Early life exposure to clonazepam has both short- and long-term effects on seizures induced with pentylenetetrazol (PTZ)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41608027
PubMed Central
PMC12835315
DOI
10.3389/fphar.2025.1725780
PII: 1725780
Knihovny.cz E-zdroje
- Klíčová slova
- clonazepam, neonatal rat, pentylenetetrazol seizures, seizure susceptibility, withdrawal phenomena,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The abrupt cessation of chronic benzodiazepine administration is associated with the development of withdrawal symptoms like increased susceptibility to seizures or seizure development in both animals and humans. Although withdrawal phenomena have been studied in detail in adult animals, information about their development and nature in the immature brain is lacking. Substantial experimental evidence suggests that exposure to BZDs early in life permanently alters brain circuitry and functions. However, the possible long-term modification of seizure propensity has not yet been studied. METHODS: Clonazepam (CZP) was injected into rat pups daily at a dose of 1 mg/kg for five consecutive days, starting on postnatal day 7 (P7) and continuing until P11. Seizure susceptibility was assessed using a pentylenetetrazol (PTZ)-induced seizure model. PTZ induces three types of seizures in rodents that differ by developmental profile and manifestations: convulsive myoclonic seizures (mS) and generalized tonic-clonic seizures (GTCS), and absence-like rhythmic spike-and-wave EEG activity (RMA). Seizures were induced with a single threshold dose of 50-60 mg/kg on days 2, 4, 7, 10, or 14, or with three additive doses of 20 mg/kg on days 7 and 14, or 3 months after the end of treatment. Convulsions accompanying mS and GTCS were detected behaviorally, and RMA was detected in EEG recordings. RESULTS: The effects of early-life CZP exposure on susceptibility to PTZ-induced seizures were highly dependent on the interval after treatment cessation and the seizure type. Cessation of CZP after a single PTZ threshold dose resulted in an increase in seizure severity compared to controls that was driven by an increased incidence of GTCS lasting 1 week (up to P18). Early-life CZP exposure led to decreased latency to the first RMA and increased RMA frequency after the first PTZ dose of 20 mg/kg in adult (P90) animals, but it did not change RMA parameters in juvenile rats. CONCLUSION: Abruptly ceasing clonazepam administration in infant rats results in the development of withdrawal phenomena, represented by a striking increase in seizure propensity. Interestingly, transient augmentation of GABAergic inhibition during critical periods of synaptogenesis and neural network formation and maturation permanently modifies susceptibility to PTZ-induced epileptiform activity.
Zobrazit více v PubMed
Allison C., Pratt J. A. (2003). Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol. Ther. 98 (2), 171–195. 10.1016/s0163-7258(03)00029-9 PubMed DOI
Andersen S. L., Navalta C. P. (2004). Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int. J. Dev. Neurosci. 22, 423–440. 10.1016/j.ijdevneu.2004.06.002 PubMed DOI
Authier N., Balayssac D., Sautereau M., Zangarelli A., Courty P., Somogyi A. A., et al. (2009). Benzodiazepine dependence: focus on withdrawal syndrome. Ann. Pharm. Fr. 67 (6), 408–413. 10.1016/j.pharma.2009.07.001 PubMed DOI
Baldwin D. S., Aitchison K., Bateson A., Curran H. V., Davies S., Leonard B., et al. (2013). Benzodiazepines: risks and benefits. A reconsideration. J. Psychopharmacol. 27 (11), 967–971. 10.1177/0269881113503509 PubMed DOI
Bittigau P., Sifringer M., Genz K., Reith E., Pospischil D., Govindarajalu S., et al. (2002). Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. U. S. A. 99, 15089–15094. 10.1073/pnas.222550499 PubMed DOI PMC
Brima T., Otáhal J., Mares P. (2013). Increased susceptibility to pentetrazol-induced seizures in developing rats after cortical photothrombotic ischemic stroke at P7. Brain Res. 1507, 146–153. 10.1016/j.brainres.2013.02.037 PubMed DOI
Browning R. A., Nelson D. K. (1986). Modification of electroshock and pentylenetetrazol seizure patterns in rats after precollicular transections. Exp. Neurol. 93 (3), 546–556. 10.1016/0014-4886(86)90174-3 PubMed DOI
Byrnes J. J., Miller L. G., Perkins K., Greenblatt D. J., Shader R. I. (1993). Chronic benzodiazepine administration. XI. Concurrent administration of PK11195 attenuates lorazepam discontinuation effects. Neuropsychopharmacology 8 (3), 267–273. 10.1038/npp.1993.30 PubMed DOI
Chen J., Cai F., Cao J., Zhang X., Li S. (2009). Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. J. Neurosci. Res. 87 (13), 2898–2907. 10.1002/jnr.22125 PubMed DOI
Conklin P., Heggeness F. W. (1971). Maturation of tempeature homeostasis in the rat. Am. J. Physiol. 220 (2), 333–336. 10.1152/ajplegacy.1971.220.2.333 PubMed DOI
Das P., Lilly S. M., Zerda R., Gunning W. T., Alvarez F. J., Tietz E. I. (2008). Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J. Comp. Neurol. 511 (6), 832–846. 10.1002/cne.21866 PubMed DOI PMC
Dobbing J. (1970). “Undernutrition and the developing brain,” in Developmental neurobiology. Editor Himwich W. A. (Springfield, Il: Charles C. Thomas Pbl.), 241–261.
Dobbing J., Smart J. L. (1974). Vulnerability of developing brain and behaviour. Br. Med. Bull. 30, 164–168. 10.1093/oxfordjournals.bmb.a071188 PubMed DOI
Dolin S. J., Patch T. L., Rabbani M., Siarey R. J., Bowhay A. R., Little H. J. (1990). Nitrendipine decreases benzodiazepine withdrawal seizures but not the development of benzodiazepine tolerance or withdrawal signs. Br. J. Pharmacol. 101 (3), 691–697. 10.1111/j.1476-5381.1990.tb14142.x PubMed DOI PMC
Dunworth S. J., Mead A. N., Stephens D. N. (2000). Previous experience of withdrawal from chronic diazepam ameliorates the aversiveness of precipitated withdrawal and reduces withdrawal-induced c-fos expression in nucleus accumbens. Eur. J. Neurosci. 12 (4), 1501–1508. 10.1046/j.1460-9568.2000.00036.x PubMed DOI
Ellingson R. J. (1964). “Studies of the electrical activity of the developing human brain,”Prog. Brain Res. Progress in brain research. Editors Himwich W. A., Himwich H. E. (Amsterodam: Elsevier; ), 9, 26–53. 10.1016/s0079-6123(08)63130-1 DOI
Ellingson R. J., Rose G. H. (1970). “Ontogenesis of the electroencephalogram,” in Developmental neurobiology. Editor Himwich W. A. (Charles C. Thomas Pbl.), 441–474. Springfield, Il).
Faingold C. L. (1987). The role of the brain stem in generalized epileptic seizures. Metab. Brain. Dis. 2 (2), 81–112. PMID: 3333172. 10.1007/BF00999720 PubMed DOI
Farrell K. (1986). Benzodiazepines in the treatment of children with epilepsy. Epilepsia 27 (Suppl. 1), S45–S52. 10.1111/j.1528-1157.1986.tb05733.x PubMed DOI
Fredriksson A., Archer T., Alm H., Gordh T., Eriksson P. (2004). Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav. Brain Res. 153 (2), 367–376. 10.1016/j.bbr.2003.12.026 PubMed DOI
Frieder B., Epstein S., Grimm V. E. (1984). The effects of exposure to diazepam during various stages of gestation or during lactation on the development and behavior of rat pups. Psychopharmacol. (Berl.) 83 (1), 51–55. 10.1007/BF00427422 PubMed DOI
Hirschtritt M. E., Olfson M., Kroenke K. (2021). Balancing the risks and benefits of benzodiazepines. JAMA 325 (4), 347–348. 10.1001/jama.2020.22106 PubMed DOI
Huang R. Q., Bell-Horner C. L., Dibas M. I., Covey D. F., Drewe J. A., Dillon G. H. (2001). Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J. Pharmacol. Exp. Ther. 298 (3), 986–995. PMID:11504794. 10.1016/s0022-3565(24)29466-0 PubMed DOI
Izzo E., Auta J., Impagnatiello F., Pesold C., Guidotti A., Costa E. (2001). Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines. Proc. Natl. Acad. Sci. U. S. A. 98 (6), 3483–3488. 10.1073/pnas.051628698 PubMed DOI PMC
Kellogg C. K. (1988). Benzodiazepines:influence on the developing brain. Prog. Brain. Res. 73, 207–228. 10.1016/S0079-6123(08)60506-3 PubMed DOI
Kovacevic J., Timic T., Tiruveedhula V. V., Batinic B., Namjoshi O. A., Milic M., et al. (2014). Duration of treatment and activation of α1-containing GABAA receptors variably affect the level of anxiety and seizure susceptibility after diazepam withdrawal in rats. Brain Res. Bull. 104, 1–6. 10.1016/j.brainresbull.2014.03.002 PubMed DOI PMC
Kubova H. (1999). “Ontogenesis and treatment efficacy: prevention of seizures in the immature brain,” in: Adv. Neurol. Plasticity Epilepsy. Dyn. Aspects Brain Funct. Advances in neurology, Vol. 81, ed. Stefan H., Andermann F., Chauvel P., Shorvon S. D. (Lippincott, Williams and Wilkins; ), 357–361. PubMed
Kubova H. (2009). “Pharmacology of seizure drugs,”. Encyclopedia of basic epilepsy research. Editor Schwartzkroin P. A. (Oxford: Academic Press; ), 2, 780–786.
Kubova H., Mares P. (1989). Time course of the anticonvulsant action of clonazepam in the rats. Arch. Int. Pharmacodyn. Ther. 298, 15–24. PMID:2757463. PubMed
Kubova H., Bendova Z., Moravcova S., Pacesova D., Rocha L., Mares P. (2018). Neonatal clonazepam administration induced long-lasting changes in glutamate receptors. Front. Mol. Neurosci. 11, 382. 10.3389/fnmol.2018.00382 PubMed DOI PMC
Kubova H., Bendova Z., Moravcova S., Pacesova D., Rocha L., Mares P. (2020). Neonatal clonazepam administration induced long-lasting changes in GABA PubMed DOI PMC
Lader M. (2011). Benzodiazepines revisited--will we ever learn? Addiction 106 (12), 2086–2109. 10.1111/j.1360-0443.2011.03563.x PubMed DOI
Lader M. (2014). Benzodiazepine harm: how can it be reduced? Br. J. Clin. Pharmacol. 77 (2), 295–301. 10.1111/j.1365-2125.2012.04418.x PubMed DOI PMC
Lohmann C., Kessels H. W. (2014). The developmental stages of synaptic plasticity. J. Physiol. 592, 13–31. 10.1113/jphysiol.2012.235119 PubMed DOI PMC
Loscher W., Honack D. (1992). Withdrawal precipitation by benzodiazepine receptor antagonists in dogs chronically treated with diazepam or the novel anxiolytic and anticonvulsant beta-carboline abecarnil. Schmiedeb. Arch. Pharmacol. 345 (4), 452–460. 10.1007/BF00176624 PubMed DOI
Loscher W., Rundfeldt C., Honack D., Ebert U. (1996). Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil. J. Pharmacol. Exp. Ther. 279 (2), 561–572. PMID:8930158. 10.1016/s0022-3565(25)21163-6 PubMed DOI
Mares P., Schickerova R. (1980). Seizures elicited by subcutaneous injection of metrazol during ontogenesis in rats. Act. Nerv. Super. (Praha). 22 (4), 264–268. PMID:7225195. PubMed
Mares P., Zouhar A., Brozek G. (1979). Ontogenetic development of electrocorticogram in the rat. Act. Nerv. Super. 21, 218–225. PubMed
Melamed O., Levav-Rabkin T., Zukerman C., Clarke G., Cryan J. F., Dinan T. G., et al. (2014). Long-lasting glutamatergic modulation induced by neonatal GABA enhancement in mice. Neuropharmacology 79, 616–625. PMID: 24462620. 10.1016/j.neuropharm.2013.12.015 PubMed DOI
Mikulecka A., Mares P., Kubova H. (2011). Rebound increase in seizure susceptibility but not isolation-induced calls after single administration of clonazepam and Ro 19-8022 in infant rats. Epilepsy Behav. 20, 12–19. 10.1016/j.yebeh.2010.10.021 PubMed DOI
Mikulecka A., Subrt M., Stuchlik A., Kubova H. (2014a). Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior. Front. Behav. Neurosci. 8, 101. 10.3389/fnbeh.2014.00101 PubMed DOI PMC
Mikulecka A., Subrta M., Parizkova M., Mares P., Kubova H. (2014b). Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior. Front. Behav. Neurosci. 8, 169. 10.3389/fnbeh.2014.00169 PubMed DOI PMC
Mohler H., Okada T., Heitz P., Ulrich J. (1978). Biochemical identification of the site of action of benzodiazepines in human brain by 3H-diazepam binding. Life Sci. 22 (11), 985–995. 10.1016/0024-3205(78)90364-8 PubMed DOI
Monteiro A. B., Alves A. F., Ribeiro Portela A. C., Pires H. F., Pessoa de Melo M., Medeiros Vilar Barbosa N. M., et al. (2024). Pentylenetetrazole: a review. Neurochem. Int. 180, 105841. 10.1016/j.neuint.2024.105841 PubMed DOI
Mori T., Shimizu N., Shibasaki M., Suzuki T. (2012). Involvement of the arachidonic acid cascade in the hypersusceptibility to pentylenetetrazole-induced seizure during diazepam withdrawal. Biol. Pharm. Bull. 35 (12), 2243–2246. 10.1248/bpb.b12-00542 PubMed DOI
Ng E., Klinger G., Shah V., Taddio A. (2002). Safety of benzodiazepines in newborns. Ann. Pharmacother. 36 (7-8), 1150–1155. PMID: 12086545. 10.1345/aph.1A328 PubMed DOI
Nidhi G., Bhargava V. K., Pandhi P. (2000). Tolerance to and withdrawal from anticonvulsant action of diazepam: role of nitric oxide. Epilepsy Behav. 1 (4), 262–270. 10.1006/ebeh.2000.0081 PubMed DOI
Olney J. W., Wozniak D. F., Jevtovic-Todorovic V., Farber N. B., Bittigau P., Ikonomidou C. (2002). Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol. 12 (4), 488–498. 10.1111/j.1750-3639.2002.tb00467.x PubMed DOI PMC
Pallanti S., Zohar J., Kasper S., Moller H. J., Hollander E. (2024). Revisiting benzodiazepines (GABA enhancers):A transdiagnostic and precision medicine approach. J. Psychiatr. Res. 170, 65–72. 10.1016/j.jpsychires.2023.11.042 PubMed DOI
Paxinos G., Watson C. (1986). The rat brain in stereotaxic coordinates. New York, NY: Academic Press.
Podhorna J. (2002). The experimental pharmacotherapy of benzodiazepine withdrawal. Curr. Pharm. Des. 8 (1), 23–43. 10.2174/1381612023396636 PubMed DOI
Pohl M., Mares P. (1987). Effects of flunarizine on Metrazol-induced seizures in developing rats. Epilepsy Res. 1 (5), 302–305. 10.1016/0920-1211(87)90006-4 PubMed DOI
Raol Y. H., Zhang G., Budreck E. C., Brooks-Kayal A. R. (2005). Long-term effects of diazepam and phenobarbital treatment during development on GABA receptors, transporters and glutamic acid decarboxylase. Neuroscience 132 (2), 399–407. 10.1016/j.neuroscience.2005.01.005 PubMed DOI
Rennie J. M., Boylan G. B. (2003). Neonatal seizures and their treatment. Curr. Opin. Neurol. 16 (2), 177–181. 10.1097/01.wco.0000063768.15877.23 PubMed DOI
Rundfeldt C., Wlaz P., Honack D., Loscher W. (1995). Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. J. Pharmacol. Exp. Ther. 275 (2), 693–702. PMID:7473156. 10.1016/s0022-3565(25)12118-6 PubMed DOI
Schickerova R., Mares P., Trojan S. (1989). Rhythmic metrazol activity in rats as a model of human absences. Act. Nerv. Super. (Praha). 31 (1), 16–20. PMID: 2506725. PubMed
Semple B. D., Blomgren K., Gimlin K., Ferriero D. M., Noble-Haeusslein L. J. (2013). Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 106-107, 1–16. 10.1016/j.pneurobio.2013.04.001 PubMed DOI PMC
Song J., Shen G., Greenfield L. J., Tietz E. I. (2007). Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons. J. Pharmacol. Exp. Ther. 322 (2), 569–581. 10.1124/jpet.107.121798 PubMed DOI
Souza-Pinto L. F., Castilho V. M., Brandao M. L., Nobre M. J. (2007). The blockade of AMPA-kainate and NMDA receptors in the dorsal periaqueductal gray reduces the effects of diazepam withdrawal in rats. Pharmacol. Biochem. Behav. 87 (2), 250–257. 10.1016/j.pbb.2007.04.021 PubMed DOI
Stefovska V. G., Uckermann O., Czuczwar M., Smitka M., Czuczwar P., Kis J., et al. (2008). Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Ann. Neurol. 64 (4), 434–445. 10.1002/ana.21463 PubMed DOI
Steppuhn K. G., Turski L. (1993). Diazepam dependence prevented by glutamate antagonists. Proc. Natl. Acad. Sci. U. S. A. 90 (14), 6889–6893. 10.1073/pnas.90.14.6889 PubMed DOI PMC
Tchekalarova J. D., Kubova H., Mares P. (2013). Different effects of postnatal caffeine treatment on two pentylenetetrazole-induced seizure models persist into adulthood. Pharmacol. Rep. 65 (4), 847–853. 10.1016/s1734-1140(13)71065-x PubMed DOI
Tsuda M., Suzuki T., Misawa M. (1997). Recovery of decreased seizure threshold for pentylenetetrazole during diazepam withdrawal by NMDA receptor antagonists. Eur. J. Pharmacol. 324 (1), 63–66. 10.1016/s0014-2999(97)00152-0 PubMed DOI
Tsuda M., Suzuki T., Misawa M. (1998a). Region-specific changes in [3H]dizocilpine binding in diazepam-withdrawn rats. Neurosci. Lett. 240 (2), 113–115. 10.1016/s0304-3940(97)00942-7 PubMed DOI
Tsuda M., Chiba Y., Suzuki T., Misawa M. (1998b). Upregulation of NMDA receptor subunit proteins in the cerebral cortex during diazepam withdrawal. Eur. J. Pharmacol. 341 (2-3), R1–R2. 10.1016/s0014-2999(97)01501-x PubMed DOI
Tucker J. C. (1985). Benzodiazepines and the developing rat: a critical review. Neurosci. Biobehav. Rev. 9 (1), 101–111. 10.1016/0149-7634(85)90036-3 PubMed DOI
Uusi-Oukari M., Korpi E. R. (2010). Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol. Rev. 62 (1), 97–135. 10.1124/pr.109.002063 PubMed DOI
Velisek L., Kubova H., Pohl M., Stankova L., Mares P., Schickerova R. (1992). Pentylenetetrazol-induced seizures in rats: an ontogenetic study. Schmiededeb. Arch. Pharmacol. 346, 588–591. 10.1007/BF00169017 PubMed DOI
Vernadakis A., Woodbury D. M. (1969). The developing animal as a model. Epilepsia 10 (2), 163–178. 10.1111/j.1528-1157.1969.tb03841.x PubMed DOI
Wadhwa M., Sall J. W., Chinn G. A. (2025). Neonatal diazepam exposure decreases dendritic arborization and spine density of cortical pyramidal neurons in rats. J. Neurosurg. Anesthesiol. 37 (2), 225–231. 10.1097/ANA.0000000000000979 PubMed DOI
Ward B. O., Stephens D. N. (1998). Sensitisation of withdrawal signs following repeated withdrawal from a benzodiazepine: differences between measures of anxiety and seizure sensitivity. Psychopharmacol. Berl. 135, 342–352. 10.1007/s002130050521 PubMed DOI
Zouhar A., Mares P., Brozek G. (1980). Electrocorticographic activity elicited by metrazol during ontogenesis in rats. Arch. Int. Pharmacodyn. Ther. 248 (2), 280–288. PMID: 7224710. PubMed