The Influence of Material and Process Parameters on Pressure Agglomeration and Properties of Pellets Produced from Torrefied Forest Logging Residues

. 2026 Jan 13 ; 19 (2) : . [epub] 20260113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41598028

Grantová podpora
Visegrad Grant No. 22420094 International Visegrad Fund
Grant No. 2024: 31170/1312/3105 Internal Grant Agency of the Faculty of Engineering (IGA TF) at the Czech University of Life Sciences
APVV-21-0180 Slovak Research and Development Agency

Pellets produced from raw or torrefied shredded logging residues have been investigated in the study. The research material came from pine and spruce stands in Poland, Slovakia, Czechia and Hungary. Torrefaction temperatures (Tt) of 250, 300, and 400 °C were applied. Before pressure agglomeration, 3% wheat flour was added to the torrefaction material as a binding agent. Pellets with a diameter of 8 mm were produced at constant humidity, compaction pressure (P) of 140 or 180 MPa and agglomeration temperature (Ta) of 100, 120 or 140 °C. The produced pellets were assessed for their physicomechanical parameters (density, radial compressive strength, compression ratio, modulus of elasticity), chemical parameters (extractive compounds, cellulose, lignin) and energy parameters (ash content, elemental composition, calorific value). The results were subjected to basic statistical analysis and multi-way ANOVA. The produced pellets varied in physical, mechanical, chemical and energy properties. A significant effect of torrefaction temperature, agglomeration temperature and compaction pressure on the results was observed. In terms of physicomechanical parameters, the best pellets were produced from the raw material, while in terms of energy parameters, those produced from the torrefied material were superior. Pellets of satisfactory quality produced from torrefied logging residues could be obtained at Tt = 250 °C, Ta = 120 °C and P = 180 MPa. Pellets with specific density of approximately 1.1 g·cm-3, radial compressive strength of 3-3.5 MPa, modulus of elasticity of 60-80 MPa and calorific value of 20.3-23.8 MJ·kg-1 were produced in the process.

Zobrazit více v PubMed

Friedlingstein P., O’Sullivan M., Jones M.W., Andrew R.M., Gregor L., Hauck J., Le Quéré C., Luijkx I.T., Olsen A., Peters G.P., et al. Global Carbon Budget 2022. Earth Syst. Sci. Data. 2022;14:4811–4900. doi: 10.5194/essd-14-4811-2022. DOI

da Silva C.M.S., Carneiro A.d.C.O., Vital B.R., Figueiró C.G., Fialho L.d.F., de Magalhães M.A., Carvalho A.G., Cândido W.L. Biomass Torrefaction for Energy Purposes—Definitions and an Overview of Challenges and Opportunities in Brazil. Renew. Sustain. Energy Rev. 2018;82:2426–2432. doi: 10.1016/j.rser.2017.08.095. DOI

Riaza J., Khatami R., Levendis Y.A., Álvarez L., Gil M.V., Pevida C., Rubiera F., Pis J.J. Combustion of Single Biomass Particles in Air and in Oxy-Fuel Conditions. Biomass Bioenergy. 2014;64:162–174. doi: 10.1016/j.biombioe.2014.03.018. DOI

Araújo S., Boas M.A.V., Neiva D.M., de Cassia Carneiro A., Vital B., Breguez M., Pereira H. Effect of a Mild Torrefaction for Production of Eucalypt Wood Briquettes under Different—Pressures. Biomass Bioenergy. 2016;90:181–186. doi: 10.1016/j.biombioe.2016.04.007. DOI

Gürdil G., Demirel B. Analyzing Some Relationships between Physical-mMechanical and Thermal Parameters of Bio-Briquettes Produced from Persimmon Pruning Residues. BSJ Agric. 2022;5:470–475. doi: 10.47115/bsagriculture.1169534. DOI

Chen W.-H., Peng J., Bi X.T. A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications. Renew. Sustain. Energy Rev. 2015;44:847–866. doi: 10.1016/j.rser.2014.12.039. DOI

Gent S., Twedt M., Gerometta C., Almberg E. Theoretical and Applied Aspects of Biomass Torrefaction: For Biofuels and Value-Added Products. Butterworth-Heinemann; Oxford, UK: 2017.

Proskurina S., Heinimö J., Schipfer F., Vakkilainen E. Biomass for Industrial Applications: The Role of Torrefaction. Renew. Energy. 2017;111:265–274. doi: 10.1016/j.renene.2017.04.015. DOI

Bonassa G., Schneider L.T., Canever V.B., Cremonez P.A., Frigo E.P., Dieter J., Teleken J.G. Scenarios and Prospects of Solid Biofuel Use in Brazil. Renew. Sustain. Energy Rev. 2018;82:2365–2378. doi: 10.1016/j.rser.2017.08.075. DOI

Shang L., Nielsen N.P.K., Dahl J., Stelte W., Ahrenfeldt J., Holm J.K., Thomsen T., Henriksen U.B. Quality Effects Caused by Torrefaction of Pellets Made from Scots Pine. Fuel Process. Technol. 2012;101:23–28. doi: 10.1016/j.fuproc.2012.03.013. DOI

Shang L., Ahrenfeldt J., Holm J.K., Sanadi A.R., Barsberg S., Thomsen T., Stelte W., Henriksen U.B. Changes of Chemical and Mechanical Behavior of Torrefied Wheat Straw. Biomass Bioenergy. 2012;40:63–70. doi: 10.1016/j.biombioe.2012.01.049. DOI

van der Stelt M.J.C., Gerhauser H., Kiel J.H.A., Ptasinski K.J. Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review. Biomass Bioenergy. 2011;35:3748–3762. doi: 10.1016/j.biombioe.2011.06.023. DOI

Pimchuai A., Dutta A., Basu P. Torrefaction of Agriculture Residue To Enhance Combustible Properties. Energy Fuels. 2010;24:4638–4645. doi: 10.1021/ef901168f. DOI

Michel J.-B., Mahmed C., Ropp J., Richard J., Sattler M.A., Schmid M. Combustion Evaluation of Torrefied Wood Pellets on a 50 KWth Boiler; Proceedings of the European Biomass Conference and Exhibition Proceedings; Lyon, France. 3–7 May 2010; pp. 1534–1540. DOI

Alizadeh P., Tabil L.G., Adapa P.K., Cree D., Mupondwa E., Emadi B. Torrefaction and Densification of Wood Sawdust for Bioenergy Applications. Fuels. 2022;3:152–175. doi: 10.3390/fuels3010010. DOI

Waheed M.A., Akogun O.A., Enweremadu C.C. An Overview of Torrefied Bioresource Briquettes: Quality-Influencing Parameters, Enhancement through Torrefaction and Applications. Bioresour. Bioprocess. 2022;9:122. doi: 10.1186/s40643-022-00608-1. PubMed DOI PMC

Granado M.P.P., Gadelha A.M.T., Rodrigues D.S., Antonio G.C., De Conti A.C. Effect of Torrefaction on the Properties of Briquettes Produced from Agricultural Waste. Bioresour. Technol. Rep. 2023;21:101340. doi: 10.1016/j.biteb.2023.101340. DOI

Navalta C.J.L.G., Banaag K.G.C., Raboy V.A.O., Go A.W., Cabatingan L.K., Ju Y.-H. Solid Fuel from Co-Briquetting of Sugarcane Bagasse and Rice Bran. Renew. Energy. 2020;147:1941–1958. doi: 10.1016/j.renene.2019.09.129. DOI

Kumar P., Fiori L., Subbarao P.M.V., Vijay V.K. Development of an Efficient Method to Blend Forest Biomass with Agricultural Residue to Produce Fuel Pellets with Improved Mechanical Properties. Biofuels. 2024;15:1051–1062. doi: 10.1080/17597269.2024.2328908. DOI

Koppejan J., Sokhansanj S., Melin S., Madrali S. Status Overview of Torrefaction Technologies. IEA Bioenergy; Enschede, The Netherlands: 2012. p. 61.

Koppejan J., Cremers M., Middelkamp J., Witkamp J., Sokhansanj S., Melin S., Madrali S. Two Page Summary—Status Overview of Torrefaction Technologies: A Review on the Status of the Commercialisation of Biomass Torrefaction. IEA Bioenergy; Enschede, The Netherlands: 2025. Summary Series.

Kumar L., Koukoulas A.A., Mani S., Satyavolu J. Integrating Torrefaction in the Wood Pellet Industry: A Critical Review. Energy Fuels. 2017;31:37–54. doi: 10.1021/acs.energyfuels.6b02803. DOI

Uslu A., Faaij A.P.C., Bergman P.C.A. Pre-Treatment Technologies, and Their Effect on International Bioenergy Supply Chain Logistics. Techno-Economic Evaluation of Torrefaction, Fast Pyrolysis and Pelletisation. Energy. 2008;33:1206–1223. doi: 10.1016/j.energy.2008.03.007. DOI

Ghiasi B., Kumar L., Furubayashi T., Lim C.J., Bi X., Kim C.S., Sokhansanj S. Densified Biocoal from Woodchips: Is It Better to Do Torrefaction before or after Densification? Appl. Energy. 2014;134:133–142. doi: 10.1016/j.apenergy.2014.07.076. DOI

Peng J.H., Bi X.T., Sokhansanj S., Lim C.J. Torrefaction and Densification of Different Species of Softwood Residues. Fuel. 2013;111:411–421. doi: 10.1016/j.fuel.2013.04.048. DOI

Peng J., Wang J., Bi X.T., Lim C.J., Sokhansanj S., Peng H., Jia D. Effects of Thermal Treatment on Energy Density and Hardness of Torrefied Wood Pellets. Fuel Process. Technol. 2015;129:168–173. doi: 10.1016/j.fuproc.2014.09.010. DOI

Larsson S.H., Rudolfsson M., Nordwaeger M., Olofsson I., Samuelsson R. Effects of Moisture Content, Torrefaction Temperature, and Die Temperature in Pilot Scale Pelletizing of Torrefied Norway Spruce. Appl. Energy. 2013;102:827–832. doi: 10.1016/j.apenergy.2012.08.046. DOI

Chen W.-H., Zhuang Y.-Q., Liu S.-H., Juang T.-T., Tsai C.-M. Product Characteristics from the Torrefaction of Oil Palm Fiber Pellets in Inert and Oxidative Atmospheres. Bioresour. Technol. 2016;199:367–374. doi: 10.1016/j.biortech.2015.08.066. PubMed DOI

Doassans-Carrère N., Muller S., Mitzkat M. REVE: Versatile Continuous Pre/Post-Torrefaction Unit for Pellets Production. In: Dell G., Egger C., editors. World Sustainable Energy Days Next 2014. Springer Fachmedien; Wiesbaden, Germany: 2015. pp. 163–170.

Sarker T.R., Azargohar R., Dalai A.K., Meda V. Characteristics of Torrefied Fuel Pellets Obtained from Co-Pelletization of Agriculture Residues with Pyrolysis Oil. Biomass Bioenergy. 2021;150:106139. doi: 10.1016/j.biombioe.2021.106139. DOI

Guo F., Chen J., He Y., Gardy J., Sun Y., Jiang J., Jiang X. Upgrading Agro-Pellets by Torrefaction and Co-Pelletization Process Using Food Waste as a Pellet Binder. Renew. Energy. 2022;191:213–224. doi: 10.1016/j.renene.2022.04.012. DOI

Shang L., Nielsen N.P.K., Stelte W., Dahl J., Ahrenfeldt J., Holm J.K., Arnavat M.P., Bach L.S., Henriksen U.B. Lab and Bench-Scale Pelletization of Torrefied Wood Chips—Process Optimization and Pellet Quality. BioEnergy Res. 2014;7:87–94. doi: 10.1007/s12155-013-9354-z. DOI

Stelte W., Clemons C., Holm J.K., Sanadi A.R., Ahrenfeldt J., Shang L., Henriksen U.B. Pelletizing Properties of Torrefied Spruce. Biomass Bioenergy. 2011;35:4690–4698. doi: 10.1016/j.biombioe.2011.09.025. DOI

Poletto M., Zattera A.J., Forte M.M.C., Santana R.M.C. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresour. Technol. 2012;109:148–153. doi: 10.1016/j.biortech.2011.11.122. PubMed DOI

Ragan B., Kačíková D., Paulďuro M. Influence of physical and chemical characteristics of selected tree species on mass loss and rate of burning after exposure to radiant heating. Acta Fac. Xylologiae Zvolen. 2016;58:121–131. doi: 10.17423/afx.2016.58.2.13. DOI

Kim H.-S., Kim S., Kim H.-J., Yang H.-S. Thermal Properties of Bio-Flour-Filled Polyolefin Composites with Different Compatibilizing Agent Type and Content. Thermochim. Acta. 2006;451:181–188. doi: 10.1016/j.tca.2006.09.013. DOI

Ong H.C., Yu K.L., Chen W.-H., Pillejera M.K., Bi X., Tran K.-Q., Pétrissans A., Pétrissans M. Variation of Lignocellulosic Biomass Structure from Torrefaction: A Critical Review. Renew. Sustain. Energy Rev. 2021;152:111698. doi: 10.1016/j.rser.2021.111698. DOI

Zheng A., Jiang L., Zhao Z., Huang Z., Zhao K., Wei G., Wang X., He F., Li H. Impact of Torrefaction on the Chemical Structure and Catalytic Fast Pyrolysis Behavior of Hemicellulose, Lignin, and Cellulose. Energy Fuels. 2015;29:8027–8034. doi: 10.1021/acs.energyfuels.5b01765. DOI

Ru B., Wang S., Dai G., Zhang L. Effect of Torrefaction on Biomass Physicochemical Characteristics and the Resulting Pyrolysis Behavior. Energy Fuels. 2015;29:5865–5874. doi: 10.1021/acs.energyfuels.5b01263. DOI

Stelte W., Nielsen N.P.K., Hansen H.O., Dahl J., Shang L., Sanadi A.R. Pelletizing Properties of Torrefied Wheat Straw. Biomass Bioenergy. 2013;49:214–221. doi: 10.1016/j.biombioe.2012.12.025. DOI

Bilgin S., Yılmaz H., Topakcı M., Gürdil G.A.K., Çanakcı M., Karayel D. Determination of the Pyrolytic Characteristics of Various Biomass Pellets. Sustainability. 2025;17:9003. doi: 10.3390/su17209003. DOI

Solid Biofuels—Determination of Particle Size Distribution for Uncompressed Fuels—Part 2: Vibrating Screen Method Using Sieves with Aperture of 3,15 mm and Below; Solid Biofuels; 1st ed. International Organization for Standardization; Geneva, Switzerland: 2016.

Lisowski A., Kostrubiec M., Dąbrowska-Salwin M., Świętochowski A. The Characteristics of Shredded Straw and Hay Biomass: Part 2—The Finest Particles. Waste Biomass Valor. 2018;9:115–121. doi: 10.1007/s12649-016-9747-2. DOI

Piątek M., Lisowski A., Dąbrowska M. Surface-Related Kinetic Models for Anaerobic Digestion of Microcrystalline Cellulose: The Role of Particle Size. Materials. 2021;14:487. doi: 10.3390/ma14030487. PubMed DOI PMC

Lisowski A., Kostrubiec M., Dąbrowska-Salwin M., Świętochowski A. The Characteristics of Shredded Straw and Hay Biomass—Part 1—Whole Mixture. Waste Biomass Valor. 2018;9:853–859. doi: 10.1007/s12649-017-9835-y. DOI

Solid Biofuels—Determination of Moisture Content—Part 1: Reference Method, Solid Biofuels; 2nd ed. International Organization for Standardization; Geneva, Switzerland: 2022.

Solid Biofuels—Determination of Moisture Content—Part 2: Simplified Method, Solid Biofuels; 3rd ed. International Organization for Standardization; Geneva, Switzerland: 2017.

Solid Biofuels—Determination of Moisture Content—Part 3: Moisture in General Analysis Sample, Solid Biofuels; 1st ed. International Organization for Standardization; Geneva, Switzerland: 2023.

Lee H.-W., Kim S.-B. Study on the Estimation of Proper Compression Ratios for Korean Domestic Wood Species by Single Pellet Press. J. Korean Wood Sci. Technol. 2020;48:450–457. doi: 10.5658/WOOD.2020.48.4.450. DOI

Borowski G. Porównanie dwóch sposobów określenia wytrzymałości brykietów z materiałów drobnoziarnistych (Comparison of two methods of determining the strength of briquettes from fine grain materials) Postępy Nauk. Tech. 2012;12:115–121.

Lisowski A., Pajor M., Świętochowski A., Dąbrowska M., Klonowski J., Mieszkalski L., Ekielski A., Stasiak M., Piątek M. Effects of Moisture Content, Temperature, and Die Thickness on the Compaction Process, and the Density and Strength of Walnut Shell Pellets. Renew. Energy. 2019;141:770–781. doi: 10.1016/j.renene.2019.04.050. DOI

Nurek T., Gendek A., Aniszewska M. The Effect of Woody Biomass Mixture Composition and Process Temperature during Pressure Agglomeration on the Physical and Mechanical Parameters of “Mini Briquettes”. Fuel. 2025;389:134624. doi: 10.1016/j.fuel.2025.134624. DOI

Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2021.

Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass (NREL/TP-510-42618). Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory; Golden, CO, USA: 2008. p. 18. NREL/TP.

Seifert K. Über ein neues Verfahren zur Schnellbestimmung der “Reincellulose”. Papier. 1956;10:301–307.

Solid Biofuels—Determination of Ash Content, Solid Biofuels; 2nd ed. International Organization for Standardization; Geneva, Switzerland: 2022.

Solid Biofuels—Determination of Calorific Value, Solid Biofuels; 1st ed. International Organization for Standardization; Geneva, Switzerland: 2017.

Solid Biofuels—Conversion of Analytical Results from One Basis to Another, Solid Biofuels; 2nd ed. International Organization for Standardization; Geneva, Switzerland: 2016.

Coal and Coke—Determination of Gross Calorific Value, 4th ed. International Organization for Standardization; Geneva, Switzerland: 2020.

Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. Effects of Selected White-Rot Fungi on the Calorific Value of Beech Wood (Fagus sylvatica L.) Biomass Bioenergy. 2019;127:105290. doi: 10.1016/j.biombioe.2019.105290. DOI

Aniszewska M., Gendek A., Tamelová B., Malaťák J., Velebil J., Krilek J., Čabalová I., Výbohová E., Bubeníková T. Changes in the Physical, Mechanical, Chemical and Energy Parameters of Coffee Husk Pellets during Short-Term Storage. Fuel. 2025;386:134191. doi: 10.1016/j.fuel.2024.134191. DOI

Aniszewska M., Gendek A., Hýsek Š., Malaťák J., Velebil J., Tamelová B. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. Materials. 2020;13:5660. doi: 10.3390/ma13245660. PubMed DOI PMC

Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy Utilization of Torrefied Residue from Wine Production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC

TIBCO Statistica. TIBCO Software Inc.; Palo Alto, CA, USA: 2017. version 13.3; An Advanced Analytics Software Package.

Lisowski A., Matkowski P., Dąbrowska M., Piątek M., Świętochowski A., Klonowski J., Mieszkalski L., Reshetiuk V. Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste Biomass Valor. 2020;11:63–75. doi: 10.1007/s12649-018-0458-8. DOI

Rudolfsson M., Stelte W., Lestander T.A. Process Optimization of Combined Biomass Torrefaction and Pelletization for Fuel Pellet Production—A Parametric Study. Appl. Energy. 2015;140:378–384. doi: 10.1016/j.apenergy.2014.11.041. DOI

Rudolfsson M., Borén E., Pommer L., Nordin A., Lestander T.A. Combined Effects of Torrefaction and Pelletization Parameters on the Quality of Pellets Produced from Torrefied Biomass. Appl. Energy. 2017;191:414–424. doi: 10.1016/j.apenergy.2017.01.035. DOI

Wang L., Riva L., Skreiberg Ø., Khalil R., Bartocci P., Yang Q., Yang H., Wang X., Chen D., Rudolfsson M., et al. Effect of Torrefaction on Properties of Pellets Produced from Woody Biomass. Energy Fuels. 2020;34:15343–15354. doi: 10.1021/acs.energyfuels.0c02671. DOI

Pelaez-Samaniego M.R., Yadama V., Garcia-Perez M., Lowell E., McDonald A.G. Effect of Temperature during Wood Torrefaction on the Formation of Lignin Liquid Intermediates. J. Anal. Appl. Pyrolysis. 2014;109:222–233. doi: 10.1016/j.jaap.2014.06.008. DOI

Samuelsson R., Thyrel M., Sjöström M., Lestander T.A. Effect of Biomaterial Characteristics on Pelletizing Properties and Biofuel Pellet Quality. Fuel Process. Technol. 2009;90:1129–1134. doi: 10.1016/j.fuproc.2009.05.007. DOI

Lu D., Tabil L.G., Wang D., Wang G., Emami S. Experimental Trials to Make Wheat Straw Pellets with Wood Residue and Binders. Biomass Bioenergy. 2014;69:287–296. doi: 10.1016/j.biombioe.2014.07.029. DOI

Solid Biofuels—Fuel Specifications and Classes—Part 8: Graded Thermally Treated and Densified Biomass Fuels for Commercial and Industrial Use, 1st ed. International Organization for Standardization; Geneva, Switzerland: 2023.

Solid Biofuels—Fuel Specifications and Classes—Part 2: Graded Wood Pellets. International Organization for Standardization; Geneva, Switzerland: 2021.

Gendek A., Aniszewska M., Owoc D., Tamelová B., Malaťák J., Velebil J., Krilek J. Physico-Mechanical and Energy Properties of Pellets Made from Ground Walnut Shells, Coniferous Tree Cones and Their Mixtures. Renew. Energy. 2023;211:248–258. doi: 10.1016/j.renene.2023.04.122. DOI

Stelte W., Holm J.K., Sanadi A.R., Barsberg S., Ahrenfeldt J., Henriksen U.B. Fuel Pellets from Biomass: The Importance of the Pelletizing Pressure and Its Dependency on the Processing Conditions. Fuel. 2011;90:3285–3290. doi: 10.1016/j.fuel.2011.05.011. DOI

Holm J.K., Henriksen U.B., Hustad J.E., Sørensen L.H. Toward an Understanding of Controlling Parameters in Softwood and Hardwood Pellets Production. Energy Fuels. 2006;20:2686–2694. doi: 10.1021/ef0503360. DOI

Brunerová A., Müller M., Gürdil G.A.K., Šleger V., Brožek M. Analysis of the Physical-Mechanical Properties of a Pelleted Chicken Litter Organic Fertiliser. Res. Agric. Eng. 2020;66:131–139. doi: 10.17221/41/2020-RAE. DOI

Lisowski A., Olendzki D., Świętochowski A., Dąbrowska M., Mieszkalski L., Ostrowska-Ligęza E., Stasiak M., Klonowski J., Piątek M. Spent Coffee Grounds Compaction Process: Its Effects on the Strength Properties of Biofuel Pellets. Renew. Energy. 2019;142:173–183. doi: 10.1016/j.renene.2019.04.114. DOI

Nguyen Q.N., Cloutier A., Achim A., Stevanovic T. Effect of Process Parameters and Raw Material Characteristics on Physical and Mechanical Properties of Wood Pellets Made from Sugar Maple Particles. Biomass Bioenergy. 2015;80:338–349. doi: 10.1016/j.biombioe.2015.06.010. DOI

Dyjakon A., Noszczyk T., Mostek A. Mechanical Durability and Grindability of Pellets after Torrefaction Process. Energies. 2021;14:6772. doi: 10.3390/en14206772. DOI

Wilczyński A., Gogolin M. Badanie Właściwości Sprężystych Sosny, Buka i Dębu. Zesz. Nauk. Wyższej Szkoły Pedagog. Bydg. 1989;15:89–123.

Bashaiwoldu A.B., Podczeck F., Newton J.M. A Study on the Effect of Drying Techniques on the Mechanical Properties of Pellets and Compacted Pellets. Eur. J. Pharm. Sci. 2004;21:119–129. doi: 10.1016/j.ejps.2003.09.013. PubMed DOI

Chen W.-H., Lin B.-J., Lin Y.-Y., Chu Y.-S., Ubando A.T., Show P.L., Ong H.C., Chang J.-S., Ho S.-H., Culaba A.B., et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021;82:100887. doi: 10.1016/j.pecs.2020.100887. DOI

Chen W.-H., Kuo P.-C. Torrefaction and Co-Torrefaction Characterization of Hemicellulose, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass. Energy. 2011;36:803–811. doi: 10.1016/j.energy.2010.12.036. DOI

Rousset P., Aguiar C., Labbé N., Commandré J.-M. Enhancing the Combustible Properties of Bamboo by Torrefaction. Bioresour. Technol. 2011;102:8225–8231. doi: 10.1016/j.biortech.2011.05.093. PubMed DOI

Ivanovski M., Petrovič A., Goričanec D., Urbancl D., Simonič M. Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material. Energies. 2023;16:6521. doi: 10.3390/en16186521. DOI

Jeníček L., Tunklová B., Malaťák J., Velebil J., Malaťáková J., Neškudla M., Hnilička F. The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment. Materials. 2023;16:2074. doi: 10.3390/ma16052074. PubMed DOI PMC

Rubin E.M. Genomics of Cellulosic Biofuels. Nature. 2008;454:841–845. doi: 10.1038/nature07190. PubMed DOI

Waters C.L., Janupala R.R., Mallinson R.G., Lobban L.L. Staged Thermal Fractionation for Segregation of Lignin and Cellulose Pyrolysis Products: An Experimental Study of Residence Time and Temperature Effects. J. Anal. Appl. Pyrolysis. 2017;126:380–389. doi: 10.1016/j.jaap.2017.05.008. DOI

Jeníček L., Malaťák J., Velebil J., Neškudla M. Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal. Materials. 2025;18:1495. doi: 10.3390/ma18071495. PubMed DOI PMC

Rumpf H. The Strength of Granules and Agglomerates. In: Knepper W., editor. Agglomeration. Interscience; New York, NY, USA: 1962. pp. 379–414.

Achilles A. Brikettierung von Halmfutter in Strangpressen. KTBL Schrift 192. Landwirtschaftsverlag Hiltrup; Darmstadt, Germany: 1972. KTBL Schrift.

Čabalová I., Bélik M., Kučerová V., Jurczyková T. Chemical and Morphological Composition of Norway Spruce Wood (Picea abies, L.) in the Dependence of Its Storage. Polymers. 2021;13:1619. doi: 10.3390/polym13101619. PubMed DOI PMC

Fengel D., Przyklenk M. Über die Veränderung des Holzes und seiner Komponenten im Temperaturbereich bis 200 °C Fünfte Mitteilung: Einfluß einer Wärmebehandlung auf das Lignin in Fichtenholz. Holz Als Roh- Werkst. 1970;28:254–263. doi: 10.1007/BF02615746. DOI

Kačík F., Kačíková D., Bubenikova T. Spruce Wood Lignin Alterations after Infrared Heating at Different Wood Moistures. Cellul. Chem. Technol. 2007;40:643–648.

Tumen I., Aydemir D., Gündüz G., Uner B., Cetin H. Changes in the Chemical Structure of Thermally Treated Wood. BioResources. 2010;5:1936–1944. doi: 10.15376/biores.5.3.1936-1944. DOI

Windeisen E., Strobel C., Wegener G. Chemical Changes during the Production of Thermo-Treated Beech Wood. Wood Sci. Technol. 2007;41:523–536. doi: 10.1007/s00226-007-0146-5. DOI

Kačíková D., Kačík F., Bubenikova T., Košíková B. Influence of Fire on Spruce Wood Lignin Changes. Wood Res. 2008;53:95–103.

Nanou P., Huijgen W.J.J., Carbo M.C., Kiel J.H.A. The Role of Lignin in the Densification of Torrefied Wood in Relation to the Final Product Properties. Biomass Bioenergy. 2018;111:248–262. doi: 10.1016/j.biombioe.2017.05.005. DOI

Kučerová V., Kačík F., Solár R., Sivák J. Comparison of Different Methods for Cellulose Determination after Thermal Degradation of Spruce Wood. Acta Fac. Xylologiae. 2009;51:5–10. (In Slovak)

Čabalová I., Kačík F., Kačíková D., Oravec M. The Effect of Radiant Heating on Chemical Changes in Spruce Wood. Acta Fac. Xylologiae. 2013;55:59–66.

Devekıran G., Sarptaş H. Torrefaction of Hazelnut Shells: The Effects of Temperature and Retention Time on Energy Yield and Fuel Characteristics. Energies. 2025;18:4710. doi: 10.3390/en18174710. DOI

Javanmard A., Zuki F.M., Wan Daud W.M.A., Patah M.F.A. Torrefied Biomass as a Platform for Sustainable Energy and Environmental Applications: Process Optimization, Reactor Design, and Functional Material Development. Process Saf. Environ. Prot. 2025;202:107643. doi: 10.1016/j.psep.2025.107643. DOI

Agu O.S., Tabil L.G., Mupondwa E., Emadi B., Cree D. Pelletization and Quality Evaluation of Torrefied Selected Biomass with Microwave Absorber. Results Eng. 2025;25:104183. doi: 10.1016/j.rineng.2025.104183. DOI

Butler J.W., Skrivan W., Lotfi S. Identification of Optimal Binders for Torrefied Biomass Pellets. Energies. 2023;16:3390. doi: 10.3390/en16083390. DOI

Malaťák J., Jankovský M., Malaťáková J., Velebil J., Gendek A., Aniszewska M. Substituting Solid Fossil Fuels with Torrefied Timber Products. Materials. 2023;16:7569. doi: 10.3390/ma16247569. PubMed DOI PMC

Sher F., Yaqoob A., Saeed F., Zhang S., Jahan Z., Klemeš J.J. Torrefied Biomass Fuels as a Renewable Alternative to Coal in Co-Firing for Power Generation. Energy. 2020;209:118444. doi: 10.1016/j.energy.2020.118444. DOI

Ungureanu N., Vlăduț N.-V., Biriș S.-Ștefan, Gheorghiță N.-E., Ionescu M. Biomass Pyrolysis Pathways for Renewable Energy and Sustainable Resource Recovery: A Critical Review of Processes, Parameters, and Product Valorization. Sustainability. 2025;17:7806. doi: 10.3390/su17177806. DOI

Saha A.K., Kumar R., Mandal A.K. Modern Steel Production Using Biomass Energy in 21st Century: Blessing or Curse? Int. J. Oil Gas. Coal Technol. 2025;37:489–519. doi: 10.1504/IJOGCT.2025.146524. DOI

Suriyakumar S., Mahalingam H., Sudhakar R.D. Utilization of Torrefied Rice Husk and Deoiled Cashew Nut Shell Cake Biomass Waste for Removal of Hazardous Reactive Violet 5 Dye. Environ. Sci. Pollut. Res. 2025;32:23557–23573. doi: 10.1007/s11356-025-37064-1. PubMed DOI

Chandrasekharan Nair S., John V., Geetha Bai R., Kikas T. Torrefaction of Lignocellulosic Biomass: A Pathway to Renewable Energy, Circular Economy, and Sustainable Agriculture. Sustainability. 2025;17:7738. doi: 10.3390/su17177738. DOI

Tunklová B., Jeníček L., Malaťák J., Neškudla M., Velebil J., Hnilička F. Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials. 2022;15:8709. doi: 10.3390/ma15248709. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...