Early life exposure to clonazepam has both short- and long-term effects on seizures induced with pentylenetetrazol (PTZ)

. 2025 ; 16 () : 1725780. [epub] 20260113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41608027

INTRODUCTION: The abrupt cessation of chronic benzodiazepine administration is associated with the development of withdrawal symptoms like increased susceptibility to seizures or seizure development in both animals and humans. Although withdrawal phenomena have been studied in detail in adult animals, information about their development and nature in the immature brain is lacking. Substantial experimental evidence suggests that exposure to BZDs early in life permanently alters brain circuitry and functions. However, the possible long-term modification of seizure propensity has not yet been studied. METHODS: Clonazepam (CZP) was injected into rat pups daily at a dose of 1 mg/kg for five consecutive days, starting on postnatal day 7 (P7) and continuing until P11. Seizure susceptibility was assessed using a pentylenetetrazol (PTZ)-induced seizure model. PTZ induces three types of seizures in rodents that differ by developmental profile and manifestations: convulsive myoclonic seizures (mS) and generalized tonic-clonic seizures (GTCS), and absence-like rhythmic spike-and-wave EEG activity (RMA). Seizures were induced with a single threshold dose of 50-60 mg/kg on days 2, 4, 7, 10, or 14, or with three additive doses of 20 mg/kg on days 7 and 14, or 3 months after the end of treatment. Convulsions accompanying mS and GTCS were detected behaviorally, and RMA was detected in EEG recordings. RESULTS: The effects of early-life CZP exposure on susceptibility to PTZ-induced seizures were highly dependent on the interval after treatment cessation and the seizure type. Cessation of CZP after a single PTZ threshold dose resulted in an increase in seizure severity compared to controls that was driven by an increased incidence of GTCS lasting 1 week (up to P18). Early-life CZP exposure led to decreased latency to the first RMA and increased RMA frequency after the first PTZ dose of 20 mg/kg in adult (P90) animals, but it did not change RMA parameters in juvenile rats. CONCLUSION: Abruptly ceasing clonazepam administration in infant rats results in the development of withdrawal phenomena, represented by a striking increase in seizure propensity. Interestingly, transient augmentation of GABAergic inhibition during critical periods of synaptogenesis and neural network formation and maturation permanently modifies susceptibility to PTZ-induced epileptiform activity.

Zobrazit více v PubMed

Allison C., Pratt J. A. (2003). Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol. Ther. 98 (2), 171–195. 10.1016/s0163-7258(03)00029-9 PubMed DOI

Andersen S. L., Navalta C. P. (2004). Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int. J. Dev. Neurosci. 22, 423–440. 10.1016/j.ijdevneu.2004.06.002 PubMed DOI

Authier N., Balayssac D., Sautereau M., Zangarelli A., Courty P., Somogyi A. A., et al. (2009). Benzodiazepine dependence: focus on withdrawal syndrome. Ann. Pharm. Fr. 67 (6), 408–413. 10.1016/j.pharma.2009.07.001 PubMed DOI

Baldwin D. S., Aitchison K., Bateson A., Curran H. V., Davies S., Leonard B., et al. (2013). Benzodiazepines: risks and benefits. A reconsideration. J. Psychopharmacol. 27 (11), 967–971. 10.1177/0269881113503509 PubMed DOI

Bittigau P., Sifringer M., Genz K., Reith E., Pospischil D., Govindarajalu S., et al. (2002). Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. U. S. A. 99, 15089–15094. 10.1073/pnas.222550499 PubMed DOI PMC

Brima T., Otáhal J., Mares P. (2013). Increased susceptibility to pentetrazol-induced seizures in developing rats after cortical photothrombotic ischemic stroke at P7. Brain Res. 1507, 146–153. 10.1016/j.brainres.2013.02.037 PubMed DOI

Browning R. A., Nelson D. K. (1986). Modification of electroshock and pentylenetetrazol seizure patterns in rats after precollicular transections. Exp. Neurol. 93 (3), 546–556. 10.1016/0014-4886(86)90174-3 PubMed DOI

Byrnes J. J., Miller L. G., Perkins K., Greenblatt D. J., Shader R. I. (1993). Chronic benzodiazepine administration. XI. Concurrent administration of PK11195 attenuates lorazepam discontinuation effects. Neuropsychopharmacology 8 (3), 267–273. 10.1038/npp.1993.30 PubMed DOI

Chen J., Cai F., Cao J., Zhang X., Li S. (2009). Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. J. Neurosci. Res. 87 (13), 2898–2907. 10.1002/jnr.22125 PubMed DOI

Conklin P., Heggeness F. W. (1971). Maturation of tempeature homeostasis in the rat. Am. J. Physiol. 220 (2), 333–336. 10.1152/ajplegacy.1971.220.2.333 PubMed DOI

Das P., Lilly S. M., Zerda R., Gunning W. T., Alvarez F. J., Tietz E. I. (2008). Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J. Comp. Neurol. 511 (6), 832–846. 10.1002/cne.21866 PubMed DOI PMC

Dobbing J. (1970). “Undernutrition and the developing brain,” in Developmental neurobiology. Editor Himwich W. A. (Springfield, Il: Charles C. Thomas Pbl.), 241–261.

Dobbing J., Smart J. L. (1974). Vulnerability of developing brain and behaviour. Br. Med. Bull. 30, 164–168. 10.1093/oxfordjournals.bmb.a071188 PubMed DOI

Dolin S. J., Patch T. L., Rabbani M., Siarey R. J., Bowhay A. R., Little H. J. (1990). Nitrendipine decreases benzodiazepine withdrawal seizures but not the development of benzodiazepine tolerance or withdrawal signs. Br. J. Pharmacol. 101 (3), 691–697. 10.1111/j.1476-5381.1990.tb14142.x PubMed DOI PMC

Dunworth S. J., Mead A. N., Stephens D. N. (2000). Previous experience of withdrawal from chronic diazepam ameliorates the aversiveness of precipitated withdrawal and reduces withdrawal-induced c-fos expression in nucleus accumbens. Eur. J. Neurosci. 12 (4), 1501–1508. 10.1046/j.1460-9568.2000.00036.x PubMed DOI

Ellingson R. J. (1964). “Studies of the electrical activity of the developing human brain,”Prog. Brain Res. Progress in brain research. Editors Himwich W. A., Himwich H. E. (Amsterodam: Elsevier; ), 9, 26–53. 10.1016/s0079-6123(08)63130-1 DOI

Ellingson R. J., Rose G. H. (1970). “Ontogenesis of the electroencephalogram,” in Developmental neurobiology. Editor Himwich W. A. (Charles C. Thomas Pbl.), 441–474. Springfield, Il).

Faingold C. L. (1987). The role of the brain stem in generalized epileptic seizures. Metab. Brain. Dis. 2 (2), 81–112. PMID: 3333172. 10.1007/BF00999720 PubMed DOI

Farrell K. (1986). Benzodiazepines in the treatment of children with epilepsy. Epilepsia 27 (Suppl. 1), S45–S52. 10.1111/j.1528-1157.1986.tb05733.x PubMed DOI

Fredriksson A., Archer T., Alm H., Gordh T., Eriksson P. (2004). Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav. Brain Res. 153 (2), 367–376. 10.1016/j.bbr.2003.12.026 PubMed DOI

Frieder B., Epstein S., Grimm V. E. (1984). The effects of exposure to diazepam during various stages of gestation or during lactation on the development and behavior of rat pups. Psychopharmacol. (Berl.) 83 (1), 51–55. 10.1007/BF00427422 PubMed DOI

Hirschtritt M. E., Olfson M., Kroenke K. (2021). Balancing the risks and benefits of benzodiazepines. JAMA 325 (4), 347–348. 10.1001/jama.2020.22106 PubMed DOI

Huang R. Q., Bell-Horner C. L., Dibas M. I., Covey D. F., Drewe J. A., Dillon G. H. (2001). Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J. Pharmacol. Exp. Ther. 298 (3), 986–995. PMID:11504794. 10.1016/s0022-3565(24)29466-0 PubMed DOI

Izzo E., Auta J., Impagnatiello F., Pesold C., Guidotti A., Costa E. (2001). Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines. Proc. Natl. Acad. Sci. U. S. A. 98 (6), 3483–3488. 10.1073/pnas.051628698 PubMed DOI PMC

Kellogg C. K. (1988). Benzodiazepines:influence on the developing brain. Prog. Brain. Res. 73, 207–228. 10.1016/S0079-6123(08)60506-3 PubMed DOI

Kovacevic J., Timic T., Tiruveedhula V. V., Batinic B., Namjoshi O. A., Milic M., et al. (2014). Duration of treatment and activation of α1-containing GABAA receptors variably affect the level of anxiety and seizure susceptibility after diazepam withdrawal in rats. Brain Res. Bull. 104, 1–6. 10.1016/j.brainresbull.2014.03.002 PubMed DOI PMC

Kubova H. (1999). “Ontogenesis and treatment efficacy: prevention of seizures in the immature brain,” in: Adv. Neurol. Plasticity Epilepsy. Dyn. Aspects Brain Funct. Advances in neurology, Vol. 81, ed. Stefan H., Andermann F., Chauvel P., Shorvon S. D. (Lippincott, Williams and Wilkins; ), 357–361. PubMed

Kubova H. (2009). “Pharmacology of seizure drugs,”. Encyclopedia of basic epilepsy research. Editor Schwartzkroin P. A. (Oxford: Academic Press; ), 2, 780–786.

Kubova H., Mares P. (1989). Time course of the anticonvulsant action of clonazepam in the rats. Arch. Int. Pharmacodyn. Ther. 298, 15–24. PMID:2757463. PubMed

Kubova H., Bendova Z., Moravcova S., Pacesova D., Rocha L., Mares P. (2018). Neonatal clonazepam administration induced long-lasting changes in glutamate receptors. Front. Mol. Neurosci. 11, 382. 10.3389/fnmol.2018.00382 PubMed DOI PMC

Kubova H., Bendova Z., Moravcova S., Pacesova D., Rocha L., Mares P. (2020). Neonatal clonazepam administration induced long-lasting changes in GABA PubMed DOI PMC

Lader M. (2011). Benzodiazepines revisited--will we ever learn? Addiction 106 (12), 2086–2109. 10.1111/j.1360-0443.2011.03563.x PubMed DOI

Lader M. (2014). Benzodiazepine harm: how can it be reduced? Br. J. Clin. Pharmacol. 77 (2), 295–301. 10.1111/j.1365-2125.2012.04418.x PubMed DOI PMC

Lohmann C., Kessels H. W. (2014). The developmental stages of synaptic plasticity. J. Physiol. 592, 13–31. 10.1113/jphysiol.2012.235119 PubMed DOI PMC

Loscher W., Honack D. (1992). Withdrawal precipitation by benzodiazepine receptor antagonists in dogs chronically treated with diazepam or the novel anxiolytic and anticonvulsant beta-carboline abecarnil. Schmiedeb. Arch. Pharmacol. 345 (4), 452–460. 10.1007/BF00176624 PubMed DOI

Loscher W., Rundfeldt C., Honack D., Ebert U. (1996). Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil. J. Pharmacol. Exp. Ther. 279 (2), 561–572. PMID:8930158. 10.1016/s0022-3565(25)21163-6 PubMed DOI

Mares P., Schickerova R. (1980). Seizures elicited by subcutaneous injection of metrazol during ontogenesis in rats. Act. Nerv. Super. (Praha). 22 (4), 264–268. PMID:7225195. PubMed

Mares P., Zouhar A., Brozek G. (1979). Ontogenetic development of electrocorticogram in the rat. Act. Nerv. Super. 21, 218–225. PubMed

Melamed O., Levav-Rabkin T., Zukerman C., Clarke G., Cryan J. F., Dinan T. G., et al. (2014). Long-lasting glutamatergic modulation induced by neonatal GABA enhancement in mice. Neuropharmacology 79, 616–625. PMID: 24462620. 10.1016/j.neuropharm.2013.12.015 PubMed DOI

Mikulecka A., Mares P., Kubova H. (2011). Rebound increase in seizure susceptibility but not isolation-induced calls after single administration of clonazepam and Ro 19-8022 in infant rats. Epilepsy Behav. 20, 12–19. 10.1016/j.yebeh.2010.10.021 PubMed DOI

Mikulecka A., Subrt M., Stuchlik A., Kubova H. (2014a). Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior. Front. Behav. Neurosci. 8, 101. 10.3389/fnbeh.2014.00101 PubMed DOI PMC

Mikulecka A., Subrta M., Parizkova M., Mares P., Kubova H. (2014b). Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior. Front. Behav. Neurosci. 8, 169. 10.3389/fnbeh.2014.00169 PubMed DOI PMC

Mohler H., Okada T., Heitz P., Ulrich J. (1978). Biochemical identification of the site of action of benzodiazepines in human brain by 3H-diazepam binding. Life Sci. 22 (11), 985–995. 10.1016/0024-3205(78)90364-8 PubMed DOI

Monteiro A. B., Alves A. F., Ribeiro Portela A. C., Pires H. F., Pessoa de Melo M., Medeiros Vilar Barbosa N. M., et al. (2024). Pentylenetetrazole: a review. Neurochem. Int. 180, 105841. 10.1016/j.neuint.2024.105841 PubMed DOI

Mori T., Shimizu N., Shibasaki M., Suzuki T. (2012). Involvement of the arachidonic acid cascade in the hypersusceptibility to pentylenetetrazole-induced seizure during diazepam withdrawal. Biol. Pharm. Bull. 35 (12), 2243–2246. 10.1248/bpb.b12-00542 PubMed DOI

Ng E., Klinger G., Shah V., Taddio A. (2002). Safety of benzodiazepines in newborns. Ann. Pharmacother. 36 (7-8), 1150–1155. PMID: 12086545. 10.1345/aph.1A328 PubMed DOI

Nidhi G., Bhargava V. K., Pandhi P. (2000). Tolerance to and withdrawal from anticonvulsant action of diazepam: role of nitric oxide. Epilepsy Behav. 1 (4), 262–270. 10.1006/ebeh.2000.0081 PubMed DOI

Olney J. W., Wozniak D. F., Jevtovic-Todorovic V., Farber N. B., Bittigau P., Ikonomidou C. (2002). Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol. 12 (4), 488–498. 10.1111/j.1750-3639.2002.tb00467.x PubMed DOI PMC

Pallanti S., Zohar J., Kasper S., Moller H. J., Hollander E. (2024). Revisiting benzodiazepines (GABA enhancers):A transdiagnostic and precision medicine approach. J. Psychiatr. Res. 170, 65–72. 10.1016/j.jpsychires.2023.11.042 PubMed DOI

Paxinos G., Watson C. (1986). The rat brain in stereotaxic coordinates. New York, NY: Academic Press.

Podhorna J. (2002). The experimental pharmacotherapy of benzodiazepine withdrawal. Curr. Pharm. Des. 8 (1), 23–43. 10.2174/1381612023396636 PubMed DOI

Pohl M., Mares P. (1987). Effects of flunarizine on Metrazol-induced seizures in developing rats. Epilepsy Res. 1 (5), 302–305. 10.1016/0920-1211(87)90006-4 PubMed DOI

Raol Y. H., Zhang G., Budreck E. C., Brooks-Kayal A. R. (2005). Long-term effects of diazepam and phenobarbital treatment during development on GABA receptors, transporters and glutamic acid decarboxylase. Neuroscience 132 (2), 399–407. 10.1016/j.neuroscience.2005.01.005 PubMed DOI

Rennie J. M., Boylan G. B. (2003). Neonatal seizures and their treatment. Curr. Opin. Neurol. 16 (2), 177–181. 10.1097/01.wco.0000063768.15877.23 PubMed DOI

Rundfeldt C., Wlaz P., Honack D., Loscher W. (1995). Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. J. Pharmacol. Exp. Ther. 275 (2), 693–702. PMID:7473156. 10.1016/s0022-3565(25)12118-6 PubMed DOI

Schickerova R., Mares P., Trojan S. (1989). Rhythmic metrazol activity in rats as a model of human absences. Act. Nerv. Super. (Praha). 31 (1), 16–20. PMID: 2506725. PubMed

Semple B. D., Blomgren K., Gimlin K., Ferriero D. M., Noble-Haeusslein L. J. (2013). Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 106-107, 1–16. 10.1016/j.pneurobio.2013.04.001 PubMed DOI PMC

Song J., Shen G., Greenfield L. J., Tietz E. I. (2007). Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons. J. Pharmacol. Exp. Ther. 322 (2), 569–581. 10.1124/jpet.107.121798 PubMed DOI

Souza-Pinto L. F., Castilho V. M., Brandao M. L., Nobre M. J. (2007). The blockade of AMPA-kainate and NMDA receptors in the dorsal periaqueductal gray reduces the effects of diazepam withdrawal in rats. Pharmacol. Biochem. Behav. 87 (2), 250–257. 10.1016/j.pbb.2007.04.021 PubMed DOI

Stefovska V. G., Uckermann O., Czuczwar M., Smitka M., Czuczwar P., Kis J., et al. (2008). Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Ann. Neurol. 64 (4), 434–445. 10.1002/ana.21463 PubMed DOI

Steppuhn K. G., Turski L. (1993). Diazepam dependence prevented by glutamate antagonists. Proc. Natl. Acad. Sci. U. S. A. 90 (14), 6889–6893. 10.1073/pnas.90.14.6889 PubMed DOI PMC

Tchekalarova J. D., Kubova H., Mares P. (2013). Different effects of postnatal caffeine treatment on two pentylenetetrazole-induced seizure models persist into adulthood. Pharmacol. Rep. 65 (4), 847–853. 10.1016/s1734-1140(13)71065-x PubMed DOI

Tsuda M., Suzuki T., Misawa M. (1997). Recovery of decreased seizure threshold for pentylenetetrazole during diazepam withdrawal by NMDA receptor antagonists. Eur. J. Pharmacol. 324 (1), 63–66. 10.1016/s0014-2999(97)00152-0 PubMed DOI

Tsuda M., Suzuki T., Misawa M. (1998a). Region-specific changes in [3H]dizocilpine binding in diazepam-withdrawn rats. Neurosci. Lett. 240 (2), 113–115. 10.1016/s0304-3940(97)00942-7 PubMed DOI

Tsuda M., Chiba Y., Suzuki T., Misawa M. (1998b). Upregulation of NMDA receptor subunit proteins in the cerebral cortex during diazepam withdrawal. Eur. J. Pharmacol. 341 (2-3), R1–R2. 10.1016/s0014-2999(97)01501-x PubMed DOI

Tucker J. C. (1985). Benzodiazepines and the developing rat: a critical review. Neurosci. Biobehav. Rev. 9 (1), 101–111. 10.1016/0149-7634(85)90036-3 PubMed DOI

Uusi-Oukari M., Korpi E. R. (2010). Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol. Rev. 62 (1), 97–135. 10.1124/pr.109.002063 PubMed DOI

Velisek L., Kubova H., Pohl M., Stankova L., Mares P., Schickerova R. (1992). Pentylenetetrazol-induced seizures in rats: an ontogenetic study. Schmiededeb. Arch. Pharmacol. 346, 588–591. 10.1007/BF00169017 PubMed DOI

Vernadakis A., Woodbury D. M. (1969). The developing animal as a model. Epilepsia 10 (2), 163–178. 10.1111/j.1528-1157.1969.tb03841.x PubMed DOI

Wadhwa M., Sall J. W., Chinn G. A. (2025). Neonatal diazepam exposure decreases dendritic arborization and spine density of cortical pyramidal neurons in rats. J. Neurosurg. Anesthesiol. 37 (2), 225–231. 10.1097/ANA.0000000000000979 PubMed DOI

Ward B. O., Stephens D. N. (1998). Sensitisation of withdrawal signs following repeated withdrawal from a benzodiazepine: differences between measures of anxiety and seizure sensitivity. Psychopharmacol. Berl. 135, 342–352. 10.1007/s002130050521 PubMed DOI

Zouhar A., Mares P., Brozek G. (1980). Electrocorticographic activity elicited by metrazol during ontogenesis in rats. Arch. Int. Pharmacodyn. Ther. 248 (2), 280–288. PMID: 7224710. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...