The role of far-red fluorescing chlorophylls in the quenching of LHCII
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
PubMed
41612087
PubMed Central
PMC12855284
DOI
10.1007/s11120-026-01199-0
PII: 10.1007/s11120-026-01199-0
Knihovny.cz E-zdroje
- Klíčová slova
- Energy dissipation, Far-red chlorophyll fluorescence, LHCII, Non-photochemical quenching, Transient absorption spectroscopy,
- MeSH
- chlorofyl * metabolismus chemie MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fotosyntéza MeSH
- světlosběrné proteinové komplexy * metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl * MeSH
- světlosběrné proteinové komplexy * MeSH
In photosynthetic organisms, the major light-harvesting antenna protein LHCII performs the dual function of capturing excitation energy and protecting the photosystem from over-excitation via non-photochemical quenching (NPQ). We investigated the role of far-red-fluorescing chlorophylls (emission > 700 nm) in quenching LHCII by comparing isolated trimeric LHCII (denoted F680) with aggregated LHCII prepared in a glycerol-rich medium (denoted F730). Time-resolved fluorescence and ultrafast transient-absorption spectroscopy, including an intensity-cycling scheme to separate annihilation-free dynamics, were used. We find that the red-emissive chlorophyll states are populated in < 100 ps and display properties consistent with states having a low transition-dipole moment. Despite the significant shortening of the chlorophyll-a excited-state lifetimes in the F730 sample (hundreds of picoseconds vs. several nanoseconds in F680), no long-lived excited-state species attributable to the far-red emitters were detected in the transient-absorption data. These findings suggest that the far-red-fluorescing chlorophylls are not the direct quenchers but rather markers of the quenched LHCII configuration and highlight the necessity to better define aggregate size and internal organization for elucidating the molecular mechanism of quenching.
Biology Centre of the Czech Academy of Sciences Branišovská 31 České Budějovice 37005 Czech Republic
Zobrazit více v PubMed
Accomasso D, Londi G, Cupellini L, Mennucci B (2024) The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants. Nat Commun 15:847. 10.1038/s41467-024-45090-9 PubMed DOI PMC
Alster J, Bína D, Charvátová K, Lokstein H, Pšenčík J (2024) Direct observation of triplet energy transfer between chlorophylls and carotenoids in the core antenna of photosystem I from PubMed DOI
Balevičius V, Abramavicius D, Polívka T et al (2016) A unified picture of S∗ in carotenoids. J Phys Chem Lett 7:3347–3352. 10.1021/acs.jpclett.6b01455 PubMed DOI PMC
Barzda V, Gulbinas V, Kananavicius R et al (2001) Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80:2409–2421. 10.1016/S0006-3495(01)76210-8 PubMed DOI PMC
Belgio E, Johnson MP, Jurić S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime - Both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771. 10.1016/j.bpj.2012.05.004 PubMed DOI PMC
Bína D, Litvín R, Vácha F, Šiffel P (2006) New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth Res 88:351–356. 10.1007/s11120-006-9071-y PubMed DOI
Bittner T, Irrgang K-D, Renger G, Wasielewski MR (1994) Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach. J Phys Chem 98:11821–11826. 10.1021/j100097a004 DOI
Bode S, Quentmeier CC, Liao PN et al (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci U S A 106:12311–12316. 10.1073/pnas.0903536106 PubMed DOI PMC
Chmeliov J, Gelzinis A, Songaila E et al (2016) The nature of self-regulation in photosynthetic light-harvesting antenna. Nat Plants 2:16045. 10.1038/nplants.2016.45 PubMed DOI
Chmeliov J, Gelzinis A, Franckevičius M et al (2019) Aggregation-related nonphotochemical quenching in the photosynthetic membrane. J Phys Chem Lett 10:7340–7346. 10.1021/acs.jpclett.9b03100 PubMed DOI
Croce R, Van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501. 10.1038/nchembio.1555 PubMed DOI
Croce R, Müller MG, Bassi R, Holzwarth AR (2001) Carotenoid-to-chlorophyll energy transfer in Recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements. Biophys J 80:901–915. 10.1016/S0006-3495(01)76069-9 PubMed DOI PMC
Demmig-Adams B (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochimica et biophysica acta (BBA). - Bioenergetics 1020:1–24. 10.1016/0005-2728(90)90088-L DOI
Frank HA, Cua A, Chynwat V et al (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395. 10.1007/BF02183041 PubMed DOI
Holt NE, Zigmantas D, Valkunas L et al (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science (1979) 307:433–436. 10.1126/science.1105833 PubMed
Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267. 10.1016/j.cplett.2009.10.085 DOI
Kell A, Feng X, Lin C et al (2014) Charge-transfer character of the low-energy Chl a Qy absorption band in aggregated light harvesting complexes II. J Phys Chem B 118:6086–6091. 10.1021/jp501735p PubMed DOI
Kirchhoff H, Hinz HJ, Rösgen J (2003) Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro. Biochim Biophys Acta Bioenerg 1606:105–116. 10.1016/S0005-2728(03)00105-1 PubMed DOI
Krüger TPJ, Novoderezhkin VI, Ilioaia C, Van Grondelle R (2010) Fluorescence spectral dynamics of single LHCII trimers. Biophys J 98:3093–3101. 10.1016/j.bpj.2010.03.028 PubMed DOI PMC
Lee T-Y, Lam L, Patel-Tupper D et al (2024) Chlorophyll to zeaxanthin energy transfer in nonphotochemical quenching: an exciton annihilation-free transient absorption study. Proc Natl Acad Sci 121. 10.1073/pnas.2411620121 PubMed PMC
Liguori N, Xu P, Van Stokkum IHM et al (2017) Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat Commun 8. 10.1038/s41467-017-02239-z PubMed PMC
Liu Z, Yan H, Wang K et al (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292. 10.1038/nature02373 PubMed DOI
Malý P, Lüttig J, Rose PA et al (2023) Separating single- from multi-particle dynamics in nonlinear spectroscopy. Nature 616:280–287. 10.1038/s41586-023-05846-7 PubMed DOI
Mascoli V, Liguori N, Xu P et al (2019) Capturing the quenching mechanism of light-harvesting complexes of plants by zooming in on the ensemble. Chem 5:2900–2912. 10.1016/j.chempr.2019.08.002 DOI
Mascoli V, Gelzinis A, Chmeliov J et al (2020) Light-harvesting complexes access analogue emissive States in different environments. Chem Sci 11:5697–5709. 10.1039/d0sc00781a PubMed DOI PMC
Migliore A, Corni S, Agostini A, Carbonera D (2023) Unraveling the electronic origin of a special feature in the triplet-minus-singlet spectra of carotenoids in natural photosystems. Phys Chem Chem Phys 25:28998–29016. 10.1039/d3cp03836j PubMed DOI
Miloslavina Y, Wehner A, Lambrev PH et al (2008) Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631. 10.1016/j.febslet.2008.09.044 PubMed DOI
Mirkovic T, Ostroumov EE, Anna JM et al (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293 PubMed DOI
Müller MG, Lambrev P, Reus M et al (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11:1289–1296. 10.1002/cphc.200900852 PubMed DOI
Mullineaux CW, Pascal AA, Horton P, Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study. Biochim Et Biophys Acta (BBA) - Bioenergetics 1141:23–28. 10.1016/0005-2728(93)90184-H DOI
Natali A, Gruber JM, Dietzel L et al (2016) Light-harvesting complexes (LHCs) cluster spontaneously in membrane environment leading to shortening of their excited state lifetimes. J Biol Chem 291:16730–16739. 10.1074/jbc.M116.730101 PubMed DOI PMC
Ostroumov EE, Götze JP, Reus M et al (2020) Characterization of fluorescent chlorophyll charge-transfer States as intermediates in the excited state quenching of light-harvesting complex II. Photosynth Res 144:171–193. 10.1007/s11120-020-00745-8 PubMed DOI
Pascal AA, Liu Z, Broess K et al (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137. 10.1038/nature03795 PubMed DOI
Peterman EJG, Gradinaru CC, Calkoen F et al (1997) Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215. 10.1021/bi9711689 PubMed DOI
Polívka T, Zigmantas D, Sundström V et al (2002) Carotenoid S1 state in a Recombinant light-harvesting complex of photosystem II. Biochemistry 41:439–450. 10.1021/bi011589x PubMed DOI
Polívka T, Hiller RG, Frank HA (2007) Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae. Arch Biochem Biophys 458:111–120. 10.1016/j.abb.2006.10.006 PubMed DOI
Ruan M, Li H, Zhang Y et al (2023) Cryo-EM structures of LHCII in photo-active and photo-protecting States reveal allosteric regulation of light harvesting and excess energy dissipation. Nat Plants 9:1547–1557. 10.1038/s41477-023-01500-2 PubMed DOI
Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916. 10.1104/pp.15.01935 PubMed DOI PMC
Ruban AV (2024) Unveiling the atomic-scale transition between light harvesting and photoprotective States in plant photosynthesis. Sci China Chem 67:1375–1377. 10.1007/s11426-023-1806-6 DOI
Ruban AV, Saccon F (2022) Chlorophyll a de-excitation pathways in the LHCII antenna. J Chem Phys 156:070902. 10.1063/5.0073825 PubMed DOI
Ruban AV, Rees D, Noctor GD et al (1991) Long-wavelength chlorophyll species are associated with amplification of high-energy-state excitation quenching in higher plants. Biochim Et Biophys Acta (BBA) - Bioenergetics 1059:355–360. 10.1016/S0005-2728(05)80221-X DOI
Ruban AV, Young AJ, Pascal AA, Horton P (1994) The effects of illumination on the xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol 104:227–234. 10.1104/pp.104.1.227 PubMed DOI PMC
Ruban AV, Berera R, Ilioaia C et al (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578. 10.1038/nature06262 PubMed DOI
Rutkauskas D, Chmeliov J, Johnson M, Ruban A, Valkunas L (2012) Exciton annihilation as a probe of the light-harvesting antenna transition into the photoprotective mode. Chem Phys 404:123–128. 10.1016/j.chemphys.2012.05.002 DOI
Saccon F, Durchan M, Bína D et al (2020) A protein environment-modulated energy dissipation channel in LHCII antenna complex. iScience 23:101430. 10.1016/j.isci.2020.101430 PubMed DOI PMC
Schlau-Cohen GS, Yang H-Y, Krüger TPJ et al (2015) Single-molecule identification of quenched and unquenched States of LHCII. J Phys Chem Lett 6:860–867. 10.1021/acs.jpclett.5b00034 PubMed DOI
Shukla MK, Watanabe A, Wilson S et al (2020) A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. J Biol Chem 295:17816–17826. 10.1074/jbc.RA120.016181 PubMed DOI PMC
Skotnicová P, Staleva-Musto H, Kuznetsova V et al (2021) Plant LHC-like proteins show robust folding and static non-photochemical quenching. Nat Commun 12:6890. 10.1038/s41467-021-27155-1 PubMed DOI PMC
Staleva H, Komenda J, Shukla MK et al (2015) Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat Chem Biol 11:287–291. 10.1038/nchembio.1755 PubMed DOI
Tutkus M, Chmeliov J, Trinkunas G et al (2021) Aggregation-related quenching of LHCII fluorescence in liposomes revealed by single-molecule spectroscopy. J Photochem Photobiol B 218:112174. 10.1016/j.jphotobiol.2021.112174 PubMed DOI
Van Amerongen H, Van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105:604–617. 10.1021/jp0028406 DOI
Van Oort B, Roy LM, Xu P et al (2018) Revisiting the role of xanthophylls in nonphotochemical quenching. J Phys Chem Lett 9:346–352. 10.1021/acs.jpclett.7b03049 PubMed DOI
Van Stokkum IHM, Larsen DS, Van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta Bioenerg 1657:82–104. 10.1016/j.bbabio.2004.04.011 PubMed DOI
Wahadoszamen M, Berera R, Ara AM et al (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766. 10.1039/c1cp23059j PubMed DOI
Wilson S, Li DH, Ruban AV (2022) The structural and spectral features of light-harvesting complex II proteoliposomes mimic those of native thylakoid membranes. J Phys Chem Lett 13:5683–5691. 10.1021/acs.jpclett.2c01019 PubMed DOI PMC
Yao HD, Li DH, Gao RY et al (2022) A possible mechanism for aggregation-induced chlorophyll fluorescence quenching in light-harvesting complex II from the marine green Alga bryopsis corticulans. J Phys Chem B 126:9580–9590. 10.1021/acs.jpcb.2c05823 PubMed DOI
Young RM, Wasielewski MR (2020) Mixed electronic States in molecular dimers: connecting singlet fission, excimer formation, and symmetry-breaking charge transfer. Acc Chem Res 53:1957–1968. 10.1021/acs.accounts.0c00397 PubMed DOI
Zou JW, Li DH, Gao RY, Li YQ, Yu QR, Yu ZH, Ruban AV, Zhang JP, Zheng J (2025) Excimer and non-photochemical quenching in LHCII. J Chem Phys 163:195104. 10.1063/5.0271063 PubMed DOI