Secondary Metabolites of Plants as Modulators of Endothelium Functions
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
MUNI/A/1307/2019; MUNI/A/1246/2020
Lékařská fakulta, Masarykova univerzita
PubMed
33802468
PubMed Central
PMC7959468
DOI
10.3390/ijms22052533
PII: ijms22052533
Knihovny.cz E-resources
- Keywords
- endothelium, nitric oxide, vasoactive substances, vasoconstriction, vasodilation,
- MeSH
- Endothelium, Vascular cytology drug effects physiology MeSH
- Humans MeSH
- Plant Extracts chemistry pharmacology MeSH
- Plants chemistry metabolism MeSH
- Secondary Metabolism * MeSH
- Vasodilation drug effects physiology MeSH
- Vasodilator Agents chemistry pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Plant Extracts MeSH
- Vasodilator Agents MeSH
According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time-from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide-cyclic guanosine monophosphate activation, prostacyclin-cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.
Department of Physiology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 656 91 Brno Czech Republic
See more in PubMed
Sumpio B.E., Riley J.T., Dardik A. Cells in focus: Endothelial cell. Int. J. Biochem. Cell Biol. 2002;34:1508–1512. doi: 10.1016/S1357-2725(02)00075-4. PubMed DOI
Roberts D.M., Kearney J.B., Johnson J.H., Rosenberg M.P., Kumar R., Bautch V.L. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am. J. Pathol. 2004;164:1531–1535. doi: 10.1016/S0002-9440(10)63711-X. PubMed DOI PMC
Patan S. Vasculogenesis and angiogenesis. Cancer Treat. Res. 2004;117:3–32. doi: 10.1007/978-1-4419-8871-3_1. PubMed DOI
Kajdaniuk D., Marek B., Borgiel-Marek H., Kos-Kudła B. Vascular endothelial growth factor (VEGF)—Part 1: In physiology and pathophysiology. Endokrynol. Pol. 2011;62:444–455. PubMed
Fels J., Jeggle P., Liashkovich I., Peters W., Oberleithner H. Nanomechanics of vascular endothelium. Cell Tissue Res. 2014;355:727–737. doi: 10.1007/s00441-014-1853-5. PubMed DOI PMC
Galley H.F., Webster N.R. Physiology of the endothelium. Br. J. Anaesth. 2004;93:105–113. doi: 10.1093/bja/aeh163. PubMed DOI
Shimokawa H., Godo S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin. Pharmacol. Toxicol. 2020;127:92–101. doi: 10.1111/bcpt.13377. PubMed DOI
Laroia S.T., Ganti A.K., Laroia A.T., Tendulkar K.K. Endothelium and the lipid metabolism: The current understanding. Int J. Cardiol. 2003;88:1–9. doi: 10.1016/S0167-5273(02)00366-2. PubMed DOI
Ballermann B.J., Dardik A., Eng E., Liu A. Shear stress and the endothelium. Kidney Int. Suppl. 1998;67:S100–S108. doi: 10.1046/j.1523-1755.1998.06720.x. PubMed DOI
Landmesser U., Drexler H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: Role of bradykinin and nitric oxide. J. Hypertens. Suppl. 2006;24:S39–S43. doi: 10.1097/01.hjh.0000220405.38622.23. PubMed DOI
Watanabe T., Barker T.A., Berk B.C. Angiotensin II and the endothelium: Diverse signals and effects. Hypertension. 2005;45:163–169. doi: 10.1161/01.HYP.0000153321.13792.b9. PubMed DOI
Parsaee H., McEwan J.R., MacDermot J. Bradykinin-induced release of PGI2 from aortic endothelial cell lines: Responses mediated selectively by Ca2+ ions or a staurosporine-sensitive kinase. Br. J. Pharmacol. 1993;110:411–415. doi: 10.1111/j.1476-5381.1993.tb13825.x. PubMed DOI PMC
Kumar K.V., Das U.N. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic. Res. Commun. 1993;19:59–66. doi: 10.3109/10715769309056499. PubMed DOI
Barbosa-Filho J.M., Martins V.K.M., Rabelo L.A., Moura M.D., Silva M.S., Cunha E.V.L., Souza M.F.V., Almeida R.N., Medeiros I.A. Natural products inhibitors of the angiotensin converting enzyme (ACE)s: A review between 1980–2000. Rev. Bras. Farmacogn. 2006;16:421–446. doi: 10.1590/S0102-695X2006000300021. DOI
Fyhrquist F., Metsärinne K., Tikkanen I. Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J. Hum. Hypertens. 1995;9(Suppl. 5):S19–S24. PubMed
Ferrario C.M. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin. Angiotensin. Aldosterone Syst. 2006;7:3–14. doi: 10.3317/jraas.2006.003. PubMed DOI
Stoll M., Steckelings U.M., Paul M., Bottari S.P., Metzger R., Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J. Clin. Invest. 1995;95:651–657. doi: 10.1172/JCI117710. PubMed DOI PMC
Wong M.K.S. Bradykinin. In: Takei Y., Ando H., Tsutsui K., editors. Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research. Academic Press Ltd-Elsevier Science Ltd.; London, UK: 2016. p. 274. DOI
Tomiyama H., Kushiro T., Abeta H., Ishii T., Takahashi A., Furukawa L., Asagami T., Hino T., Saito F., Otsuka Y. Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. Hypertension. 1994;23:450–455. doi: 10.1161/01.HYP.23.4.450. PubMed DOI
Greaney J.L., Kutz J.L., Shank S.W., Jandu S., Santhanam L., Alexander L.M. Impaired Hydrogen Sulfide-Mediated Vasodilation Contributes to Microvascular Endothelial Dysfunction in Hypertensive Adults. Hypertension. 2017;69:902–909. doi: 10.1161/HYPERTENSIONAHA.116.08964. PubMed DOI PMC
Vallance P., Hingorani A. Endothelial nitric oxide in humans in health and disease. Int. J. Exp. Pathol. 1999;80:291–303. doi: 10.1046/j.1365-2613.1999.00137.x. PubMed DOI PMC
Ghalayini I.F. Nitric oxide-cyclic GMP pathway with some emphasis on cavernosal contractility. Int. J. Impot. Res. 2004;16:459–469. doi: 10.1038/sj.ijir.3901256. PubMed DOI
Ahmad A., Khan R.M., Alkharfy K.M. Effects of selected bioactive natural products on the vascular endothelium. J. Cardiovasc. Pharmacol. 2013;62:111–121. doi: 10.1097/FJC.0b013e3182927e47. PubMed DOI
Ozkor M.A., Quyyumi A.A. Endothelium-derived hyperpolarizing factor and vascular function. Cardiol. Res. Pract. 2011;2011:156146. doi: 10.4061/2011/156146. PubMed DOI PMC
Yang P.M., Huang Y.T., Zhang Y.Q., Hsieh C.W., Wung B.S. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism. Vascul. Pharmacol. 2016;87:209–218. doi: 10.1016/j.vph.2016.09.010. PubMed DOI
Jankovic G., Marinko M., Milojevic P., Stojanovic I., Nenezic D., Kanjuh V., Yang Q., He G.W., Novakovic A. Mechanisms of endothelium-dependent vasorelaxation induced by procyanidin B2 in venous bypass graft. J. Pharmacol. Sci. 2020;142:101–108. doi: 10.1016/j.jphs.2019.11.006. PubMed DOI
Li H., Xia N., Brausch I., Yao Y., Förstermann U. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. J. Pharmacol. Exp. Ther. 2004;310:926–932. doi: 10.1124/jpet.104.066639. PubMed DOI
Yu J., Eto M., Akishita M., Kaneko A., Ouchi Y., Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. Biochem Biophys Res. Commun. 2007;353:764–769. doi: 10.1016/j.bbrc.2006.12.119. PubMed DOI
Fisher N.D., Hughes M., Gerhard-Herman M., Hollenberg N.K. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J. Hypertens. 2003;21:2281–2286. doi: 10.1097/00004872-200312000-00016. PubMed DOI
Moncada S., Vane J.R. Interrelationships between prostacyclin and thromboxane A2. Ciba Found. Symp. 1980;78:165–183. doi: 10.1002/9780470720615.ch9. PubMed DOI
Majed B.H., Khalil R.A. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol. Rev. 2012;64:540–582. doi: 10.1124/pr.111.004770. PubMed DOI PMC
Sandoo A., van Zanten J.J., Metsios G.S., Carroll D., Kitas G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010;4:302–312. doi: 10.2174/1874192401004010302. PubMed DOI PMC
Luna-Vázquez F.J., Ibarra-Alvarado C., Rojas-Molina A., Rojas-Molina I., Zavala-Sánchez M.A. Vasodilator compounds derived from plants and their mechanisms of action. Molecules. 2013;18:5814–5857. doi: 10.3390/molecules18055814. PubMed DOI PMC
Raimundo J.M., Trindade A.P., Velozo L.S., Kaplan M.A., Sudo R.T., Zapata-Sudo G. The lignan eudesmin extracted from Piper truncatum induced vascular relaxation via activation of endothelial histamine H1 receptors. Eur. J. Pharmacol. 2009;606:150–154. doi: 10.1016/j.ejphar.2009.01.038. PubMed DOI
Raimundo J.M., de Almeida R.R., Velozo L.S., Kaplan M.A., Gattass C.R., Zapata-Sudo G. In-vitro vasodilatory activity of the hexanic extract of leaves and stems from Piper truncatum Vell. in rats. J. Pharm. Pharmacol. 2004;56:1457–1462. doi: 10.1211/0022357044779. PubMed DOI
Chau Y., Li F.S., Levsh O., Weng J.K. Exploration of icariin analog structure space reveals key features driving potent inhibition of human phosphodiesterase-5. PLoS ONE. 2019;14:e0222803. doi: 10.1371/journal.pone.0222803. PubMed DOI PMC
Lan T.H., Chen X.L., Wu Y.S., Qiu H.L., Li J.Z., Ruan X.M., Xu D.P., Lin D.Q. 3,7-Bis(2-hydroxyethyl)icaritin, a potent inhibitor of phosphodiesterase-5, prevents monocrotaline-induced pulmonary arterial hypertension via NO/cGMP activation in rats. Eur. J. Pharmacol. 2018;829:102–111. doi: 10.1016/j.ejphar.2018.04.011. PubMed DOI
Garland C.J., Hiley C.R., Dora K.A. EDHF: Spreading the influence of the endothelium. Br. J. Pharmacol. 2011;164:839–852. doi: 10.1111/j.1476-5381.2010.01148.x. PubMed DOI PMC
Knox M., Vinet R., Fuentes L., Morales B., Martínez J.L. A Review of Endothelium-Dependent and -Independent Vasodilation Induced by Phytochemicals in Isolated Rat Aorta. Animals. 2019;9:623. doi: 10.3390/ani9090623. PubMed DOI PMC
Lumsden N.G., Khambata R.S., Hobbs A.J. C-type natriuretic peptide (CNP): Cardiovascular roles and potential as a therapeutic target. Curr. Pharm. Des. 2010;16:4080–4088. doi: 10.2174/138161210794519237. PubMed DOI PMC
Mustafa A.K., Sikka G., Gazi S.K., Steppan J., Jung S.M., Bhunia A.K., Barodka V.M., Gazi F.K., Barrow R.K., Wang R., et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011;109:1259–1268. doi: 10.1161/CIRCRESAHA.111.240242. PubMed DOI PMC
Bhatia M. Hydrogen sulfide as a vasodilator. IUBMB Life. 2005;57:603–606. doi: 10.1080/15216540500217875. PubMed DOI
Mombouli J.V., Bissiriou I., Agboton V., Vanhoutte P.M. Endothelium-derived hyperpolarizing factor: A key mediator of the vasodilator action of bradykinin. Immunopharmacology. 1996;33:46–50. doi: 10.1016/0162-3109(96)00083-5. PubMed DOI
Van Hinsbergh V.W. Endothelium—Role in regulation of coagulation and inflammation. Semin. Immunopathol. 2012;34:93–106. doi: 10.1007/s00281-011-0285-5. PubMed DOI PMC
Goldberg I.J., Bornfeldt K.E. Lipids and the endothelium: Bidirectional interactions. Curr. Atheroscler. Rep. 2013;15:365. doi: 10.1007/s11883-013-0365-1. PubMed DOI PMC
García X., Cartas-Heredia L., Lorenzana-Jímenez M., Gijón E. Vasoconstrictor effect of Cissus sicyoides on guinea-pig aortic rings. Gen. Pharmacol. 1997;29:457–462. doi: 10.1016/S0306-3623(96)00478-8. PubMed DOI
Bull H.A., Pittilo R.M., Blow D.J., Blow C.M., Rowles P.M., Woolf N., Machin S.J. The effects of nicotine on PGI2 production by rat aortic endothelium. Thromb. Haemost. 1985;54:472–474. doi: 10.1055/s-0038-1657876. PubMed DOI
Oakes J.M., Xu J., Morris T.M., Fried N.D., Pearson C.S., Lobell T.D., Gilpin N.W., Lazartigues E., Gardner J.D., Yue X. Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. Hypertension. 2020;75:1305–1314. doi: 10.1161/HYPERTENSIONAHA.119.14608. PubMed DOI PMC
Wölfle U., Hoffmann J., Haarhaus B., Rao Mittapalli V., Schempp C.M. Anti-inflammatory and vasoconstrictive properties of Potentilla erecta—A traditional medicinal plant from the northern hemisphere. J. Ethnopharmacol. 2017;204:86–94. doi: 10.1016/j.jep.2017.03.058. PubMed DOI
Hayat-Malik M.N., Bashir S., Khan I.U., Karim S., Mushtaq M.N., Khan H.U., Rashid M., Naz H., Samreen S. Cardiotonic and vasoconstriction effects of aqueous methanolic extract of Paspalidium flavidum L. Pak. J. Pharm. Sci. 2015;28:437–441. PubMed
Gilani A.U.H., Shaheen F. Vasoconstrictor and cardiotonic actions of Haloxylon-recurvum extract. Phytother. Res. 1994;8:115–117. doi: 10.1002/ptr.2650080215. DOI
Wahab A., Ahmed E., Nawaz S.A., Sharif A., Ul Haq R., Malik A., Choudhary M.I., Raza M. A pharmacological and toxicological evaluation of Haloxylon recurvum. Nat. Prod. Res. 2008;22:1317–1326. doi: 10.1080/14786410701824882. PubMed DOI
Chen H. Role of thromboxane A. Prostaglandins Other Lipid Med. 2018;134:32–37. doi: 10.1016/j.prostaglandins.2017.11.004. PubMed DOI
Rucker D., Dhamoon A.S. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. Physiology, Thromboxane A2. PubMed
Grann M., Comerma-Steffensen S., Arcanjo D.D., Simonsen U. Mechanisms Involved in Thromboxane A. Basic Clin. Pharmacol. Toxicol. 2016;119(Suppl. 3):86–95. doi: 10.1111/bcpt.12544. PubMed DOI
Caughey G.E., Cleland L.G., Penglis P.S., Gamble J.R., James M.J. Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: Selective up-regulation of prostacyclin synthesis by COX-2. J. Immunol. 2001;167:2831–2838. doi: 10.4049/jimmunol.167.5.2831. PubMed DOI
Davenport A.P., Hyndman K.A., Dhaun N., Southan C., Kohan D.E., Pollock J.S., Pollock D.M., Webb D.J., Maguire J.J. Endothelin. Pharmacol. Rev. 2016;68:357–418. doi: 10.1124/pr.115.011833. PubMed DOI PMC
Drawnel F.M., Archer C.R., Roderick H.L. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br. J. Pharmacol. 2013;168:296–317. doi: 10.1111/j.1476-5381.2012.02195.x. PubMed DOI PMC
Barton M., Yanagisawa M. Endothelin: 30 Years From Discovery to Therapy. Hypertension. 2019;74:1232–1265. doi: 10.1161/HYPERTENSIONAHA.119.12105. PubMed DOI
Stow L.R., Jacobs M.E., Wingo C.S., Cain B.D. Endothelin-1 gene regulation. FASEB J. 2011;25:16–28. doi: 10.1096/fj.10-161612. PubMed DOI PMC
Unic A., Derek L., Hodak N., Marijancevic D., Ceprnja M., Serdar T., Krhac M., Romic Z. Endothelins—Clinical perspectives. Biochem. Med. 2011;21:231–242. doi: 10.11613/BM.2011.032. PubMed DOI
Camussi G., Tetta C., Baglioni C. The role of platelet-activating factor in inflammation. Clin. Immunol. Immunopathol. 1990;57:331–338. doi: 10.1016/0090-1229(90)90108-3. PubMed DOI
Majewski M. Allium sativum: Facts and myths regarding human health. Rocz. Panstw. Zakl. Hig. 2014;65:1–8. PubMed
Ashraf R., Khan R.A., Ashraf I., Qureshi A.A. Effects of Allium sativum (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak. J. Pharm. Sci. 2013;26:859–863. PubMed
El-Saber Batiha G., Magdy Beshbishy A., G Wasef L., Elewa Y.H.A., A Al-Sagan A., Abd El-Hack M.E., Taha A.E., M Abd-Elhakim Y., Prasad Devkota H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.) Nutrients. 2020;12:872. doi: 10.3390/nu12030872. PubMed DOI PMC
Pedraza-Chaverrí J., Tapia E., Medina-Campos O.N., de los Angeles Granados M., Franco M. Garlic prevents hypertension induced by chronic inhibition of nitric oxide synthesis. Life Sci. 1998;62:PL71–PL77. doi: 10.1016/S0024-3205(97)01155-7. PubMed DOI
Victorio C.P., Kuster R.M., de Moura R.S., Lage C.L.S. Vasodilator activity of extracts of field Alpinia purpurata (Vieill) K. Schum and A. zerumbet (Pers.) Burtt et Smith cultured in vitro. Braz. J. Pharm. Sci. 2009;45:507–514. doi: 10.1590/S1984-82502009000300017. DOI
De Moura R.S., Emiliano A.F., de Carvalho L.C., Souza M.A., Guedes D.C., Tano T., Resende A.C. Antihypertensive and endothelium-dependent vasodilator effects of Alpinia zerumbet, a medicinal plant. J. Cardiovasc. Pharmacol. 2005;46:288–294. doi: 10.1097/01.fjc.0000175239.26326.47. PubMed DOI
Afkir S., Nguelefack T.B., Aziz M., Zoheir J., Cuisinaud G., Bnouham M., Mekhfi H., Legssyer A., Lahlou S., Ziyyat A. Arbutus unedo prevents cardiovascular and morphological alterations in L-NAME-induced hypertensive rats Part I: Cardiovascular and renal hemodynamic effects of Arbutus unedo in L-NAME-induced hypertensive rats. J. Ethnopharmacol. 2008;116:288–295. doi: 10.1016/j.jep.2007.11.029. PubMed DOI
Xie Y.W., Ming D.S., Xu H.X., Dong H., But P.P. Vasorelaxing effects of Caesalpinia sappan involvement of endogenous nitric oxide. Life Sci. 2000;67:1913–1918. doi: 10.1016/S0024-3205(00)00772-4. PubMed DOI
Hu C.M., Kang J.J., Lee C.C., Li C.H., Liao J.W., Cheng Y.W. Induction of vasorelaxation through activation of nitric oxide synthase in endothelial cells by brazilin. Eur. J. Pharmacol. 2003;468:37–45. doi: 10.1016/S0014-2999(03)01639-X. PubMed DOI
Cherkaoui-Tangi K., Lachkar M., Wibo M., Morel N., Gilani A.H., Lyoussi B. Pharmacological studies on hypotensive, diuretic and vasodilator activities of chrysin glucoside from Calycotome villosa in rats. Phytother. Res. 2008;22:356–361. doi: 10.1002/ptr.2322. PubMed DOI
Villar I.C., Vera R., Galisteo M., O‘Valle F., Romero M., Zarzuelo A., Duarte J. Endothelial nitric oxide production stimulated by the bioflavonoid chrysin in rat isolated aorta. Planta Med. 2005;71:829–834. doi: 10.1055/s-2005-871296. PubMed DOI
Duarte J., Jiménez R., Villar I.C., Pérez-Vizcaíno F., Jiménez J., Tamargo J. Vasorelaxant effects of the bioflavonoid chrysin in isolated rat aorta. Planta Med. 2001;67:567–569. doi: 10.1055/s-2001-16492. PubMed DOI
Assreuy A.M., Fontenele S.R., Pires A.e.F., Fernandes D.C., Rodrigues N.V., Bezerra E.H., Moura T.R., do Nascimento K.S., Cavada B.S. Vasodilator effects of Diocleinae lectins from the Canavalia genus. Naunyn Schmiedebergs Arch. Pharmacol. 2009;380:509–521. doi: 10.1007/s00210-009-0465-1. PubMed DOI
Barroso-Neto I.L., Simões R.C., Rocha B.A., Bezerra M.J., Pereira-Junior F.N., Silva Osterne V.J., Nascimento K.S., Nagano C.S., Delatorre P., Pereira M.G., et al. Vasorelaxant activity of Canavalia grandiflora seed lectin: A structural analysis. Arch. Biochem. Biophys. 2014;543:31–39. doi: 10.1016/j.abb.2013.12.006. PubMed DOI
Zhang Y., Cao Y., Duan H., Wang H., He L. Imperatorin prevents cardiac hypertrophy and the transition to heart failure via NO-dependent mechanisms in mice. Fitoterapia. 2012;83:60–66. doi: 10.1016/j.fitote.2011.09.011. PubMed DOI
Bertin R., Chen Z., Martínez-Vázquez M., García-Argaéz A., Froldi G. Vasodilation and radical-scavenging activity of imperatorin and selected coumarinic and flavonoid compounds from genus Casimiroa. Phytomedicine. 2014;21:586–594. doi: 10.1016/j.phymed.2013.10.030. PubMed DOI
Vinet R., Cortes M., Alvarez R., Guzman L., Flores E. Centaurium cachanlahuen (Mol.) Robinson, a Chilean native plant with a vasodilatory effect. Bol. Latinoam. Caribe Plantas Med. Aromat. 2012;11:61–65.
Belmokhtar M., Bouanani N.E., Ziyyat A., Mekhfi H., Bnouham M., Aziz M., Matéo P., Fischmeister R., Legssyer A. Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus. Biochem. Biophys. Res. Commun. 2009;389:145–149. doi: 10.1016/j.bbrc.2009.08.113. PubMed DOI
Kosala K., Ismail S., Fikriah I., Magdaleni A.R. In vitro Exploration of Vasodilation Activity of the Methanol Extract of the Coptosapelta flavescens Korth stem. J. Islam. Med. Res. 2017;1:10–14.
Generalić Mekinić I., Blažević I., Mudnić I., Burčul F., Grga M., Skroza D., Jerčić I., Ljubenkov I., Boban M., Miloš M., et al. Sea fennel (Crithmum maritimum L.): Phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J. Food Sci Technol. 2016;53:3104–3112. doi: 10.1007/s13197-016-2283-z. PubMed DOI PMC
Guerrero M.F., Puebla P., Carrón R., Martín M.L., Arteaga L., Román L.S. Assessment of the antihypertensive and vasodilator effects of ethanolic extracts of some Colombian medicinal plants. J. Ethnopharmacol. 2002;80:37–42. doi: 10.1016/S0378-8741(01)00420-2. PubMed DOI
Paez M.T., Rodriguez D.C., Lopez D.F., Castaneda J.A., Buitrago D.M., Cuca L.E., Guerrero M.F. Croton schiedeanus Schltd prevents experimental hypertension in rats induced by nitric oxide deficit. Braz. J. Pharm. Sci. 2013;49:865–871. doi: 10.1590/S1984-82502013000400027. DOI
Guerrero M.F., Puebla P., Carrón R., Martín M.L., San Román L. Quercetin 3,7-dimethyl ether: A vasorelaxant flavonoid isolated from Croton schiedeanus Schlecht. J. Pharm. Pharmacol. 2002;54:1373–1378. doi: 10.1211/002235702760345455. PubMed DOI
Mendes L.J., Capettini L.S., Lôbo L.T., da Silva G.A., Arruda M.S., Lemos V.S., Côrtes S.F. Endothelial nitric oxide-dependent vasorelaxant effect of isotirumalin, a dihydroflavonol from Derris urucu, on the rat aorta. Biol. Pharm. Bull. 2011;34:1499–1500. doi: 10.1248/bpb.34.1499. PubMed DOI
Lobo L.T., da Silva G.A., Ferreira M., da Silva M.N., Santos A.S., Arruda A.C., Guilhon G., Santos L.S., Borges R.D., Arruda M.S.P. Dihydroflavonols from the leaves of Derris urucu (Leguminosae): Structural Elucidation and DPPH Radical-Scavenging Activity. J. Braz. Chem. Soc. 2009;20:1082–1088. doi: 10.1590/S0103-50532009000600013. DOI
Rocha A.P., Carvalho L.C., Sousa M.A., Madeira S.V., Sousa P.J., Tano T., Schini-Kerth V.B., Resende A.C., Soares de Moura R. Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (Açaí) extracts in mesenteric vascular bed of the rat. Vascul. Pharmacol. 2007;46:97–104. doi: 10.1016/j.vph.2006.08.411. PubMed DOI
Xie Y.W., Xu H.X., Dong H., Fiscus R.R., But P.P. Role of nitric oxide in the vasorelaxant and hypotensive effects of extracts and purified tannins from Geum japonicum. J. Ethnopharmacol. 2007;109:128–133. doi: 10.1016/j.jep.2006.07.015. PubMed DOI
Chen X., Salwinski S., Lee T.J.F. Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin. Exp. Pharm. Physiol. 1997;24:958–959. doi: 10.1111/j.1440-1681.1997.tb02727.x. PubMed DOI
Nishida S., Satoh H. Mechanisms for the vasodilations induced by Ginkgo biloba extract and its main constituent, bilobalide, in rat aorta. Life Sci. 2003;72:2659–2667. doi: 10.1016/S0024-3205(03)00177-2. PubMed DOI
Hakkou Z., Maciuk A., Leblais V., Bouanani N.E., Mekhfi H., Bnouham M., Aziz M., Ziyyat A., Rauf A., Hadda T.B., et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017;93:62–69. doi: 10.1016/j.biopha.2017.06.015. PubMed DOI
Del Valle-Mondragón L., Tenorio-López F.A., Zarco-Olvera G., Pastelín-Hernández G. Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora, induces nitric oxide synthases II and III overexpression in guinea pig hearts. Z. Naturforsch. C J. Biosci. 2007;62:725–730. doi: 10.1515/znc-2007-9-1016. PubMed DOI
Zamblé A., Martin-Nizard F., Sahpaz S., Reynaert M.L., Staels B., Bordet R., Duriez P., Gressier B., Bailleul F. Effects of Microdesmis keayana alkaloids on vascular parameters of erectile dysfunction. Phytother. Res. 2009;23:892–895. doi: 10.1002/ptr.2717. PubMed DOI
Interaminense L.F., Leal-Cardoso J.H., Magalhães P.J., Duarte G.P., Lahlou S. Enhanced hypotensive effects of the essential oil of Ocimum gratissimum leaves and its main constituent, eugenol, in DOCA-salt hypertensive conscious rats. Planta Med. 2005;71:376–378. doi: 10.1055/s-2005-864109. PubMed DOI
Pires A.F., Madeira S.V., Soares P.M., Montenegro C.M., Souza E.P., Resende A.C., Soares de Moura R., Assreuy A.M., Criddle D.N. The role of endothelium in the vasorelaxant effects of the essential oil of Ocimum gratissimum in aorta and mesenteric vascular bed of rats. Can. J. Physiol. Pharmacol. 2012;90:1380–1385. doi: 10.1139/y2012-095. PubMed DOI
Yoo M.Y., Lee B.H., Choi Y.H., Lee J.W., Seo J.H., Oh K.S., Koo H.N., Seo H.W., Yon G.H., Kwon D.Y., et al. Vasorelaxant effect of the rootbark extract of Paeonia moutan on isolated rat thoracic aorta. Planta Med. 2006;72:1338–1341. doi: 10.1055/s-2006-951678. PubMed DOI
Kim Y.M., Namkoong S., Yun Y.G., Hong H.D., Lee Y.C., Ha K.S., Lee H., Kwon H.J., Kwon Y.G. Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol. Pharm. Bull. 2007;30:1674–1679. doi: 10.1248/bpb.30.1674. PubMed DOI
Leung K.W., Cheng Y.K., Mak N.K., Chan K.K., Fan T.P., Wong R.N. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett. 2006;580:3211–3216. doi: 10.1016/j.febslet.2006.04.080. PubMed DOI
Xia N., Bollinger L., Steinkamp-Fenske K., Förstermann U., Li H. Prunella vulgaris L. Upregulates eNOS expression in human endothelial cells. Am. J. Chin. Med. 2010;38:599–611. doi: 10.1142/S0192415X10008081. PubMed DOI
Gu X., Li Y., Mu J., Zhang Y. Chemical constituents of Prunella vulgaris. J. Environ. Sci. 2013;25(Suppl. 1):S161–S163. doi: 10.1016/S1001-0742(14)60648-3. PubMed DOI
Sham T.T., Yuen A.C., Ng Y.F., Chan C.O., Mok D.K., Chan S.W. A review of the phytochemistry and pharmacological activities of raphani semen. Evid. Based Complement. Alternat. Med. 2013;2013:636194. doi: 10.1155/2013/636194. PubMed DOI PMC
Chung D.H., Kim S.H., Myung N., Cho K.J., Chang M.J. The antihypertensive effect of ethyl acetate extract of radish leaves in spontaneously hypertensive rats. Nutr. Res. Pract. 2012;6:308–314. doi: 10.4162/nrp.2012.6.4.308. PubMed DOI PMC
Moon M.K., Kang D.G., Lee J.K., Kim J.S., Lee H.S. Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway. Life Sci. 2006;78:1550–1557. doi: 10.1016/j.lfs.2005.07.028. PubMed DOI
Oh K.S., Ryu S.Y., Kim Y.S., Lee B.H. Large conductance Ca2+-activated K+ (BKCa) channels are involved in the vascular relaxations elicited by piceatannol isolated from Rheum undulatum rhizome. Planta Med. 2007;73:1441–1446. doi: 10.1055/s-2007-990246. PubMed DOI
Yoo M.Y., Oh K.S., Lee J.W., Seo H.W., Yon G.H., Kwon D.Y., Kim Y.S., Ryu S.Y., Lee B.H. Vasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aorta. Phytother. Res. 2007;21:186–189. doi: 10.1002/ptr.2042. PubMed DOI
Oh K.S., Choi Y.H., Ryu S.Y., Oh B.K., Seo H.W., Yon G.H., Kim Y.S., Lee B.H. Cardiovascular effects of lignans isolated from Saururus chinensis. Planta Med. 2008;74:233–238. doi: 10.1055/s-2008-1034310. PubMed DOI
Kang D.G., Yin M.H., Oh H., Lee D.H., Lee H.S. Vasorelaxation by amentoflavone isolated from Selaginella tamariscina. Planta Med. 2004;70:718–722. doi: 10.1055/s-2004-827201. PubMed DOI
Yu S., Yan H., Zhang L., Shan M., Chen P., Ding A., Li S.F. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules. 2017;22:299. doi: 10.3390/molecules22020299. PubMed DOI PMC
Vinet R., Alvarez R., Knox M., Guzman L., Martinez J.L., Flores E. Vasodilatory properties of Solanum crispum Ruiz & Pav. a South American native plant. Bol. Latinoam. Caribe Plantas Med. Aromat. 2016;15:94–98.
Zaima K., Koga I., Iwasawa N., Hosoya T., Hirasawa Y., Kaneda T., Ismail I.S., Lajis N.H., Morita H. Vasorelaxant activity of indole alkaloids from Tabernaemontana dichotoma. J. Nat. Med. 2013;67:9–16. doi: 10.1007/s11418-012-0638-y. PubMed DOI
Rodrigues A.M., Guimarães D.O., Konno T.U., Tinoco L.W., Barth T., Aguiar F.A., Lopes N.P., Leal I.C., Raimundo J.M., Muzitano M.F. Phytochemical Study of Tapirira guianensis Leaves Guided by Vasodilatory and Antioxidant Activities. Molecules. 2017;22:304. doi: 10.3390/molecules22020304. PubMed DOI PMC
Schroeter H., Heiss C., Balzer J., Kleinbongard P., Keen C.L., Hollenberg N.K., Sies H., Kwik-Uribe C., Schmitz H.H., Kelm M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA. 2006;103:1024–1029. doi: 10.1073/pnas.0510168103. PubMed DOI PMC
Grassi D., Necozione S., Lippi C., Croce G., Valeri L., Pasqualetti P., Desideri G., Blumberg J.B., Ferri C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005;46:398–405. doi: 10.1161/01.HYP.0000174990.46027.70. PubMed DOI
Faridi Z., Njike V.Y., Dutta S., Ali A., Katz D.L. Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2008;88:58–63. doi: 10.1093/ajcn/88.1.58. PubMed DOI
Karim M., McCormick K., Kappagoda C.T. Effects of cocoa extracts on endothelium-dependent relaxation. J. Nutr. 2000;130:2105S–2108S. doi: 10.1093/jn/130.8.2105S. PubMed DOI
Seya K., Furukawa K., Taniguchi S., Kodzuka G., Oshima Y., Niwa M., Motomura S. Endothelium-dependent vasodilatory effect of vitisin C, a novel plant oligostilbene from Vitis plants (Vitaceae), in rabbit aorta. Clin. Sci. 2003;105:73–79. doi: 10.1042/CS20020288. PubMed DOI
Soares De Moura R., Costa Viana F.S., Souza M.A., Kovary K., Guedes D.C., Oliveira E.P., Rubenich L.M., Carvalho L.C., Oliveira R.M., Tano T., et al. Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J. Pharm. Pharmacol. 2002;54:1515–1520. doi: 10.1211/002235702153. PubMed DOI
Leifert W.R., Abeywardena M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008;28:729–737. doi: 10.1016/j.nutres.2008.08.007. PubMed DOI
Ito J., Niwa M. Absolute structures of new hydroxystilbenoids, vitisin C and viniferal, from Vitis vinifera ‘Kyohou’. Tetrahedron. 1996;52:9991–9998. doi: 10.1016/0040-4020(96)00543-1. DOI
Da Costa G.F., Ognibene D.T., da Costa C.A., Teixeira M.T., Cordeiro V.D.S.C., de Bem G.F., Moura A.S., Resende A.C., de Moura R.S.L. Grape Skin Extract Prevents Development of Hypertension and Altered Lipid Profile in Spontaneously Hypertensive Rats: Role of Oxidative Stress. Prev. Nutr. Food Sci. 2020;25:25–31. doi: 10.3746/pnf.2020.25.1.25. PubMed DOI PMC
Andriambeloson E., Stoclet J.C., Andriantsitohaina R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J. Cardiovasc. Pharmacol. 1999;33:248–254. doi: 10.1097/00005344-199902000-00011. PubMed DOI
Steinkamp-Fenske K., Bollinger L., Xu H., Yao Y., Horke S., Förstermann U., Li H. Reciprocal regulation of endothelial nitric-oxide synthase and NADPH oxidase by betulinic acid in human endothelial cells. J. Pharmacol. Exp. Ther. 2007;322:836–842. doi: 10.1124/jpet.107.123356. PubMed DOI
Othman R., Ibrahim H., Mohd M.A., Awang K., Gilani A.U., Mustafa M.R. Vasorelaxant effects of ethyl cinnamate isolated from Kaempferia galanga on smooth muscles of the rat aorta. Planta Med. 2002;68:655–657. doi: 10.1055/s-2002-32900. PubMed DOI
De Oliveira A.P., Furtado F.F., da Silva M.S., Tavares J.F., Mafra R.A., Araújo D.A., Cruz J.S., de Medeiros I.A. Calcium channel blockade as a target for the cardiovascular effects induced by the 8 (17), 12E, 14-labdatrien-18-oic acid (labdane-302) Vascul. Pharmacol. 2006;44:338–344. doi: 10.1016/j.vph.2006.01.009. PubMed DOI
Ribeiro L.A.A., Tavares J.F., Andrade N.C.d., Silva M.S.d., Silva B.A.d. The (8)17,12E,14-labdatrien-18-oic acid (labdane302), labdane-type diterpene isolated from Xylopia langsdorffiana St. Hil. & Tul. (Annonaceae) relaxes the guinea-pig trachea Ácido (8)17,12E,14-labdatrieno-18-óico (labdano302), diterpeno tipo labdano isolado de Xylopia langsdorffiana St. Hil. & Tul. (Annonaceae) relaxa a traquéia isolada de cobaia. Rev. Bras. Farmacogn. 2007;17:197–203. doi: 10.1590/s0102-695x2007000200011. DOI
Rivedal E., Sanner T. Caffeine and other phosphodiesterase inhibitors are potent inhibitors of the promotional effect of TPA on morphological transformation of hamster embryo cells. Cancer Lett. 1985;28:9–17. doi: 10.1016/0304-3835(85)90086-2. PubMed DOI
Boswell-Smith V., Spina D., Page C.P. Phosphodiesterase inhibitors. Br. J. Pharmacol. 2006;147(Suppl. 1):S252–S257. doi: 10.1038/sj.bjp.0706495. PubMed DOI PMC
Patay É., Bencsik T., Papp N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac. J. Trop Med. 2016;9:1127–1135. doi: 10.1016/j.apjtm.2016.11.008. PubMed DOI
Shindel A.W., Xin Z.C., Lin G., Fandel T.M., Huang Y.C., Banie L., Breyer B.N., Garcia M.M., Lin C.S., Lue T.F. Erectogenic and neurotrophic effects of icariin, a purified extract of horny goat weed (Epimedium spp.) in vitro and in vivo. J. Sex. Med. 2010;7:1518–1528. doi: 10.1111/j.1743-6109.2009.01699.x. PubMed DOI PMC
Xu H.B., Huang Z.Q. Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul. Pharmacol. 2007;47:18–24. doi: 10.1016/j.vph.2007.03.002. PubMed DOI
Xu H.B., Huang Z.Q. Vasorelaxant effects of icariin on isolated canine coronary artery. J. Cardiovasc. Pharmacol. 2007;49:207–213. doi: 10.1097/FJC.0b013e3180325abe. PubMed DOI
Takır S., Sezgi B., Süzgeç-Selçuk S., Eroğlu-Özkan E., Beukelman K.J., Mat A., Uydeş-Doğan B.S. Endothelium-dependent vasorelaxant effect of Alchemilla vulgaris methanol extract: A comparison with the aqueous extract in rat aorta. Nat. Prod. Res. 2014;28:2182–2185. doi: 10.1080/14786419.2014.926352. PubMed DOI
Takır S., Altun I.H., Sezgi B., Süzgeç-Selçuk S., Mat A., Uydeş-Doǧan B.S. Vasorelaxant and blood pressure lowering effects of alchemilla vulgaris: A comparative study of methanol and aqueous extracts. Pharmacogn. Mag. 2015;11:163–169. doi: 10.4103/0973-1296.149733. PubMed DOI PMC
Duarte J., Pérez-Vizcaíno F., Torres A.I., Zarzuelo A., Jiménez J., Tamargo J. Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1995;286:115–122. doi: 10.1016/0014-2999(95)00418-K. PubMed DOI
Lima T.C., de Jesus Souza R., da Silva F.A., Biavatti M.W. The genus Calea L.: A review on traditional uses, phytochemistry, and biological activities. Phytother. Res. 2018;32:769–795. doi: 10.1002/ptr.6010. PubMed DOI
Somoza B., de Rojas V.R.S., Ortega T., Villar A.M. Vasodilator effects of the extract of the leaves of Cistus populifolius on rat thoracic aorta. Phytother. Res. 1996;10:304–308. doi: 10.1002/(SICI)1099-1573(199606)10:4<304::AID-PTR848>3.0.CO;2-B. DOI
Jiang H., Xia Q., Wang X., Song J., Bruce I.C. Luteolin induces vasorelaxion in rat thoracic aorta via calcium and potassium channels. Pharmazie. 2005;60:444–447. PubMed
Janbaz K.H., Qayyum A., Saqib F., Imran I., Zia-Ul-Haq M., de Feo V. Bronchodilator, vasodilator and spasmolytic activities of Cymbopogon martinii. J. Physiol. Pharmacol. 2014;65:859–866. PubMed
Adaramoye O.A., Medeiros I.A. Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from Garcinia kola seeds, in rat superior mesenteric arteries. J. Smooth Muscle Res. 2009;45:39–53. doi: 10.1540/jsmr.45.39. PubMed DOI
Chericoni S., Testai L., Calderone V., Flamini G., Nieri P., Morelli I., Martinotti E. The xanthones gentiacaulein and gentiakochianin are responsible for the vasodilator action of the roots of Gentiana kochiana. Planta Med. 2003;69:770–772. doi: 10.1055/s-2003-42784. PubMed DOI
Wang Y., Shi J.G., Wang M.Z., Che C.T., Yeung J.H. Vasodilatory actions of xanthones isolated from a Tibetan herb, Halenia elliptica. Phytomedicine. 2009;16:1144–1150. doi: 10.1016/j.phymed.2009.03.015. PubMed DOI
Zheoat A.M., Gray A.I., Igoli J.O., Ferro V.A., Drummond R.M. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia. 2019;134:5–13. doi: 10.1016/j.fitote.2019.01.012. PubMed DOI
Campos M.G., Oropeza M.V., Villanueva T., Aguilar M.I., Delgado G., Ponce H.A. Xanthorrhizol induces endothelium-independent relaxation of rat thoracic aorta. Life Sci. 2000;67:327–333. doi: 10.1016/S0024-3205(00)00619-6. PubMed DOI
Kim B., Lee K., Chinannai K.S., Ham I., Bu Y., Kim H., Choi H.Y. Endothelium-Independent Vasorelaxant Effect of Ligusticum jeholense Root and Rhizoma on Rat Thoracic Aorta. Molecules. 2015;20:10721–10733. doi: 10.3390/molecules200610721. PubMed DOI PMC
El Bardai S., Morel N., Wibo M., Fabre N., Llabres G., Lyoussi B., Quetin-Leclercq J. The vasorelaxant activity of marrubenol and marrubiin from Marrubium vulgare. Planta Med. 2003;69:75–77. doi: 10.1055/s-2003-37042. PubMed DOI
El-Bardai S., Wibo M., Hamaide M.C., Lyoussi B., Quetin-Leclercq J., Morel N. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. Br. J. Pharmacol. 2003;140:1211–1216. doi: 10.1038/sj.bjp.0705561. PubMed DOI PMC
Rendón-Vallejo P., Hernández-Abreu O., Vergara-Galicia J., Millán-Pacheco C., Mejía A., Ibarra-Barajas M., Estrada-Soto S. Ex vivo study of the vasorelaxant activity induced by phenanthrene derivatives isolated from Maxillaria densa. J. Nat. Prod. 2012;75:2241–2245. doi: 10.1021/np300508v. PubMed DOI
Gilani A.H., Mandukhail S.U., Iqbal J., Yasinzai M., Aziz N., Khan A. Antispasmodic and vasodilator activities of Morinda citrifolia root extract are mediated through blockade of voltage dependent calcium channels. BMC Complement. Altern. Med. 2010;10:2. doi: 10.1186/1472-6882-10-2. PubMed DOI PMC
Sanni D.M., Fatoki T.H., Kolawole A.O., Akinmoladun A.C. Xeronine structure and function: Computational comparative mastery of its mystery. In Silico Pharmacol. 2017;5:8. doi: 10.1007/s40203-017-0028-y. PubMed DOI PMC
Liew S.Y., Mukhtar M.R., Hadi A.H., Awang K., Mustafa M.R., Zaima K., Morita H., Litaudon M. Naucline, a new indole alkaloid from the bark of Nauclea officinalis. Molecules. 2012;17:4028–4036. doi: 10.3390/molecules17044028. PubMed DOI PMC
Ishizuka M., Koga I., Zaima K., Kaneda T., Hirasawa Y., Hadi A.H., Morita H. Vasorelaxant effects on rat aortic artery by two types of indole alkaloids, naucline and cadamine. J. Nat. Med. 2013;67:399–403. doi: 10.1007/s11418-012-0689-0. PubMed DOI
Berrougui H., Herrera-Gonzalez M.D., Marhuenda E., Ettaib A., Hmamouchi M. Relaxant activity of methanolic extract from seeds of Peganum harmala on isolated rat aorta. Therapie. 2002;57:236–241. PubMed
Shi C.C., Liao J.F., Chen C.F. Comparative study on the vasorelaxant effects of three harmala alkaloids in vitro. Jpn. J. Pharmacol. 2001;85:299–305. doi: 10.1254/jjp.85.299. PubMed DOI
Berrougui H., Martín-Cordero C., Khalil A., Hmamouchi M., Ettaib A., Marhuenda E., Herrera M.D. Vasorelaxant effects of harmine and harmaline extracted from Peganum harmala L. seeds in isolated rat aorta. Pharmacol. Res. 2006;54:150–157. doi: 10.1016/j.phrs.2006.04.001. PubMed DOI
Lin L.L., Huang F., Chen S.B., Yang D.J., Chen S.L., Yang J.S., Xiao P.G. Xanthones from the roots of Polygala caudata and their antioxidation and vasodilatation activities in vitro. Planta Med. 2005;71:372–375. doi: 10.1055/s-2005-864108. PubMed DOI
Fang L.H., Mu Y.M., Lin L.L., Xiao P.G., Du G.H. Vasorelaxant effect of euxanthone in the rat thoracic aorta. Vascul. Pharmacol. 2006;45:96–101. doi: 10.1016/j.vph.2006.03.011. PubMed DOI
Lee K., Ham I., Yang G., Lee M., Bu Y., Kim H., Choi H.Y. Vasorelaxant effect of Prunus yedoensis bark. BMC Complement. Altern. Med. 2013;13:31. doi: 10.1186/1472-6882-13-31. PubMed DOI PMC
Kim B., Jo C., Choi H.Y., Lee K. Prunetin Relaxed Isolated Rat Aortic Rings by Blocking Calcium Channels. Molecules. 2018;23:2372. doi: 10.3390/molecules23092372. PubMed DOI PMC
Ghayur M.N., Gilani A.H. Studies on cardio-suppressant, vasodilator and tracheal relaxant effects of Sarcococca saligna. Arch. Pharm. Res. 2006;29:990–997. doi: 10.1007/BF02969283. PubMed DOI
Sargazi Zadeh G., Panahi N. Endothelium-independent vasorelaxant activity of Trachyspermum ammi essential oil on rat aorta. Clin. Exp. Hypertens. 2017;39:133–138. doi: 10.1080/10641963.2016.1235178. PubMed DOI
Zhang W.B., Chen C.X., Sim S.M., Kwan C.Y. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel) Naunyn Schmiedebergs Arch. Pharmacol. 2004;369:232–238. doi: 10.1007/s00210-003-0854-9. PubMed DOI
Horie S., Yano S., Aimi N., Sakai S., Watanabe K. Effects of hirsutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta. Life Sci. 1992;50:491–498. doi: 10.1016/0024-3205(92)90388-6. PubMed DOI
Hernández-Abreu O., Castillo-España P., León-Rivera I., Ibarra-Barajas M., Villalobos-Molina R., González-Christen J., Vergara-Galicia J., Estrada-Soto S. Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochem. Pharmacol. 2009;78:54–61. doi: 10.1016/j.bcp.2009.03.016. PubMed DOI
Flores-Flores A., Hernández-Abreu O., Rios M.Y., León-Rivera I., Aguilar-Guadarrama B., Castillo-España P., Perea-Arango I., Estrada-Soto S. Vasorelaxant mode of action of dichloromethane-soluble extract from Agastache mexicana and its main bioactive compounds. Pharm. Biol. 2016;54:2807–2813. doi: 10.1080/13880209.2016.1184690. PubMed DOI
Wang Z.T., Lau C.W., Chan F.L., Yao X., Chen Z.Y., He Z.D., Huang Y. Vasorelaxant effects of cardamonin and alpinetin from Alpinia henryi K. Schum. J. Cardiovasc. Pharmacol. 2001;37:596–606. doi: 10.1097/00005344-200105000-00011. PubMed DOI
Fusi F., Cavalli M., Mulholland D., Crouch N., Coombes P., Dawson G., Bova S., Sgaragli G., Saponara S. Cardamonin is a bifunctional vasodilator that inhibits Ca(v)1.2 current and stimulates K(Ca)1.1 current in rat tail artery myocytes. J. Pharmacol. Exp. Ther. 2010;332:531–540. doi: 10.1124/jpet.109.161265. PubMed DOI
Channa S., Dar A., Ahmed S. Evaluation of Alstonia scholaris leaves for broncho-vasodilatory activity. J. Ethnopharmacol. 2005;97:469–476. doi: 10.1016/j.jep.2004.12.009. PubMed DOI
Bello I., Usman N.S., Mahmud R., Asmawi M.Z. Mechanisms underlying the antihypertensive effect of Alstonia scholaris. J. Ethnopharmacol. 2015;175:422–431. doi: 10.1016/j.jep.2015.09.031. PubMed DOI
Arai H., Zaima K., Mitsuta E., Tamamoto H., Saito A., Hirasawa Y., Rahman A., Kusumawati I., Zaini N.C., Morita H. Alstiphyllanines I-O, ajmaline type alkaloids from Alstonia macrophylla showing vasorelaxant activity. Bioorg. Med. Chem. 2012;20:3454–3459. doi: 10.1016/j.bmc.2012.04.013. PubMed DOI
Ozolua R.I., Adejayan A., Aigbe O.P., Uwaya D.O., Argawal A. Some characteristic relaxant effects of aqueous leaf extract of Andrographis paniculata and andrographolide on guinea pig tracheal rings. Niger. J. Physiol. Sci. 2011;26:119–124. PubMed
Zhang C.Y., Tan B.K. Hypotensive activity of aqueous extract of Andrographis paniculata in rats. Clin. Exp. Pharmacol. Physiol. 1996;23:675–678. doi: 10.1111/j.1440-1681.1996.tb01756.x. PubMed DOI
Zhang C.Y., Tan B.K. Vasorelaxation of rat thoracic aorta caused by 14-deoxyandrographolide. Clin. Exp. Pharmacol. Physiol. 1998;25:424–429. doi: 10.1111/j.1440-1681.1998.tb02226.x. PubMed DOI
Awang K., Abdullah N.H., Hadi A.H., Fong Y.S. Cardiovascular activity of labdane diterpenes from Andrographis paniculata in isolated rat hearts. J. Biomed. Biotechnol. 2012;2012:876458. doi: 10.1155/2012/876458. PubMed DOI PMC
Lee K., Shin M.S., Ham I., Choi H.Y. Investigation of the mechanisms of Angelica dahurica root extract-induced vasorelaxation in isolated rat aortic rings. BMC Complement. Altern. Med. 2015;15:395. doi: 10.1186/s12906-015-0889-8. PubMed DOI PMC
Deng G.G., Wei W., Yang X.W., Zhang Y.B., Xu W., Gong N.B., Lü Y., Wang F.F. New coumarins from the roots of Angelica dahurica var. formosana cv. Chuanbaizhi and their inhibition on NO production in LPS-activated RAW264.7 cells. Fitoterapia. 2015;101:194–200. doi: 10.1016/j.fitote.2015.01.016. PubMed DOI
He J.Y., Zhang W., He L.C., Cao Y.X. Imperatorin induces vasodilatation possibly via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Eur. J. Pharmacol. 2007;573:170–175. doi: 10.1016/j.ejphar.2007.06.043. PubMed DOI
Nie H., Meng L.Z., Zhou J.Y., Fan X.F., Luo- Y., Zhang G.W. Imperatorin is responsible for the vasodilatation activity of Angelica Dahurica var. Formosana regulated by nitric oxide in an endothelium-dependent manner. Chin. J. Integr. Med. 2009;15:442–447. doi: 10.1007/s11655-009-0442-z. PubMed DOI
Rhyu M.R., Kim J.H., Kim E.Y. Radix angelica elicits both nitric oxide-dependent and calcium influx-mediated relaxation in rat aorta. J. Cardiovasc. Pharmacol. 2005;46:99–104. doi: 10.1097/01.fjc.0000164092.88821.49. PubMed DOI
Matsuura M., Kimura Y., Nakata K., Baba K., Okuda H. Artery relaxation by chalcones isolated from the roots of Angelica keiskei. Planta Med. 2001;67:230–235. doi: 10.1055/s-2001-12011. PubMed DOI
Zhang Y.H., Park Y.S., Kim T.J., Fang L.H., Ahn H.Y., Hong J.T., Kim Y., Lee C.K., Yun Y.P. Endothelium-dependent vasorelaxant and antiproliferative effects of apigenin. Gen. Pharmacol. 2000;35:341–347. doi: 10.1016/S0306-3623(02)00113-1. PubMed DOI
Ko F.N., Huang T.F., Teng C.M. Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta. Biochim. Biophys. Acta. 1991;1115:69–74. doi: 10.1016/0304-4165(91)90013-7. PubMed DOI
Ma X., He D., Ru X., Chen Y., Cai Y., Bruce I.C., Xia Q., Yao X., Jin J. Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. Br. J. Pharmacol. 2012;166:349–358. doi: 10.1111/j.1476-5381.2011.01767.x. PubMed DOI PMC
Dar A., Channa S. Calcium antagonistic activity of Bacopa monniera on vascular and intestinal smooth muscles of rabbit and guinea-pig. J. Ethnopharmacol. 1999;66:167–174. doi: 10.1016/S0378-8741(98)00240-2. PubMed DOI
Channa S., Dar A., Yaqoob M., Anjum S., Sultani Z. Broncho-vasodilatory activity of fractions and pure constituents isolated from Bacopa monniera. J. Ethnopharmacol. 2003;86:27–35. doi: 10.1016/S0378-8741(03)00013-8. PubMed DOI
Kamkaew N., Paracha T.U., Ingkaninan K., Waranuch N., Chootip K. Vasodilatory Effects and Mechanisms of Action of. Molecules. 2019;24:2243. doi: 10.3390/molecules24122243. PubMed DOI PMC
Kamkaew N., Scholfield C.N., Ingkaninan K., Maneesai P., Parkington H.C., Tare M., Chootip K. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J. Ethnopharmacol. 2011;137:790–795. doi: 10.1016/j.jep.2011.06.045. PubMed DOI
Ko W.H., Yao X.Q., Lau C.W., Law W.I., Chen Z.Y., Kwok W., Ho K., Huang Y. Vasorelaxant and antiproliferative effects of berberine. Eur. J. Pharmacol. 2000;399:187–196. doi: 10.1016/S0014-2999(00)00339-3. PubMed DOI
Neag M.A., Mocan A., Echeverría J., Pop R.M., Bocsan C.I., Crişan G., Buzoianu A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018;9:557. doi: 10.3389/fphar.2018.00557. PubMed DOI PMC
Moore R.J., Jackson K.G., Minihane A.M. Green tea (Camellia sinensis) catechins and vascular function. Br. J. Nutr. 2009;102:1790–1802. doi: 10.1017/S0007114509991218. PubMed DOI
Ghayur M.N., Khan H., Gilani A.H. Antispasmodic, bronchodilator and vasodilator activities of (+)-catechin, a naturally occurring flavonoid. Arch. Pharm. Res. 2007;30:970–975. doi: 10.1007/BF02993965. PubMed DOI
Aggio A., Grassi D., Onori E., D’Alessandro A., Masedu F., Valenti M., Ferri C. Endothelium/nitric oxide mechanism mediates vasorelaxation and counteracts vasoconstriction induced by low concentration of flavanols. Eur. J. Nutr. 2013;52:263–272. doi: 10.1007/s00394-012-0320-x. PubMed DOI
Alvarez E., Campos-Toimil M., Justiniano-Basaran H., Lugnier C., Orallo F. Study of the mechanisms involved in the vasorelaxation induced by (-)-epigallocatechin-3-gallate in rat aorta. Br. J. Pharmacol. 2006;147:269–280. doi: 10.1038/sj.bjp.0706507. PubMed DOI PMC
Romano M.R., Lograno M.D. Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: Involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway. Eur. J. Pharmacol. 2009;608:48–53. doi: 10.1016/j.ejphar.2009.02.034. PubMed DOI
Assaidi A., Dib I., Tits M., Angenot L., Bellahcen S., Bouanani N., Legssyer A., Aziz M., Mekhfi H., Bnouham M., et al. Chenopodium ambrosioides induces an endothelium-dependent relaxation of rat isolated aorta. J. Integr. Med. 2019;17:115–124. doi: 10.1016/j.joim.2019.01.006. PubMed DOI
Jiang H.D., Cai J., Xu J.H., Zhou X.M., Xia Q. Endothelium-dependent and direct relaxation induced by ethyl acetate extract from Flos Chrysanthemi in rat thoracic aorta. J. Ethnopharmacol. 2005;101:221–226. doi: 10.1016/j.jep.2005.04.018. PubMed DOI
Affuso F., Mercurio V., Fazio V., Fazio S. Cardiovascular and metabolic effects of Berberine. World J. Cardiol. 2010;2:71–77. doi: 10.4330/wjc.v2.i4.71. PubMed DOI PMC
Wang Y., Huang Y., Lam K.S., Li Y., Wong W.T., Ye H., Lau C.W., Vanhoutte P.M., Xu A. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc. Res. 2009;82:484–492. doi: 10.1093/cvr/cvp078. PubMed DOI
Gong L.L., Fang L.H., Qin H.L., Lv Y., Du G.H. Analysis of the mechanisms underlying the vasorelaxant action of coptisine in rat aortic rings. Am. J. Chin. Med. 2012;40:309–320. doi: 10.1142/S0192415X12500243. PubMed DOI
Tan H.L., Chan K.G., Pusparajah P., Duangjai A., Saokaew S., Mehmood Khan T., Lee L.H., Goh B.H. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent. Front. Pharmacol. 2016;7:362. doi: 10.3389/fphar.2016.00362. PubMed DOI PMC
Qiao M.M., Liu F., Liu Y., Guo L., Zhou Q.M., Peng C., Xiong L. Curcumane C and (±)-curcumane D, an unusual seco-cadinane sesquiterpenoid and a pair of unusual nor-bisabolane enantiomers with significant vasorelaxant activity from Curcuma longa. Bioorg. Chem. 2019;92:103275. doi: 10.1016/j.bioorg.2019.103275. PubMed DOI
Yu S.M., Cheng Z.J., Kuo S.C. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor. Eur. J. Pharmacol. 1995;280:69–77. doi: 10.1016/0014-2999(95)00190-V. PubMed DOI
Yu S.M., Kuo S.C. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. Br. J. Pharmacol. 1995;114:1587–1594. doi: 10.1111/j.1476-5381.1995.tb14943.x. PubMed DOI PMC
Ma F.Y., Luo M., Zhao C.J., Li C.Y., Wang W., Gu C.B., Wei Z.F., Zu Y.G., Fu Y.J. Simple and efficient preparation of biochanin A and genistein from Dalbergia odorifera T. Chen leaves using macroporous resin followed by flash chromatography. Sep. Purif. Technol. 2013;120:310–318. doi: 10.1016/j.seppur.2013.09.035. DOI
Kumar T., Sharma M., Rana A., Lingaraju M.C., Parida S., Kumar D., Singh T.U. Biochanin-A elicits relaxation in coronary artery of goat through different mechanisms. Res. Vet. Sci. 2020;131:206–214. doi: 10.1016/j.rvsc.2020.05.003. PubMed DOI
Wang H.P., Mei R.H., Li X.Y., Zhao M.H., Lu Y., Xia Q., Bruce I. Endothelium-independent Vasorelaxant Effect of the Phyto-oestrogen Biochanin A on Rat Thoracic Aorta; Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; Shanghai, China. 17–18 January 2006; pp. 2244–2247. PubMed DOI
Choi S., Jung W.S., Cho N.S., Ryu K.H., Jun J.Y., Shin B.C., Chung J.H., Yeum C.H. Mechanisms of phytoestrogen biochanin A-induced vasorelaxation in renovascular hypertensive rats. Kidney Res. Clin. Pract. 2014;33:181–186. doi: 10.1016/j.krcp.2014.08.003. PubMed DOI PMC
Migkos T., Pourová J., Vopršalová M., Auger C., Schini-Kerth V., Mladěnka P. Biochanin A, the Most Potent of 16 Isoflavones, Induces Relaxation of the Coronary Artery Through the Calcium Channel and cGMP-dependent Pathway. Planta Med. 2020;86:708–716. doi: 10.1055/a-1158-9422. PubMed DOI
Sá R.e.C., Almeida R.N., Bhattacharyya J. Pharmaceutical properties and toxicology of Dioclea grandiflora. Pharm. Biol. 2013;51:659–667. doi: 10.3109/13880209.2012.755208. PubMed DOI
Trigueiro F., Cortes S.F., Almeida R.N., Lemos V.S. Endothelium-independent vasorelaxant effect of dioclein, a new flavonoid isolated from Dioclea grandiflora, in the rat aorta. J. Pharm. Pharmacol. 2000;52:1431–1434. doi: 10.1211/0022357001777441. PubMed DOI
Côrtes S.F., Rezende B.A., Corriu C., Medeiros I.A., Teixeira M.M., Lopes M.J., Lemos V.S. Pharmacological evidence for the activation of potassium channels as the mechanism involved in the hypotensive and vasorelaxant effect of dioclein in rat small resistance arteries. Br. J. Pharmacol. 2001;133:849–858. doi: 10.1038/sj.bjp.0704147. PubMed DOI PMC
Gonçalves R.L., Lugnier C., Keravis T., Lopes M.J., Fantini F.A., Schmitt M., Cortes S.F., Lemos V.S. The flavonoid dioclein is a selective inhibitor of cyclic nucleotide phosphodiesterase type 1 (PDE1) and a cGMP-dependent protein kinase (PKG) vasorelaxant in human vascular tissue. Eur. J. Pharmacol. 2009;620:78–83. doi: 10.1016/j.ejphar.2009.08.008. PubMed DOI
Lemos V.S., Côrtes S.F., dos Santos M.H., Ellena J., Moreira M.E., Doriguetto A.C. Structure and vasorelaxant activity of floranol, a flavonoid isolated from the roots of Dioclea grandiflora. Chem. Biodivers. 2006;3:635–645. doi: 10.1002/cbdv.200690066. PubMed DOI
Marques A.M., Provance D.W., Kaplan M.A.C., Figueiredo M.R. Echinodorus grandiflorus: Ethnobotanical, phytochemical and pharmacological overview of a medicinal plant used in Brazil. Food Chem. Toxicol. 2017;109:1032–1047. doi: 10.1016/j.fct.2017.03.026. PubMed DOI
Tibiriçá E., Almeida A., Caillleaux S., Pimenta D., Kaplan M.A., Lessa M.A., Figueiredo M.R. Pharmacological mechanisms involved in the vasodilator effects of extracts from Echinodorus grandiflorus. J. Ethnopharmacol. 2007;111:50–55. doi: 10.1016/j.jep.2006.10.030. PubMed DOI
Prando T.B., Barboza L.N., Araújo V.e.O., Gasparotto F.M., de Souza L.M., Lourenço E.L., Gasparotto Junior A. Involvement of bradykinin B2 and muscarinic receptors in the prolonged diuretic and antihypertensive properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli. Phytomedicine. 2016;23:1249–1258. doi: 10.1016/j.phymed.2015.10.020. PubMed DOI
Peng H., Xing Y., Gao L., Zhang L., Zhang G. Simultaneous separation of apigenin, luteolin and rosmarinic acid from the aerial parts of the copper-tolerant plant Elsholtzia splendens. Environ. Sci. Pollut. Res. Int. 2014;21:8124–8132. doi: 10.1007/s11356-014-2747-5. PubMed DOI
Wang H.P., Lu J.F., Zhang G.L., Li X.Y., Peng H.Y., Lu Y., Zhao L., Ye Z.G., Bruce I.C., Xia Q., et al. Endothelium-dependent and -independent vasorelaxant actions and mechanisms induced by total flavonoids of Elsholtzia splendens in rat aortas. Environ. Toxicol. Pharmacol. 2014;38:453–459. doi: 10.1016/j.etap.2014.07.019. PubMed DOI
Ferreira H.C., Serra C.P., Endringer D.C., Lemos V.S., Braga F.C., Cortes S.F. Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery. Phytomedicine. 2007;14:473–478. doi: 10.1016/j.phymed.2006.11.008. PubMed DOI
Chan S.S., Choi A.O., Jones R.L., Lin G. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticum chuanxiong, in rat isolated aorta. Eur. J. Pharmacol. 2006;537:111–117. doi: 10.1016/j.ejphar.2006.03.015. PubMed DOI
Cao Y.X., Zhang W., He J.Y., He L.C., Xu C.B. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Vascul. Pharmacol. 2006;45:171–176. doi: 10.1016/j.vph.2006.05.004. PubMed DOI
Chan S.S., Cheng T.Y., Lin G. Relaxation effects of ligustilide and senkyunolide A, two main constituents of Ligusticum chuanxiong, in rat isolated aorta. J. Ethnopharmacol. 2007;111:677–680. doi: 10.1016/j.jep.2006.12.018. PubMed DOI
Kim E.Y., Kim J.H., Rhyu M.R. Endothelium-independent vasorelaxation by Ligusticum wallichii in isolated rat aorta: Comparison of a butanolic fraction and tetramethylpyrazine, the main active component of Ligusticum wallichii. Biol. Pharm. Bull. 2010;33:1360–1363. doi: 10.1248/bpb.33.1360. PubMed DOI
Guedes D.N., Silva D.F., Barbosa-Filho J.M., de Medeiros I.A. Endothelium-dependent hypotensive and vasorelaxant effects of the essential oil from aerial parts of Mentha x villosa in rats. Phytomedicine. 2004;11:490–497. doi: 10.1016/j.phymed.2004.04.002. PubMed DOI
Guedes D.N., Silva D.F., Barbosa-Filho J.M., Medeiros I.A. Muscarinic agonist properties involved in the hypotensive and vasorelaxant responses of rotundifolone in rats. Planta Med. 2002;68:700–704. doi: 10.1055/s-2002-33795. PubMed DOI
Guedes D.N., Silva D.F., Barbosa-Filho J.M., Medeiros I.A. Calcium antagonism and the vasorelaxation of the rat aorta induced by rotundifolone. Braz. J. Med. Biol. Res. 2004;37:1881–1887. doi: 10.1590/S0100-879X2004001200014. PubMed DOI
Silva D.F., Araújo I.G., Albuquerque J.G., Porto D.L., Dias K.L., Cavalcante K.V., Veras R.C., Nunes X.P., Barbosa-Filho J.M., Araújo D.A., et al. Rotundifolone-induced relaxation is mediated by BK(Ca) channel activation and Ca(v) channel inactivation. Basic Clin. Pharmacol. Toxicol. 2011;109:465–475. doi: 10.1111/j.1742-7843.2011.00749.x. PubMed DOI
Dongmo A., Kamanyi M.A., Tan P.V., Bopelet M., Vierling W., Wagner H. Vasodilating properties of the stem bark extract of Mitragyna ciliata in rats and guinea pigs. Phytother. Res. 2004;18:36–39. doi: 10.1002/ptr.1350. PubMed DOI
Zaima K., Takeyama Y., Koga I., Saito A., Tamamoto H., Azziz S.S., Mukhtar M.R., Awang K., Hadi A.H., Morita H. Vasorelaxant effect of isoquinoline derivatives from two species of Popowia perakensis and Phaeanthus crassipetalus on rat aortic artery. J. Nat. Med. 2012;66:421–427. doi: 10.1007/s11418-011-0600-4. PubMed DOI
Senejoux F., Girard-Thernier C., Berthelot A., Bévalot F., Demougeot C. New insights into the mechanisms of the vasorelaxant effects of apocynin in rat thoracic aorta. Fundam. Clin. Pharmacol. 2013;27:262–270. doi: 10.1111/j.1472-8206.2011.01025.x. PubMed DOI
Perassa L.A., Graton M.E., Potje S.R., Troiano J.A., Lima M.S., Vale G.T., Pereira A.A., Nakamune A.C., Sumida D.H., Tirapelli C.R., et al. Apocynin reduces blood pressure and restores the proper function of vascular endothelium in SHR. Vascul. Pharmacol. 2016;87:38–48. doi: 10.1016/j.vph.2016.06.005. PubMed DOI
Luna-Vázquez F.J., Ibarra-Alvarado C., Rojas-Molina A., Romo-Mancillas A., López-Vallejo F.H., Solís-Gutiérrez M., Rojas-Molina J.I., Rivero-Cruz F. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Molecules. 2016;21:78. doi: 10.3390/molecules21010078. PubMed DOI PMC
Park J.Y., Shin H.K., Lee Y.J., Choi Y.W., Bae S.S., Kim C.D. The mechanism of vasorelaxation induced by Schisandra chinensis extract in rat thoracic aorta. J. Ethnopharmacol. 2009;121:69–73. doi: 10.1016/j.jep.2008.09.031. PubMed DOI
Park J.Y., Shin H.K., Choi Y.W., Lee Y.J., Bae S.S., Han J., Kim C.D. Gomisin A induces Ca2+-dependent activation of eNOS in human coronary artery endothelial cells. J. Ethnopharmacol. 2009;125:291–296. doi: 10.1016/j.jep.2009.06.028. PubMed DOI
Park J.Y., Lee S.J., Yun M.R., Seo K.W., Bae S.S., Park J.W., Lee Y.J., Shin W.J., Choi Y.W., Kim C.D. Gomisin A from Schisandra chinensis induces endothelium-dependent and direct relaxation in rat thoracic aorta. Planta Med. 2007;73:1537–1542. doi: 10.1055/s-2007-993757. PubMed DOI
Ding L., Jia C., Zhang Y., Wang W., Zhu W., Chen Y., Zhang T. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats. Biomed. Pharmacother. 2019;111:325–330. doi: 10.1016/j.biopha.2018.12.086. PubMed DOI
Lin Y.L., Dai Z.K., Lin R.J., Chu K.S., Chen I.J., Wu J.R., Wu B.N. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+ channels via cyclic nucleotide-dependent protein kinases in mesenteric artery. Phytomedicine. 2010;17:760–770. doi: 10.1016/j.phymed.2010.01.003. PubMed DOI
Paredes A., Palacios J., Quispe C., Nwokocha C.R., Morales G., Kuzmicic J., Cifuentes F. Hydroalcoholic extract and pure compounds from Senecio nutans Sch. Bip (Compositae) induce vasodilation in rat aorta through endothelium-dependent and independent mechanisms. J. Ethnopharmacol. 2016;192:99–107. doi: 10.1016/j.jep.2016.07.008. PubMed DOI
Auger C., Chabert P., Lugnier C., Mushtaq M.N., Schini-Kerth V.B. Mechanisms underlying vasorelaxation induced in the porcine coronary arteries by Thymus linearis, Benth. J. Ethnopharmacol. 2018;225:211–219. doi: 10.1016/j.jep.2018.07.010. PubMed DOI
Getiye Y., Tolessa T., Engidawork E. Antihypertensive activity of 80% methanol seed extract of Calpurnia aurea (Ait.) Benth. subsp. aurea (Fabaceae) is mediated through calcium antagonism induced vasodilation. J. Ethnopharmacol. 2016;189:99–106. doi: 10.1016/j.jep.2016.04.056. PubMed DOI
Khan M., Gilani A.H. Studies on Blood Pressure Lowering, Vasodilator and Cardiac Suppressant Activities of Vitex negundo: Involvement of K+ Channel Activation and Ca++ Channel Blockade. Int. J. Pharmacol. 2015;11:137–142. doi: 10.3923/ijp.2015.137.142. DOI
Dongmo A.B., Ndom J.C., Massoma L.D., Dzikouk D.G., Fomani M., Bissoue N., Kamanyi A., Vierling W. Vasodilating effect of the root bark extract of Ficus saussureana on guinea pig aorta. Pharmaceutical. Biol. 2003;41:371–374.
Kim B., Kim K.W., Lee S., Jo C., Lee K., Ham I., Choi H.Y. Endothelium-dependent vasorelaxant effect of Prunus persica branch on isolated rat thoracic aorta. Nutrients. 2019;11:1816. doi: 10.3390/nu11081816. PubMed DOI PMC
Ramón Sánchez de Rojas V., Somoza B., Ortega T., Villar A.M., Tejerina T. Vasodilatory effect in rat aorta of eriodictyol obtained from Satureja obovata. Planta Med. 1999;65:234–238. doi: 10.1055/s-1999-13986. PubMed DOI
Derojas V.R.S., Ortega T., Villar A. Pharmacological activity of the extracts of 2 Satureja obovata varieties on isolated smooth-muscle preparations. Phytother. Res. 1994;8:212–217. doi: 10.1002/ptr.2650080405. DOI
Ch‘ng Y.S., Loh Y.C., Tan C.S., Ahmad M., Asmawi M.Z., Wan Omar W.M., Yam M.F. Vasorelaxant properties of Vernonia amygdalina ethanol extract and its possible mechanism. Pharm. Biol. 2017;55:2083–2094. doi: 10.1080/13880209.2017.1357735. PubMed DOI PMC
Gkaliagkousi E., Gavriilaki E., Triantafyllou A., Douma S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. Curr. Hypertens. Rep. 2015;17:85. doi: 10.1007/s11906-015-0596-3. PubMed DOI
Anesthetized guinea pig as a model for drug testing