Role of Perindopril in Mitigating Doxorubicin's Vascular Toxicity in a Rat Model

. 2026 Jan 27 ; 26 (2) : 19. [epub] 20260127

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41591661
Odkazy

PubMed 41591661
PubMed Central PMC12847116
DOI 10.1007/s12012-026-10092-0
PII: 10.1007/s12012-026-10092-0
Knihovny.cz E-zdroje

Doxorubicin (DOX), a widely used anthracycline in cancer therapy, is associated with significant cardiovascular toxicity. While its cardiotoxic effects are well documented, the mechanisms and prevention of DOX-induced vascular toxicity remain insufficiently explored. Angiotensin-converting enzyme inhibitors (ACEIs), such as perindopril (PER), are commonly used in cardiovascular disease management and may offer vascular protection during chemotherapy. Female ovariectomized Wistar rats were treated with i.v. DOX and/or p.o. PER over five weeks. Cardiac and vascular function were assessed using high-frequency ultrasound and ECG. Vascular reactivity was evaluated in isolated aortal rings using phenylephrine (PE), acetylcholine (ACh), L-N-Nitro arginine methyl ester hydrochloride (L-NAME), and verapamil (VER). Oxidative stress was assessed via plasma 4-hydroxy-2-nonenal (4-HNE) levels, and structural changes were monitored through intima-media thickness (IMT) measurements. DOX administration significantly impaired vascular reactivity, as evidenced by increased contractile responses to PE and reduced endothelium-dependent relaxation. These functional alterations were accompanied by elevated plasma 4-HNE levels, indicating enhanced oxidative stress. Co-treatment with PER preserved vascular responsiveness, reduced contractile tension, and significantly lowered 4-HNE concentrations. Structurally, IMT increased in control and PER-only groups, likely due to post-ovariectomy remodelling, while DOX-treated groups showed no IMT progression. PER co-treatment appeared to stabilize IMT values. PER mitigates DOX-induced vascular toxicity, likely through endothelial protection and reduction of oxidative stress. These findings support the potential use of ACEIs as prophylactic agents in patients undergoing anthracycline-based chemotherapy and highlight the need for further translational studies in cardio-oncology.

Zobrazit více v PubMed

ReFaey, K., Tripathi, S., Grewal, S. S., Bhargav, A. G., Quinones, D. J., Chaichana, K. L., Antwi, S. O., Cooper, L. T., Meyer, F. B., Dronca, R. S., Diasio, R. B., & Quinones-Hinojosa, A. (2021). Cancer mortality rates increasing vs cardiovascular disease mortality decreasing in the world: Future implications. PubMed DOI PMC

Tamargo, J., Agewall, S., Borghi, C., Ceconi, C., Cerbai, E., Dan, G. A., Ferdinandy, P., Grove, E. L., Rocca, B., Magavern, E., Sulzgruber, P., Semb, A. G., Sossalla, S., Niessner, A., Kaski, J. C., & Dobrev, D. (2024). New Pharmacological agents and novel cardiovascular pharmacotherapy strategies in 2023. PubMed DOI PMC

Patnaik, J. L., Byers, T., DiGuiseppi, C., Dabelea, D., & Denberg, T. D. (2011). Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. PubMed DOI PMC

Bradshaw, P. T., Stevens, J., Khankari, N., Teitelbaum, S. L., Neugut, A. I., & Gammon, M. D. (2016). Cardiovascular disease mortality among breast cancer survivors. PubMed DOI PMC

Tocchetti, C. G., Ameri, P., de Boer, R. A., D’Alessandra, Y., Russo, M., Sorriento, D., Ciccarelli, M., Kiss, B., Bertrand, L., Dawson, D., Falcao-Pires, I., Giacca, M., Hamdani, N., Linke, W. A., Mayr, M., van der Velden, J., Zacchigna, S., Ghigo, A., Hirsch, E., … and, & Thum, T. (2020). Cardiac dysfunction in cancer patients: Beyond direct cardiomyocyte damage of anticancer drugs: Novel cardio-oncology insights from the joint 2019 meeting of the ESC working groups of myocardial function and cellular biology of the heart. PubMed DOI

Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and Pharmacologic developments in antitumor activity and cardiotoxicity. PubMed DOI

Rawat, P. S., Jaiswal, A., Khurana, A., Bhatti, J. S., & Navik, U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. PubMed DOI

Holanek, M., Selingerova, I., Bilek, O., Kazda, T., Fabian, P., Foretova, L., Zvarikova, M., Obermannova, R., Kolouskova, I., Coufal, O., Petrakova, K., Svoboda, M., & Poprach, A. (2021). Neoadjuvant chemotherapy of Triple-Negative breast cancer: Evaluation of early clinical response, pathological complete response Rates, and addition of platinum salts benefit based on Real-World evidence. Cancers (Basel) 13. PubMed PMC

Navrátil, J., Fabian, P., Palácová, M., Petráková, K., Vyzula, R., & Svoboda, M. (2015). [Triple negative breast Cancer]. PubMed

Qiu, Y., Chen, Y., Shen, H., Yan, S., Li, J., & Wu, W. (2024). Triple-negative breast cancer survival prediction: population-based research using the SEER database and an external validation cohort. PubMed DOI PMC

Garufi, G., Carbognin, L., Schettini, F., Seguí, E., Di Leone, A., Franco, A., Paris, I., Scambia, G., Tortora, G., & Fabi, A. (2022). Updated neoadjuvant treatment landscape for early triple negative breast cancer: Immunotherapy, potential predictive Biomarkers, and novel agents. Cancers (Basel) 14. PubMed PMC

Obidiro, O., Battogtokh, G., & Akala, E. O. (2023). Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 15. PubMed PMC

Han, H. S., Vikas, P., Costa, R. L. B., Jahan, N., Taye, A., & Stringer-Reasor, E. M. (2023). Early-Stage Triple-Negative breast cancer journey: Beginning, End, and everything in between. PubMed DOI

Lee, J. (2023). Current treatment landscape for early Triple-Negative breast cancer (TNBC). PubMed PMC

Dulf, P. L., Mocan, M., Coadă, C. A., Dulf, D. V., Moldovan, R., Baldea, I., Farcas, A. D., Blendea, D., & Filip, A. G. (2023). Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. PubMed DOI PMC

Vitale, R., Marzocco, S., & Popolo, A. (2024). Role of oxidative stress and inflammation in Doxorubicin-Induced cardiotoxicity: A brief account. PubMed PMC

Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. PubMed DOI

Bansal, N., Adams, M. J., Ganatra, S., Colan, S. D., Aggarwal, S., Steiner, R., Amdani, S., Lipshultz, E. R., & Lipshultz, S. E. (2019). Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. PubMed PMC

Curigliano, G., Lenihan, D., Fradley, M., Ganatra, S., Barac, A., Blaes, A., Herrmann, J., Porter, C., Lyon, A. R., Lancellotti, P., Patel, A., DeCara, J., Mitchell, J., Harrison, E., Moslehi, J., Witteles, R., Calabro, M. G., Orecchia, R., & de Azambuja, E. (2020). Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. PubMed DOI PMC

Singh, J., Iqbal, S. A., Gajula, S., Raghavan, P., Rajpal, S., & Khan, A. (2024). Assessment of Chemotherapy-Induced cardiac dysfunction in breast cancer patients: A prospective study. PubMed PMC

Sobczuk, P., Czerwińska, M., Kleibert, M., & Cudnoch-Jędrzejewska, A. (2022). Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. PubMed DOI PMC

Luu, A. Z., Chowdhury, B., Al-Omran, M., Teoh, H., Hess, D. A., & Verma, S. (2018). Role of endothelium in Doxorubicin-Induced cardiomyopathy. PubMed DOI PMC

Koleini, N., Nickel, B. E., Edel, A. L., Fandrich, R. R., Ravandi, A., & Kardami, E. (2019). Oxidized phospholipids in Doxorubicin-induced cardiotoxicity. PubMed DOI

Fojtu, M., Gumulec, J., Stracina, T., Raudenska, M., Skotakova, A., Vaculovicova, M., Adam, V., Babula, P., Novakova, M., & Masarik, M. (2017). Reduction of Doxorubicin-Induced cardiotoxicity using nanocarriers: A review. PubMed DOI

Kala, P., Bartušková, H., Piťha, J., Vaňourková, Z., Kikerlová, S., Jíchová, Š., Melenovský, V., Hošková, L., Veselka, J., Kompanowska-Jezierska, E., Sadowski, J., Gawrys, O., Maxová, H., & Červenka, L. (2020). Deleterious effects of hyperactivity of the Renin-Angiotensin system and hypertension on the course of Chemotherapy-Induced heart failure after doxorubicin administration: A study in Ren-2 Transgenic rat. PubMed PMC

Gulati, G., Heck, S. L., Ree, A. H., Hoffmann, P., Schulz-Menger, J., Fagerland, M. W., Gravdehaug, B., von Knobelsdorff-Brenkenhoff, F., Bratland, Å., Storås, T. H., Hagve, T. A., Røsjø, H., Steine, K., Geisler, J., & Omland, T. (2016). Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. PubMed DOI PMC

Janbabai, G., Nabati, M., Faghihinia, M., Azizi, S., Borhani, S., & Yazdani, J. (2017). Effect of Enalapril on preventing Anthracycline-Induced cardiomyopathy. PubMed DOI

Nakamae, H., Tsumura, K., Terada, Y., Nakane, T., Nakamae, M., Ohta, K., Yamane, T., & Hino, M. (2005). Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. PubMed DOI

Wittayanukorn, S., Qian, J., Westrick, S. C., Billor, N., Johnson, B., & Hansen, R. A. (2018). Prevention of trastuzumab and Anthracycline-induced cardiotoxicity using Angiotensin-converting enzyme inhibitors or β-blockers in older adults with breast cancer. PubMed DOI

Hassani, B., Attar, Z., & Firouzabadi, N. (2023). The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: Foes versus allies. PubMed DOI PMC

George, A. J., Thomas, W. G., & Hannan, R. D. (2010). The renin-angiotensin system and cancer: Old dog, new tricks. PubMed DOI

Al-Biltagi, M., Tolba, A. R. E., & El-Shanshory, O. (2012). M.R., Abd El-Aziz El-Shitany, N. and El-Sayed El-Hawary, E. Strain echocardiography in early detection of Doxorubicin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. ISRN Pediatr 2012: 870549. PubMed PMC

Boucek, R. J., Miracle, A., Anderson, M., Engelman, R., Atkinson, J., & Dodd, D. A. (1999). Persistent effects of doxorubicin on cardiac gene expression. PubMed DOI

Belger, C., Abrahams, C., Imamdin, A., & Lecour, S. (2024). Doxorubicin-induced cardiotoxicity and risk factors. PubMed PMC

Chaulin, A. M. (2023). The essential strategies to mitigate cardiotoxicity caused by doxorubicin. PubMed PMC

Clayton, Z. S., Brunt, V. E., Hutton, D. A., VanDongen, N. S., D’Alessandro, A., Reisz, J. A., Ziemba, B. P., & Seals, D. R. (2020). Doxorubicin-Induced oxidative stress and endothelial dysfunction in conduit arteries is prevented by Mitochondrial-Specific antioxidant treatment. PubMed DOI PMC

Bosman, M., Krüger, D. N., Favere, K., Wesley, C. D., Neutel, C. H. G., Van Asbroeck, B., Diebels, O. R., Faes, B., Schenk, T. J., Martinet, W., De Meyer, G. R. Y., Van Craenenbroeck, E. M., & Guns, P. D. F. (2021). Doxorubicin impairs smooth muscle cell contraction: Novel insights in vascular toxicity. PubMed PMC

Monti, M., Terzuoli, E., Ziche, M., & Morbidelli, L. (2013). The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. PubMed DOI

Szczepaniak, P., Siedlinski, M., Hodorowicz-Zaniewska, D., Nosalski, R., Mikolajczyk,T.P., Dobosz, A.M., Dikalova, A., Dikalov, S., Streb, J., Gara, K., Basta, P., Krolczyk,J., Sulicka-Grodzicka, J., Jozefczuk, E., Dziewulska, A., Saju, B., Laksa, I., Chen,W., Dormer, J., … and Guzik, T.J. (2022). Breast cancer chemotherapy induces vascular dysfunction and hypertension through a NOX4-dependent mechanism. J Clin Invest 132. PubMed PMC

Podyacheva, E., Danilchuk, M., & Toropova, Y. (2023). Molecular mechanisms of endothelial remodeling under doxorubicin treatment. PubMed DOI

Shen, B., Ye, C. L., Ye, K. H., Zhuang, L., & Jiang, J. H. (2009). Doxorubicin-induced vasomotion and [Ca(2+)](i) elevation in vascular smooth muscle cells from C57BL/6 mice. PubMed DOI PMC

Bosman, M., Favere, K., Neutel, C. H. G., Jacobs, G., De Meyer, G. R. Y., Martinet, W., Van Craenenbroeck, E. M., & Guns, P. D. F. (2021). Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. PubMed DOI

Gibson, N. M., Greufe, S. E., Hydock, D. S., & Hayward, R. (2013). Doxorubicin-induced vascular dysfunction and its Attenuation by exercise preconditioning. PubMed DOI

Olukman, M., Can, C., Erol, A., Oktem, G., Oral, O., & Cinar, M. G. (2009). Reversal of doxorubicin-induced vascular dysfunction by Resveratrol in rat thoracic aorta: Is there a possible role of nitric oxide synthase inhibition? PubMed

Bartáková, A., Koloušková, I., Holánek, M., Selingerová, I., Stračina, T., Kazda, T., & Nováková, M. (2023). Cardiovascular Pharmacotherapy in Patients with Triple Negative Breast Cancer Before and After Anthracycline Treatment.,

Netala, V. R., Teertam, S. K., Li, H., & Zhang, Z. (2024). A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 13. PubMed PMC

Yoshino, K., Matsuura, T., Sano, M., Saito, S., & Tomita, I. (1986). Fluorometric liquid chromatographic determination of aliphatic aldehydes arising from lipid peroxides. PubMed DOI

de Boer, R.A., De Keulenaer, G., Bauersachs, J., Brutsaert, D., Cleland, J.G., Diez,J., Du, X.J., Ford, P., Heinzel, F.R., Lipson, K.E., McDonagh, T., Lopez-Andres, N.,Lunde, I.G., Lyon, A.R., Pollesello, P., Prasad, S.K., Tocchetti, C.G., Mayr, M.,Sluijter, J.P.G., … and Heymans, S. (2019). Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 21: 272–285. PubMed PMC

Jin, L., & Conklin, D. J. (2021). A novel evaluation of endothelial dysfunction ex vivo: Teaching an old drug a new trick. PubMed DOI PMC

Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. PubMed DOI

Perez, E. A. (2001). Doxorubicin and Paclitaxel in the treatment of advanced breast cancer: Efficacy and cardiac considerations. PubMed DOI

Jirkovský, E., Jirkovská, A., Bavlovič-Piskáčková, H., Skalická, V., Pokorná, Z., Karabanovich, G., Kollárová-Brázdová, P., Kubeš, J., Lenčová-Popelová, O., Mazurová, Y., Adamcová, M., Lyon, A. R., Roh, J., Šimůnek, T., Štěrbová-Kovaříková, P., & Štěrba, M. (2021). Clinically translatable prevention of anthracycline cardiotoxicity by Dexrazoxane is mediated by topoisomerase II beta and not metal chelation. PubMed DOI

Weiss, R. B. (1992). The anthracyclines: Will we ever find a better doxorubicin? PubMed

Wei, Y., Elahy, M., Friedhuber, A. M., Wong, J. Y., Hughes, J. D., Doschak, M. R., & Dass, C. R. (2019). Triple-threat activity of PEDF in bone tumors: Tumor inhibition, tissue preservation and cardioprotection against doxorubicin. PubMed DOI

Li, K., Sung, R. Y., Huang, W. Z., Yang, M., Pong, N. H., Lee, S. M., Chan, W. Y., Zhao, H., To, M. Y., Fok, T. F., Li, C. K., Wong, Y. O., & Ng, P. C. (2006). Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. PubMed DOI

Abushouk, A. I., Ismail, A., Salem, A. M. A., Afifi, A. M., & Abdel-Daim, M. M. (2017). Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. PubMed DOI

Bast, A., Haenen, G. R., Bruynzeel, A. M., & Van der Vijgh, W. J. (2007). Protection by flavonoids against anthracycline cardiotoxicity: From chemistry to clinical trials. PubMed DOI

Cong, L., Ren, Y., Hou, T., Han, X., Dong, Y., Wang, Y., Zhang, Q., Liu, R., Xu, S., Wang, L., Du, Y., & Qiu, C. (2020). Use of cardiovascular drugs for primary and secondary prevention of cardiovascular disease among Rural-Dwelling older Chinese adults. PubMed DOI PMC

Bosman, M., Krüger, D. N., Favere, K., De Meyer, G. R. Y., Franssen, C., Van Craenenbroeck, E. M., & Guns, P. J. (2023). Dexrazoxane does not mitigate early vascular toxicity induced by doxorubicin in mice. PubMed DOI PMC

Keresteš, V., Kubeš, J., Applová, L., Kollárová, P., Lenčová-Popelová, O., Melnikova, I., Karabanovich, G., Khazeem, M. M., Bavlovič-Piskáčková, H., Štěrbová-Kovaříková, P., Austin, C. A., Roh, J., Štěrba, M., Šimůnek, T., & Jirkovská, A. (2024). Exploring the effects of topoisomerase II inhibitor XK469 on anthracycline cardiotoxicity and DNA damage. PubMed DOI PMC

Jones, I. C., & Dass, C. R. (2022). Doxorubicin-induced cardiotoxicity: Causative factors and possible interventions. PubMed DOI

Cho, H., Lee, S., Sim, S. H., Park, I. H., Lee, K. S., Kwak, M. H., & Kim, H. J. (2020). Cumulative incidence of chemotherapy-induced cardiotoxicity during a 2-year follow-up period in breast cancer patients. PubMed DOI

Komukai, K., Mochizuki, S., & Yoshimura, M. (2010). Gender and the renin-angiotensin-aldosterone system. PubMed DOI

Al Shoyaib, A., Archie, S. R., & Karamyan, V. T. (2019). Intraperitoneal route of drug administration: Should it be used in experimental animal. PubMed DOI PMC

Hurst, M., & Jarvis, B. (2001). Perindopril: An updated review of its use in hypertension. PubMed DOI

Denny, K. H., & Stewart, C. W. (2024). Acute, Subacute, Subchronic, and Chronic General Toxicity Testing for Preclinical Drug Development. In: Faqi, A. S., editor. A Comprehensive Guide to Toxicology in Nonclinical Drug Development. 3rd ed. Academic Press 149–171.

Schubert, R., Gaynullina, D., Shvetsova, A., & Tarasova, O. S. (2023). Myography of isolated blood vessels: Considerations for experimental design and combination with supplementary techniques. PubMed DOI PMC

Rameshrad, M., Babaei, H., Azarmi, Y., & Fouladi, D. F. (2016). Rat aorta as a Pharmacological tool for in vitro and in vivo studies. PubMed DOI

Jeremy, J. Y., Stansby, G., Fuller, B., Rolles, K., & Hamilton, G. (1992). The effect of cold storage of rat thoracic aortic rings in organ preservation solutions–a study of receptor-linked vascular Prostacyclin synthesis. PubMed DOI

Demirel, S. (2022). Effect of Cold Storage in Krebs-Henseleit Solution at + 4°C on Vasoreactivity of the Rat Thoracic Aorta, pp456–461, Balıkesir Sağlık Bilimleri Dergisi.

Bohr, D. F., Goulet, P. L., & Taquini, A. C. (1961). Direct tension recording from smooth muscle of resistance vessels from various organs. PubMed DOI

van Langen, J., Fransen, P., Van Hove, C. E., Schrijvers, D. M., Martinet, W., De Meyer, G. R., & Bult, H. (2012). Selective loss of basal but not receptor-stimulated relaxation by endothelial nitric oxide synthase after isolation of the mouse aorta. PubMed DOI

Furchgott, R. F., & Bhadrakom, S. (1953). Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. PubMed DOI

Nicosia, R. F. (2009). The aortic ring model of angiogenesis: A quarter century of search and discovery. PubMed DOI PMC

Jiang, J., Thorén, P., Caligiuri, G., Hansson, G. K., & Pernow, J. (1999). Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: Relation to Kv channels and nitric oxide. PubMed DOI PMC

Leloup, A., De Moudt, S., Van Hove, C., & Fransen, P. (2017). Cyclic stretch alters vascular reactivity of mouse aortic segments. PubMed DOI PMC

Chang, G. J., Lin, T. P., Ko, Y. S., & Lin, M. S. (2010). Endothelium-dependent and -independent vasorelaxation induced by CIJ-3-2F, a novel benzyl-furoquinoline with antiarrhythmic action, in rat aorta. PubMed DOI

Damiani, C. E., Rossoni, L. V., & Vassallo, D. V. (2003). Vasorelaxant effects of Eugenol on rat thoracic aorta. PubMed DOI

Toba, H., Morishita, M., Tojo, C., Nakano, A., Oshima, Y., Kojima, Y., Yoshida, M., Nakashima, K., Wang, J., Kobara, M., & Nakata, T. (2011). Recombinant human erythropoietin ameliorated endothelial dysfunction and macrophage infiltration by increasing nitric oxide in hypertensive 5/6 nephrectomized rat aorta. PubMed DOI

Inchoo, M., Chirdchupunseree, H., Pramyothin, P., & Jianmongkol, S. (2011). Endothelium-independent effects of phyllanthin and hypophyllanthin on vascular tension. PubMed DOI

Gutiérrez, A., Contreras, C., Sánchez, A., & Prieto, D. (2019). Role of phosphatidylinositol 3-Kinase (PI3K), Mitogen-Activated protein kinase (MAPK), and protein kinase C (PKC) in calcium signaling pathways linked to the α. PubMed DOI PMC

Gonzales, R. J., Carter, R. W., & Kanagy, N. L. (2000). Laboratory demonstration of vascular smooth muscle function using rat aortic ring segments. PubMed DOI

Sousa, B. C., Pitt, A. R., & Spickett, C. M. (2017). Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. PubMed DOI

Podyacheva, E. Y., Kushnareva, E. A., Karpov, A. A., & Toropova, Y. G. (2021). Analysis of models of Doxorubicin-Induced cardiomyopathy in rats and Mice. A modern view from the perspective of the pathophysiologist and the clinician. PubMed DOI PMC

Schaur, R. J., Siems, W., Bresgen, N., & Eckl, P. M. (2015). 4-Hydroxy-nonenal-A bioactive lipid peroxidation product. PubMed DOI PMC

Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. PubMed DOI

Zhang, H., & Forman, H. J. (2017). Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. PubMed DOI PMC

Hlaváčová, M., Gumulec, J., Stračina, T., Fojtů, M., Raudenská, M., Masařík, M., Nováková, M., & Paulová, H. (2015). Different doxorubicin formulations affect plasma 4-hydroxy-2-nonenal and gene expression of aldehyde dehydrogenase 3A1 and thioredoxin reductase 2 in rat. PubMed DOI

Dalleau, S., Baradat, M., Guéraud, F., & Huc, L. (2013). Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. PubMed DOI PMC

Feng, J., & Wu, Y. (2023). Endothelial-to-Mesenchymal transition: Potential target of Doxorubicin-Induced cardiotoxicity. PubMed DOI

Sun, Z., Schriewer, J., Tang, M., Marlin, J., Taylor, F., Shohet, R. V., & Konorev, E. A. (2016). The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. PubMed DOI PMC

Xu, A., Deng, F., Chen, Y., Kong, Y., Pan, L., Liao, Q., Rao, Z., Xie, L., Yao, C.,Li, S., Zeng, X., Zhu, X., Liu, H., Gao, N., Xue, L., Chen, F., Xu, G., Wei, D., Zhou,X., … and Sheng, X. (2020). NF-κB pathway activation during endothelial-to-mesenchymal transition in a rat model of doxorubicin-induced cardiotoxicity. Biomed Pharmacother 130: 110525. PubMed

Bartáková, A., & Nováková, M. (2021). Secondary metabolites of plants as modulators of endothelium functions. PubMed PMC

Ancion, A., Tridetti, J., Nguyen Trung, M. L., Oury, C., & Lancellotti, P. (2019). A review of the role of Bradykinin and nitric oxide in the cardioprotective action of Angiotensin-Converting enzyme inhibitors: Focus on Perindopril. PubMed DOI PMC

Bețiu, A. M., Noveanu, L., Hâncu, I. M., Lascu, A., Petrescu, L., Maack, C., Elmér, E., & Muntean, D. M. (2022). Mitochondrial effects of common cardiovascular medications: The Good, the bad and the mixed. PubMed PMC

Incalza, M. A., D’Oria, R., Natalicchio, A., Perrini, S., Laviola, L., & Giorgino, F. (2018). Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. PubMed DOI

Dhulkifle, H., Therachiyil, L., Hasan, M. H., Sayed, T. S., Younis, S. M., Korashy, H. M., Yalcin, H. C., & Maayah, Z. H. (2024). Inhibition of cytochrome P450 epoxygenase promotes endothelium-to-mesenchymal transition and exacerbates doxorubicin-induced cardiovascular toxicity. PubMed DOI PMC

Chen, W., Kim, S., Kim, S., Beheshtian, C., Kim, N., Shin, K., Kim, R., Kim, S., & Park, N. (2025). GV1001, hTERT Peptide Fragment, Prevents Doxorubicin-Induced Endothelial-to-Mesenchymal Transition in Human Endothelial Cells and Atherosclerosis in Mice. CELLS 14. PubMed PMC

Castillo, C., Cruzado, M., Ariznavarreta, M., Lahera, V., Cachofeiro, V., Gil-Loyzaga, P., & Tresguerres, J. (2005). Effects of ovariectomy and growth hormone administration on body composition and vascular function and structure in old female rats. PubMed DOI

Schneider, A. P. H., Gaedke, M., Garcez, A., Barcellos, N. T., & Paniz, V. M. V. (2018). Effect of characteristics of pharmacotherapy on non-adherence in chronic cardiovascular disease: A systematic review and meta-analysis of observational studies. PubMed

Warhol, A., George, S. A., Obaid, S. N., Efimova, T., & Efimov, I. R. (2021). Differential cardiotoxic electrocardiographic response to doxorubicin treatment in conscious versus anesthetized mice. PubMed DOI PMC

Urabe, M., Kawasaki, H., & Takasaki, K. (1991). Effect of endothelium removal on the vasoconstrictor response to neuronally released 5-hydroxytryptamine and noradrenaline in the rat isolated mesenteric and femoral arteries. PubMed DOI PMC

Randall, V. A., MacLennan, S. J., Martin, G. R., & Wilson, V. G. (1996). The effect of forskolin on 5-HT1-like and angiotensin II-induced vasoconstriction and Cyclic AMP content of the rabbit isolated femoral artery. PubMed DOI PMC

Tessel, R. E., Miller, D. W., Misse, G. A., Dong, X., & Doughty, M. B. (1993). Characterization of vascular postsynaptic neuropeptide Y receptor function and regulation. 1. NPY-induced constriction in isolated rat femoral artery rings is mediated by both Y1 and Y2 receptors: Evidence from Benextramine protection studies. PubMed DOI

Bielcikova, Z., Holanek, M., Selingerova, I., Sorejs, O., Kolarova, I., Soumarova, R., Proks, J., Reifova, L., Cmejlova, V., Linkova, L., Zabojnikova, M., Chodacka, M., Janovska, L., Lisnerova, L., Kasparova, K., Pohankova, D., & Petruzelka, L. (2024). Treatment and prognosis of male breast cancer: A Multicentric, retrospective study over 11 years in the Czech Republic. PubMed DOI PMC

Flores-Monroy, J., Lezama-Martínez, D., Fonseca-Coronado, S., & Martínez-Aguilar, L. (2020). Differences in the expression of the Renin angiotensin system and the kallikrein-kinin system during the course of myocardial infarction in male and female Wistar rats. PubMed DOI PMC

Corso, G., Gandini, S., D’Ecclesiis, O., Mazza, M., Magnoni, F., Veronesi, P., Galimberti, V., & La Vecchia, C. (2023). Risk and incidence of breast cancer in transgender individuals: A systematic review and meta-analysis. PubMed DOI

Laska, M., Vitous, J., Jirik, R., Hendrych, M., Drazanova, E., Kratka, L., Nadenicek, J., Novakova, M., & Stracina, T. (2024). Heart remodelling affects ECG in rat DOCA/Salt model. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...