishita, M., Tojo, C., Nakano, A., Oshima, Y., Kojima, Y., Yoshida, M., Nakashima, K., Wang, J., Kobara, M., & Nakata, T. (2011). Recombinant human erythropoietin ameliorated endothelial dysfunction and macrophage infiltration by increasing nitric oxide in hypertensive 5/6 nephrectomized rat aorta. PubMed DOI
Inchoo, M., Chirdchupunseree, H., Pramyothin, P., & Jianmongkol, S. (2011). Endothelium-independent effects of phyllanthin and hypophyllanthin on vascular tension. PubMed DOI
Gutiérrez, A., Contreras, C., Sánchez, A., & Prieto, D. (2019). Role of phosphatidylinositol 3-Kinase (PI3K), Mitogen-Activated protein kinase (MAPK), and protein kinase C (PKC) in calcium signaling pathways linked to the α. PubMed DOI PMC
Gonzales, R. J., Carter, R. W., & Kanagy, N. L. (2000). Laboratory demonstration of vascular smooth muscle function using rat aortic ring segments. PubMed DOI
Sousa, B. C., Pitt, A. R., & Spickett, C. M. (2017). Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. PubMed DOI
Podyacheva, E. Y., Kushnareva, E. A., Karpov, A. A., & Toropova, Y. G. (2021). Analysis of models of Doxorubicin-Induced cardiomyopathy in rats and Mice. A modern view from the perspective of the pathophysiologist and the clinician. PubMed DOI PMC
Schaur, R. J., Siems, W., Bresgen, N., & Eckl, P. M. (2015). 4-Hydroxy-nonenal-A bioactive lipid peroxidation product. PubMed DOI PMC
Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. PubMed DOI
Zhang, H., & Forman, H. J. (2017). Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. PubMed DOI PMC
Hlaváčová, M., Gumulec, J., Stračina, T., Fojtů, M., Raudenská, M., Masařík, M., Nováková, M., & Paulová, H. (2015). Different doxorubicin formulations affect plasma 4-hydroxy-2-nonenal and gene expression of aldehyde dehydrogenase 3A1 and thioredoxin reductase 2 in rat. PubMed DOI
Dalleau, S., Baradat, M., Guéraud, F., & Huc, L. (2013). Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. PubMed DOI PMC
Feng, J., & Wu, Y. (2023). Endothelial-to-Mesenchymal transition: Potential target of Doxorubicin-Induced cardiotoxicity. PubMed DOI
Sun, Z., Schriewer, J., Tang, M., Marlin, J., Taylor, F., Shohet, R. V., & Konorev, E. A. (2016). The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. PubMed DOI PMC
Xu, A., Deng, F., Chen, Y., Kong, Y., Pan, L., Liao, Q., Rao, Z., Xie, L., Yao, C.,Li, S., Zeng, X., Zhu, X., Liu, H., Gao, N., Xue, L., Chen, F., Xu, G., Wei, D., Zhou,X., … and Sheng, X. (2020). NF-κB pathway activation during endothelial-to-mesenchymal transition in a rat model of doxorubicin-induced cardiotoxicity. Biomed Pharmacother 130: 110525. PubMed
Bartáková, A., & Nováková, M. (2021). Secondary metabolites of plants as modulators of endothelium functions. PubMed PMC
Ancion, A., Tridetti, J., Nguyen Trung, M. L., Oury, C., & Lancellotti, P. (2019). A review of the role of Bradykinin and nitric oxide in the cardioprotective action of Angiotensin-Converting enzyme inhibitors: Focus on Perindopril. PubMed DOI PMC
Bețiu, A. M., Noveanu, L., Hâncu, I. M., Lascu, A., Petrescu, L., Maack, C., Elmér, E., & Muntean, D. M. (2022). Mitochondrial effects of common cardiovascular medications: The Good, the bad and the mixed. PubMed PMC
Incalza, M. A., D’Oria, R., Natalicchio, A., Perrini, S., Laviola, L., & Giorgino, F. (2018). Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. PubMed DOI
Dhulkifle, H., Therachiyil, L., Hasan, M. H., Sayed, T. S., Younis, S. M., Korashy, H. M., Yalcin, H. C., & Maayah, Z. H. (2024). Inhibition of cytochrome P450 epoxygenase promotes endothelium-to-mesenchymal transition and exacerbates doxorubicin-induced cardiovascular toxicity. PubMed DOI PMC
Chen, W., Kim, S., Kim, S., Beheshtian, C., Kim, N., Shin, K., Kim, R., Kim, S., & Park, N. (2025). GV1001, hTERT Peptide Fragment, Prevents Doxorubicin-Induced Endothelial-to-Mesenchymal Transition in Human Endothelial Cells and Atherosclerosis in Mice. CELLS 14. PubMed PMC
Castillo, C., Cruzado, M., Ariznavarreta, M., Lahera, V., Cachofeiro, V., Gil-Loyzaga, P., & Tresguerres, J. (2005). Effects of ovariectomy and growth hormone administration on body composition and vascular function and structure in old female rats. PubMed DOI
Schneider, A. P. H., Gaedke, M., Garcez, A., Barcellos, N. T., & Paniz, V. M. V. (2018). Effect of characteristics of pharmacotherapy on non-adherence in chronic cardiovascular disease: A systematic review and meta-analysis of observational studies. PubMed
Warhol, A., George, S. A., Obaid, S. N., Efimova, T., & Efimov, I. R. (2021). Differential cardiotoxic electrocardiographic response to doxorubicin treatment in conscious versus anesthetized mice. PubMed DOI PMC
Urabe, M., Kawasaki, H., & Takasaki, K. (1991). Effect of endothelium removal on the vasoconstrictor response to neuronally released 5-hydroxytryptamine and noradrenaline in the rat isolated mesenteric and femoral arteries. PubMed DOI PMC
Randall, V. A., MacLennan, S. J., Martin, G. R., & Wilson, V. G. (1996). The effect of forskolin on 5-HT1-like and angiotensin II-induced vasoconstriction and Cyclic AMP content of the rabbit isolated femoral artery. PubMed DOI PMC
Tessel, R. E., Miller, D. W., Misse, G. A., Dong, X., & Doughty, M. B. (1993). Characterization of vascular postsynaptic neuropeptide Y receptor function and regulation. 1. NPY-induced constriction in isolated rat femoral artery rings is mediated by both Y1 and Y2 receptors: Evidence from Benextramine protection studies. PubMed DOI
Bielcikova, Z., Holanek, M., Selingerova, I., Sorejs, O., Kolarova, I., Soumarova, R., Proks, J., Reifova, L., Cmejlova, V., Linkova, L., Zabojnikova, M., Chodacka, M., Janovska, L., Lisnerova, L., Kasparova, K., Pohankova, D., & Petruzelka, L. (2024). Treatment and prognosis of male breast cancer: A Multicentric, retrospective study over 11 years in the Czech Republic. PubMed DOI PMC
Flores-Monroy, J., Lezama-Martínez, D., Fonseca-Coronado, S., & Martínez-Aguilar, L. (2020). Differences in the expression of the Renin angiotensin system and the kallikrein-kinin system during the course of myocardial infarction in male and female Wistar rats. PubMed DOI PMC
Corso, G., Gandini, S., D’Ecclesiis, O., Mazza, M., Magnoni, F., Veronesi, P., Galimberti, V., & La Vecchia, C. (2023). Risk and incidence of breast cancer in transgender individuals: A systematic review and meta-analysis. PubMed DOI
Laska, M., Vitous, J., Jirik, R., Hendrych, M., Drazanova, E., Kratka, L., Nadenicek, J., Novakova, M., & Stracina, T. (2024). Heart remodelling affects ECG in rat DOCA/Salt model. PubMed PMC